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Abstract: Nuclear magnetic resonance (NMR) spectroscopy is one of the most utilized and informative
analytical techniques for investigating glycosaminoglycan (GAG)-protein complexes. NMR methods
that are commonly applied to GAG-protein systems include chemical shift perturbation, saturation
transfer difference, and transferred nuclear Overhauser effect. Although these NMR methods have
revealed valuable insight into the protein-GAG complexes, elucidating high-resolution structural
and dynamic information of these often transient interactions remains challenging. In addition,
preparation of structurally homogeneous and isotopically enriched GAG ligands for structural
investigations continues to be laborious. As a result, understanding of the structure-activity
relationship of GAGs is still primitive. To overcome these deficiencies, several innovative NMR
techniques have been developed lately. Here, we review some of the commonly used techniques
along with more novel methods such as waterLOGSY and experiments to examine structure and
dynamic of lysine and arginine side chains to identify GAG-binding sites. We will also present the
latest technology that is used to produce isotopically enriched as well as paramagnetically tagged
GAG ligands. Recent results that were obtained from solid-state NMR of amyloid’s interaction
with GAG are also presented together with a brief discussion on computer assisted modeling of
GAG-protein complexes using sparse experimental data.

Keywords: glycosaminoglycan; GAG binding site; GAG-protein interactions; isotopic labeling; NMR;
paramagnetic labeling

1. Introduction

Glycosaminoglycans (GAGs) are linear, anionic, high molecular weight (MW) polysaccharides
that are composed of repeating disaccharide building blocks of alternating hexosamine and uronic
acid/galactose units (Table 1, Figure 1). The monosaccharide composition and sulfation patterns of
the disaccharide units of GAGs are used to classify GAGs into different categories (Table 1, Figure 1).
GAGs have potent and varied biological activity. The formation of intermolecular complexes between
GAGs and functional proteins is a requirement in most physiological and certain pathological events
(Figure 2) [1–6]. These GAG-protein interactions and their consequential functions are prevalent in all
tissues of the human body.

Among all glycoconjugates in the glycocalix, GAGs are likely to be the most important player
of the extracellular matrix in terms of protein interaction and regulation. This is because of two
essential characteristics of these sulfated heteropolysaccharides: (i) they are ubiquitous to all eukaryotic
cells; and, (ii) their highly complex structure gives rise to unique motifs that may have specific
interactions with proteins. Hence, knowledge about the structural biology of GAG-protein interactions
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is extremely relevant. Three major goals exist in the current science of GAG-protein interactions:
(i) identification of novel GAG sequences recognized specifically by proteins; (ii) identification of
the potential GAG-binding site(s) in GAG-binding proteins; and, (iii) understand how GAG-induced
changes in protein oligomerization and conformation regulate physiological activity.

Table 1. Commonest monosaccharides and sulfation patterns of the different (sub)classes of
glycosaminoglycans (GAGs).

GAG Type or Sub-Type Hexosamine * Uronic Acid or Neutral Sugar * Sulfation Pattern *

Heparin 4-linked α-GlcNAc 4-linked α-IdoA GlcNS6S, IdoA2S
Heparan sulfate 4-linked α-GlcNAc 4-linked β-GlcA non-sulfated

Chondroitin sulfate A 3-linked β-GalNAc 4-linked β-GlcA GalNAc4S
Chondroitin sulfate B (dermatan sulfate) 3-linked β-GalNAc 4-linked α-IdoA GalNAc4S, IdoA2S

Chondroitin sulfate C 3-linked β-GalNAc 4-linked β-GlcA GalNAc6S
Chondroitin sulfate D 3-linked β-GalNAc 4-linked β-GlcA GalNAc6S, GlcA2S
Chondroitin sulfate E 3-linked β-GalNAc 4-linked β-GlcA GalNAc4S6S

Keratan sulfate 4-linked β-GlcNAc 3-linked α-Gal GlcNAc6S, Gal6S
Hyaluronan 3-linked β-GlcNAc 3-linked β-GlcA non-sulfated

* The abbreviation of the sugars are GlcNAc, N-acetylglucosamine; IdoA, iduronic acid; GlcNS6S,
N,6-di-sulfated glucosamine; IdoA2S, 2-sulfated iduronic acid; GalNAc, N-acetylgalactosamine, GalNAc4S,
4-sulfated N-acetylgalatosamine; GalNAc6S, 6-sulfated N-acetylgalactosamine; GlcA2S, 2-sulfated glucuronic
acid; GalNAc4S6S, 4,6-di-sulfated galactosamine; Gal, galactose; GlcNAc6S, 6-sulfated N-acetylglucosamine.
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GlcNAc6S-(β1-3)-Gal6S-(β1-4)-GlcNAc6S] from 1KES [10]; and (F) Hyaluronan [GlcA-(β1-3)-GlcNAc-(β1-
4)-GlcA-(β1-3)-GlcNAc] from 2BVK [11]. The atoms in the ball-stick representations are carbon (grey), 
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nuclear magnetic resonance (NMR) solution structures, and non-exchangeable protons are shown; the 

Figure 1. Three-dimensional representations of GAG tetrasaccharides taken from the protein data
bank (PDB). (A) Heparin [IdoA2S-(α1-4)-GlcNS6S-(α1-4)-IdoA2S-(α1-4)-GlcNS6S] from 1HPN [7];
(B) Heparan sulfate [GlcA-(β1-4)-GlcNAc-(β1-4)-GlcA-(β1-4)-GlcNAc] from 3E7J [8]; (C) Chondroitin
4-sulfate (CS-A) [GlcA-(β1-3)-GalNAc4S-(β1-4)-GlcA-(β1-3)-GalNAc4S] from 1OFM [9]; (D) Dermatan
sulfate (CS-B) [IdoA-(α1-3)-GalNAc4S-(β1-4)-IdoA-(α1-3)-GalNAc4S] from 1OFL [9]; (E) Keratan
sulfate [Gal6S-(β1-4)-GlcNAc6S-(β1-3)-Gal6S-(β1-4)-GlcNAc6S] from 1KES [10]; and (F) Hyaluronan
[GlcA-(β1-3)-GlcNAc-(β1-4)-GlcA-(β1-3)-GlcNAc] from 2BVK [11]. The atoms in the ball-stick
representations are carbon (grey), nitrogen (blue), hydrogen (light grey); oxygen (red) and sulfur
(yellow). Representations A and F are nuclear magnetic resonance (NMR) solution structures, and
non-exchangeable protons are shown; the other representations are crystal structures so are shown
without protons. Reprint with permission from MDPI Pharmaceuticals (Basel), 2018, 11(1) [12].
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Figure 2. Structural representations from the crystal structures of some illustrative GAG-protein
complexes in PDB: (A) macrophage inflammatory protein 1α (CCL3) monomer + heparin
tetrasaccharide (from 5D65) [13], (B) Platelet factor 4 (CXCL4) dimer + fondaparinux (antithrombin-high
affinity heparin pentasaccharide) (from 4R9W) [14], (C) human heparanase complex + heparin
tetrasaccharide (from 5E9C) [15], (D) D-glucuronyl C5-epimerase + heparin hexasaccharide (from
4PXQ) [16], (E) Cathepsin K monomer + dermatan sulfate hexasaccharide (from 4N79) [17], and
(F) Sonic Hedgehog monomer + CS-A tetrasaccharide (from 4C4M) [18]. The atoms of the GAG ligands
represented in the ball-stick view are carbon (grey), nitrogen (blue), hydrogen (light grey); oxygen (red)
and sulfur (yellow). In the proteins, the α-helices, β-sheets, loops and random coils are represented
respectively in red, blue, green, and grey. The pathophysiological systems in which these complexes
play a role are indicated by grey fonts in the panel. Reprint with permission from MDPI Pharmaceuticals
(Basel), 2018, 11(1) [12].

One analytical technique that is capable of studying the various aspects of GAG-protein
interactions including the three above-mentioned goals is nuclear magnetic resonance (NMR),
whose versatility has made it a popular choice among researchers interested in GAG-binding
proteins. NMR-oriented studies have been designed to elucidate multiple aspects of GAG-protein
interactions, not only through the individual protein and ligand point-of-views but also through the
perspective of the resultant complexes in solution, including their conformational fluctuations from
the ns-to-ms timescale.

In this review, we want to offer an overview ofthe potentialsof this analytical technique for
advancing studies of GAG-protein interactions. Although discussion on the most common NMR-based
methods that are utilized to investigate GAG-protein interactions, such as chemical shift perturbation,
saturation transferred difference, and transferred nuclear Overhauser effect, are presented, attention
is also given to newer methods that have been developed lately. These up-to-date methods include
water-ligand observed via gradient spectroscopy, isotopic enrichment and paramagnetic labeling
of GAG ligands of well-defined chemical structures, characterization of lysine and arginines of
GAG-binding sites, dynamics of the GAG-protein complexes, and solid-state NMR for resultant
complexes with low solubility. Finally, we discuss how these NMR-based findings of GAG-protein
interactions can be used to create molecular models of the complexes to better understand the
structure-activity relationship of GAG-protein interactions.
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2. Common NMR Experiments

2.1. Chemical Shift Perturbation

Chemical shift perturbation (CSP) or chemical shift mapping is perhaps the mostly used NMR
method in GAG-protein interaction studies [19]. It is generally carried out on 15N-labeled proteins
and allows for GAG-binding sites in proteins to be identified. The protein atomic chemical shifts of
interest are usually obtained through the 15N-edited heteronuclear single quantum coherence (HSQC)
spectra of 15N-labeled proteins and medium-sized GAG oligosaccharides whose composition can
be heterogeneous. To determine the GAG-binding site, multiple HSQC spectra of the protein with
increasing concentrations of the ligand are recorded. These spectra allow for the ligand induced
chemical shift changes in protein atoms to be quantified. In particular, the 15N-HSQC experiment
measures the chemical shift changes of backbone amide proton and nitrogen (∆δH and ∆δN) in a
residue specific fashion. The magnitudes of the changes are often diagnostic of ligand binding sites
as larger changes are interpreted as a consequence of closeness of the atoms to the ligand. But,
exceptions can exist. For example, when aromatic rings or charges approach the amide groups, this can
sometimes exhibit a larger chemical shift change than expected just from the distances. Nonetheless,
the magnitude of CSP for amide 1H and 15N resonances is usually quantified while using the empirical
nonlinear Equation (1), where ∆δHN and ∆δN are the observed CSP for 1H and 15N, respectively.

∆δ = [(∆δHN)2 + (∆δN × 0.12)2]1/2 (1)

The weighting factor 0.12 reflects the difference in chemical shift dispersion of 1H and 15N in folded
proteins [20]. These data can be easily used to determine the dissociation constant (Kd) of the
intermolecular complex with a binding stoichiometry of one-to-one using Formula (2), where x
is the total ligand concentration, ∆δ is the observed chemical shift change, [Protein] is the total protein
concentration, and ∆δmax is the maximum GAG-induced chemical shift change for the atom.

∆δ = (∆δmax/2[Protein])·{(Kd + x + [Protein]) − [(Kd + x + [Protein])2 − (4[Protein]x)]1/2} (2)

As discussed in Section 7, data derived from CSP can be used as input in computational docking for
generating the molecular model of the resultant complex.

As an example of the CSP application, the binding region of fondaparinux (Fx) on human
beta-defensin 6 (hBD6) mapped by this method is here described [21]. Fx is a synthetic and highly
sulfated heparin pentasaccharide that is commonly exploited as heparan sulfate mimetic in NMR-based
GAG-protein interaction studies. HS is believed to be the major physiological target for most of the
GAG-binding proteins, including the defensin hBD6. Isolation of well-defined oligosaccharides of
heparan sulfate is difficult and since Fx is commercially available, this ligand becomes a preferable
choice for research. Figure 3A shows a partial but detailed region of the 15N-HSQC NMR spectra
of hBD6 recorded as a function of the Fx concentration: from a 0 (black) to 4:1 Fx:hBD6 ratio
(cyan). NMR titration experiments revealed large changes in hBD6 chemical shifts in a fast exchange
equilibrium between free and Fx-bound hBD6, as demonstrated by a gradual shift in peak positions
seen by the different 15N-HSQC spectra recorded with increasing concentrations of heparin ligand.
The quantitative analysis using the 1HN and 15N chemical shift changes for a subset of hBD6 resonances
upon titration with Fx using the above-discussed formulas yielded a Kd value of 4.1 (±2.9) µM
(Figure 3B). Figure 3C depicts the CSP map of Fx on hBD6 upon complete saturation (Fx:hBD6 molar
ratio of 4:1) plotted as a function of the residue number of hBD6 for the Fx titration.

From the work depicted in Figure 3, the hBD6 residues most sensitive to Fx binding were
determined. They are located in the α-helix (amino acids F1, F2, D3, E4, K5, C6, N7) and in part
of the β2 and β3 strands (amino acids C27, Q28, K29, S30, L31, K32) of the defensin. Three lysines
(K5, K29, and K32) out of seven have backbone 15N and 1H resonances significantly affected by the



Molecules 2018, 23, 2314 5 of 25

binding of Fx (Figure 3). These three perturbed lysine residues were reported to be part of the same
heparin binding motif in hBD6 [21]. These basic amino acids perturbed in the CSP method indicate
that electrostatic interactions are a major contributor to Fx binding to hBD6. Figure 3D shows the Fx
binding site mapped onto the hBD6 structure (PDB ID: 2LWL). This dataset was revisited herein with
permission from [21].

A

B D

C

Figure 3. Interaction of human beta-defensin 6 (hBD6) with fondaparinux (Fx) by chemical shift
perturbation (CSP) analysis. (A) A section of the 15N-edited heteronuclear single quantum coherence
(15N-HSQC) spectra of the free hBD6 (black) and in the presence of heparin pentasaccharide Fx.
The arrow indicates the direction of binding-induced chemical shift changes; (B) Representative
binding profile for calculating the binding constant of hBD6-Fx interactions; (C) CSP map of hBD6-Fx
interactions. The change seen for individual residues were judged in cutoffs (dotted lines) of 0.06 (light
cyan) and 0.10 (dark cyan) ppm. The sequence-specific secondary structural elements are shown on the
top of the CSP map; (D) Surface representation of hBD6 residues that are significantly perturbed on
heparin pentasaccharide binding. The perturbed residues are shown in blue and cyan. Republished
with permission of ASBMB J. Biol. Chem. from Unique properties of human β-defensin 6 (hBD6) and
glycosaminoglycan complex: sandwich-like dimerization and competition with the chemokine receptor
2 (CCR2) binding site. de Paula V.S., Pomin V.H., Valente A.P.; 289, 33, 2014; permission conveyed
through Copyright Clearance Center, Inc. [21].

It is worth pointing out that CSP is not only reflective of direct protein-ligand interactions
since CSP can be also influenced by other factors, such as changes in protein conformation due to
binding and/or on the chemical environment of the mapped region of the protein. In addition to that,
as commented above, when aromatic rings and/or charged groups approach amides, magnitude of
the CSP may not be solely related to physical contact and this would increase complexity during data
interpretation, leading to artifactual results. An alternative to enhance precision in the GAG-protein
interaction study is to perform additional paramagnetic relaxation enhancement (PRE) experiments to
complement the CSP methodology. The PRE method is described below at Section 3.3. Experiments
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designed to look at dynamics and orientations of side chains of lysines and arginines should also be
helpful in determining the GAG-binding residues.

2.2. Saturation Transfer Difference

Saturation transfer difference (STD) is a NMR experiment designed to map ligand protons that
are involved in the interaction with protein [22–25]. In this method a group of protein protons,
whose resonance frequencies do not overlap with any resonance frequency of the ligand, is selectively
saturated. The extensive dipole-dipole interaction network in a protein allows the saturation energy
to be spread to other protein protons as well as bound ligands, resulting in decreases in the signal
intensities of the ligand protons in contact with the protein. Figure 4 illustrates the principle behind
this NMR method. Because ligand proton signals are far easier to detect and STD is usually carried out
under excess ligand conditions, STD is most frequently used to investigate the GAG-protein complexes
through the GAG (ligand) perspective.
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GlcNS disaccharide units are essential for strong FGF2-GAG interactions and this was later confirmed by 
Yu et al. through STD (Figure 5) [25]. In Figure 5A, the 1D 1H reference spectrum of 30 μM of FGF2 and 
370 μM of a synthetic heparin octasaccharide composed of only IdoA2S-GlcNS disaccharide units (Figure 
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assignments of the ligand residues that are involved in the interaction revealed FGF2 has the strongest 

Figure 4. Schematic representation of the saturation transfer difference (STD) experiment.
(A) The atoms of the ligand free in solution, in this case H1, H2 and H3, generate NMR signals whose
intensities are proportional to their abundance; (B) Upon interaction, the saturated energy-excitement
(orange arrow) on the protein will be transferred to the bound atoms (orange fonts); (C) The on-off
behavior of the protein-ligand complex in solution leads to free but magnetized ligands. The intensities
of the NMR signals will reflect the difference between the non-saturated (black peak) and the saturated
atoms (orange peaks); The resultant STD spectrum (D) will be generated by subtracting the saturated
spectrum (B,C) from the reference spectrum (A). Modified with permission from Springer Anal. Bioanal.
Chem. License in conditions provided by Springer Nature and Copyright Clearance Center, Inc. [25].

STD has been used to investigate the GAG specificity of numerous GAG-binding proteins,
including basic fibroblast growth factor (bFGF or FGF2). Crystal structure of FGF2 with heparin
showed IdoA2S-GlcNS disaccharide units are essential for strong FGF2-GAG interactions and this
was later confirmed by Yu et al. through STD (Figure 5) [25]. In Figure 5A, the 1D 1H reference
spectrum of 30 µM of FGF2 and 370 µM of a synthetic heparin octasaccharide composed of only
IdoA2S-GlcNS disaccharide units (Figure 5B) is shown. The STD spectrum of the same sample is
displayed in Figure 5C. Intense and narrow peaks can be noted in this STD spectrum, indicating
significant interactions between FGF2 and the ligand. The assignments of the ligand residues that are
involved in the interaction revealed FGF2 has the strongest interaction with the internal region (dashed
box) of the ligand. In particular, atoms on the 2-O- and N-sulfation side of the internal tetrasaccharide
made of the units labeled as C, D, E, and F produced the strongest STD signals.
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Figure 5. NMR assignments of the STD spectrum obtained from the complex of a heparin
octasaccharide and fibroblast growth factor 2 (FGF2). (A) Reference spectrum recorded in the
presence of FGF2, but without saturating the protein with magnetization; (B) Structure of the heparin
octasaccharide utilized in the analysis. This ligand is composed of alternating IdoA2S and GlcNS units.
See Table 1 for abbreviations. The internal tetrasaccharide highlighted by the dashed box indicates the
binding motif recognized by the STD experiment; and, (C) The grey dots on the structural units indicate
the signals assigned in the STD spectrum. Adapted with permission from Springer Anal. Bioanal. Chem.
License in conditions provided by Springer Nature and Copyright Clearance Center, Inc. [25].

2.3. Transferred Nuclear Overhauser Effect

The bound-state conformation of a ligand, such as a GAG oligosaccharide, can be deduced
through a method called exchange-transferred nuclear Overhauser effect (trNOE) [26]. Through
the use of this NMR method, protein-induced changes in the intramolecular NOE signals of the
ligand can be identified. This provides valuable information about the conformational changes
of the GAG oligosaccharide upon interaction with the protein. Similar to STD, trNOE takes
advantage of the changes in the rotational motion of the ligand upon binding to the larger
macromolecule [27]. The rotational correlation time of small molecules such as medium- and
short-sized GAG oligosaccharides lies on the ps timescale and the resultant NOE signals are small and
positive. The correlation time of larger molecules, such as most of the GAG-binding protein and the
resultant GAG-protein complexes, lies on the nanosecond time range and the associated NOEs are
large and negative (Figure 6). Hence, the correlation time of a small ligand, GAG oligosaccharide in
our case, changes considerably upon interaction with the protein partner. The consequential change
of NOE cross-peak sign and magnitude can be used to elucidate the conformation of protein-bound
ligands, even in the presence of excess unbound ligands.
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Figure 6. Schematic representation of the trNOESY and trROESY methods for an exchanging
ligand-protein (yellow) complex. The NOE cross-peaks of a free ligand are positive (red) and
display opposite sign to the negative (blue) diagonal (auto) peaks, but upon interaction with the
protein in a trNOE experiment, these peaks also become negative due to the increase of effective
rotational correlation time. The analysis of the negative cross-peaks provides information on the
bound conformation of the ligand. The possible spin-diffusion-related trNOE cross-peaks can be
identified by trROE where the alternation of the sign is diagnostic of the real and artifact peaks.
Adapted with permission of RSC MedChemComm and Elsevier Curr Opin Struct Biol from NMR
and molecular recognition. The application of ligand-based NMR methods to monitor molecular
interactions. Unione L., Galante S., Diaz D., Cañada J., Jiménez-Barbero J. 5, 2014, and New structural
insights into carbohydrate-protein interactions from NMR spectroscopy. Kogelberg H., Solís D.,
Jiménez-Barbero J. 13, 5, 2013; permission conveyed through Copyright Clearance Center, Inc. [27,28].

Two of the biggest challenges for a trNOE experiment are the very narrow accessible kinetic
window and the possible existence of spin-diffusion-associated effects. Regarding the first obstacle,
for a trNOE experiment to be successful, the on-off rates must be fast relative to the spin relaxation
rates. Otherwise, the NOE information acquired by the ligand at the protein interaction will
be lost or decreased by relaxation properties before the ligand gets dissociated from the protein.
This phenomenon is also dependent on affinity and thus the Kd of the complex. To optimize the
conditions for the trNOE experiment, parameters such as temperature, ionic strength and protein:GAG
oligosaccharide molar ratio must be carefully controlled. The second obstacle can be circumvented
while using rotating-frame Overhauser effect (ROE). ROE cross-peaks have different signs depending
on whether they are produced by direct or three-spin indirect effects [29] (Figure 6), allowing
cross-peaks of direct interactions to be identified. Like the STD experiment, trNOE investigates
the GAG-protein complexes through the GAG (ligand) perspective.

An example of the use of trNOE and trROE in a protein-GAG oligosaccharide investigation is the
work of Künze et al., who studied the binding of a heparin tetrasaccharide to interleukin-10 (IL-10) [30].
The structure of the heparin fragment that was used in this work is ∆UA2S-GlcNS6S-IdoA2S-GlcNS6S
(see Table 1 for abbreviations). ∆UA2S stands for 4,5-unsaturated 2-sulfated uronic acid. Both NOESY
and ROESY spectra were collected at 150 ms mixing time on heparin tetrasaccharide alone and in the
presence of IL-10. Experiments were recorded with 20-fold excess of the ligand. NOE/ROE signals of
the GAG ligand at the free-state were close to zero and did not interfere with the signals observed in
the bound state. In the absence of protein, positive NOEs were observed between protons H2 and H3,
H4, and H5 of GlcNS6S at the non-reducing end disaccharide and between H4 and H5 of GlcNS6S of
the reducing end. In addition, some small negative NOEs appeared between H3 and H4 of the IdoA2S,
between H3 and H4 of GlcNS6S of the non-reducing end disaccharide and between H6 protons of
both GlcNS6S. Multiple strong negative NOEs were observed in the heparin tetrasaccharide in the
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presence of 5 mol % of IL-10, aside from the single positive NOE between H2 and H3 of the GlcNS6S
at the non-reducing end disaccharide. The set of trNOE observed in the experiment indicates proper
molecular interaction between IL-10 and heparin since the average correlation time of the ligand has
obviously increased significantly to produce negative NOE signals. trROE was also used to identify
artifacts produced by spin-diffusion in the same study.

Another successful application of the trNOE technique is the recent publication of Gao et al.
about the intermolecular interaction of Fx with the two N-terminal immunoglobulin domains (Ig1-2)
of leukocyte common antigen-related protein (LAR) [31]. The temperatures and magnetic field was
optimized so that the free ligand in solution produced no NOE cross-peaks (~30 ◦C at 800 MHz for Fx),
therefore allowing for cross-peak intensities in trNOE to be interpreted while using the simple 1/r6

relationship. A set of NOE and trNOE-derived interproton distances (Table 2) were generated through
these experiments and used for assessing conformational change of the ligand from the free- to the
bound-state. Besides assessing information regarding the 1C4 chair and 2S0 skew-boat configurations
of the IodA2S ring of Fx, the trNOE-derived data was also useful as conformational restraints in the
docking process [31].

Table 2. Nuclear Overhauser effect (NOE)- and trNOE-derived interproton distances of Fx free and
bound to LAR-Ig1-2. Adapted with permission from Gao et al. Biochemistry 2018, 57, 2189–2199.
Copyright. 2018 American Chemical Society [31].

1H-1H Connection a Free b Bound

AH1-BH4 2.62 ± 0.02 c 2.86 ± 0.21
CH1-DH4 2.41 ± 0.02 2.65 ± 0.20
CH3-DH1 2.43 ± 0.11 3.05 ± 0.25
DH1-DH2 3.16 ± 0.01 -
DH1-DH3 3.27 ± 0.01 2.72 ± 0.19
DH1-EH4 2.71 ± 0.02 3.14 ± 0.25
DH1-EH6 2.85 ± 0.02 2.91 ± 0.23
DH1-EH6′ 3.22 ± 0.03 2.49 ± 0.19
OMe-EH1 2.96 ± 0.02 3.22 ± 0.20

a The structure and nomenclature used were GlcNS6S-GlcA-GlcNS3S6S-IdoA2S-GlcNS6S-OMe and A-B-C-D-E-OMe.
b The distance of 2.50 Å between H2 and H4 of the GlcNS6S ring A was used reference to calculate the other NOE- and
trNOE-derived interatomic distances. c Errors were estimated based on the signal-to-noise of the individual peaks.

2.4. WaterLOGSY

Water-ligand observed via gradient spectroscopy (waterLOGSY) is an experiment whose
mechanism is akin to STD and trNOE, but it is focused on identifying interactions between water and
biomacromolecules [32]. The experiment was originally devised to confirm protein-ligand interactions
mediated by water. It has since become a valuable tool in protein-glycan studies because interactions
between proteins and glycans are often mediated by water, especially when the interactions are
electrostatic in nature. Figure 7 illustrates the mechanism of waterLOGSY experiment. The experiment
relies on the fact that trapping of water molecules in intermolecular niches between glycan and the
target protein slows the motions of water molecules, leading to cross-relaxation with adjacent glycan
and protein protons and the production of detectable cross-peaks in NOESY. In practice, the experiment
is implemented as a one-dimensional selective NOE experiment where only the water magnetization
is inverted. Although use of waterLOGSY in studies of protein-glycan interactions is common,
an example involving GAG has been published only recently. Interestingly, in that study, Mandaliti et
al. did not use the experiment to probe the ligand, but to identify protein residues that are involved
in hyaluronan binding [33], providing a good demonstration of the versatility of the experiment.
Although information from waterLOGSY is limited to hydration, it can often be used to create more
accurate models and provide a deeper understanding of the energetics of binding. A quantitative
utilization of the technique, referred to as LOGSY titration, was published recently. In this study the
authors examined the waterLOGSY signal of the ligand at different protein concentrations to accurately
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identify ligand protons involved in water mediated interactions in the protein-ligand complex [34].
Such an experiment can be easily applied to the investigation of protein-GAG systems to pin point
locations of water at the protein-GAG interface.
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Figure 7. Schematic description of the waterLOGSY experiment. (A) The magnetization of the
bulk water is selectively transferred, via the protein-ligand complex, to binding ligands (triangles).
(B) Hypothetical representations of NMR spectra from a mixture (top) and from the resultant
one-dimensional (1D) waterLOGSY spectrum (bottom), where binding and non-binding ligands can be
straightforwardly identified. The positive-phase signals (brown peaks) are produced from binding
ligands interacting with protein (blue and brown triangles) and cross-relax with protein-bound water,
whose magnetization is selectively inverted. The peaks in negative-phase (green and purple peaks)
come from the non-binding ligands which do not interact with inverted water molecules bound to
the protein. Adapted with permission of RSC MedChemComm from NMR and molecular recognition.
The application of ligand-based NMR methods to monitor molecular interactions. Unione L., Galante S.,
Diaz D., Cañada J., Jiménez-Barbero J. 5, 2014; permission conveyed through Copyright Clearance
Center, Inc. [27].

3. Production of GAG Ligands for NMR

As mentioned above, native GAGs have two structural characteristics that make them not ideal
for structural studies: (i) very complex structures with variable lengths (polydispersity); and, (ii) high
MW chains that lead to multivalent binding and protein oligomerization and/or precipitation. As a
result, only small oligosaccharides with defined structure can be used in high resolution structural
studies. Currently, two methods are being employed to generate these defined GAG fragments:
(i) purification of oligosaccharides derived from the enzymatic depolymerization of GAG from natural
sources; and, (ii) synthesis of GAG-derived oligosaccharides through multiple chemical and enzymatic
steps. Recently, we discussed the protocols that were used for chemoenzymatic synthesis and the
GAG-like oligosaccharide libraries [35]. In the next section, we briefly discuss the three-step process
used to prepare GAG oligosaccharides derived from natural sources.

Another obstacle for the NMR study of GAGs is that, because prokaryotic organisms that are
capable of growing in minimal media do not produce sulfated GAGs, there is yet no simple method
to produce isotopically enriched GAG polysaccharides. Despite these difficulties, some progress has
been made to produce isotopically labeled GAG ligands for NMR study. The following sections are
dedicated to explaining some of these methods as well as techniques for paramagnetically labeled
GAG oligosaccharides for NMR studies.

3.1. Unlabeled Oligosaccharides

Structurally homogeneous GAG fragments can be obtained by a general protocol involving
three basic steps (Figure 8). First, the native GAG polymers (Figure 8A) are partially digested by
GAG-degrading enzymes, such as hydrolases or lyases (Figure 8B). In this initial step, digestions
must be very controlled in order to produce large amounts of medium-sized oligosaccharides, such as
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hexasaccharides and octasaccharides. Otherwise, the over-digested materials will produce mostly
short-sized fragments, such as disaccharides and tetrasaccharides. Then, the mixture of digested
materials is separated based on size while using size-exclusion chromatography (SEC) (Figure 8C).
Lastly, the fragments of uniform sizes are re-fractionated based on structure and charge through
strong-anion exchange (SAX) chromatography, which is usually performed in automated systems,
such as high-pressure liquid chromatography (HPLC) (Figure 8D).

Since the resultant fragments are products of enzymatic digestions, sulfation patterns that are
observed in the generated products are controlled by enzyme specificity and they may not reflect
distribution of structural motifs in native GAG. This is a downside of the protocol because a particular
structure of interest with important biological relevance may not be obtainable. Due to this limitation,
GAG-protein investigations performed in the laboratory may not reflect the full spectrum of GAG
motifs the protein is exposed to in vivo. Nonetheless, this method still remains the most practical
way for generating structurally homogeneous ligands for further GAG-protein studies [36]. Another
obstacle is the availability of GAG-digestive enzymes in reasonable amounts for studies. Although
many GAG hydrolases and lyases are commercially available, their preparations are not consistent
since they are isolates from natural sources. The inhomogeneous preparations of these enzymes
impair reproducibility in structure and size distributions of the products. Although recombinant
GAG-digestive enzymes exist and are more reliable in terms of homogeneity, they are not widely
commercially available.

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Figure 8. General scheme for production of GAG oligosaccharides of defined size and structures,
exemplified by the various hexasaccharides of chondroitin sulfates A and C. (A) Structural
representation of the chondroitin sulfate A and C. GlcA and GalNAc stand for glucuronic acid and
N-acetylgalactosamine, respectively. Glycosidic linkages are depicted inside the ellipses. (B) After a
2-day digestion of chondroitin sulfate A derived from bovine trachea (btCS-A) or chondroitin sulfate
C derived from shark cartilage (scCS-C) with a commercial preparation of chondroitinase C from
Flavobacterium heparinum, the resultant mixture of fragments were applied in a SEC Bio-Gel P-10 column
(C) for oligosaccharide fractionation (open circles for scCS-C and filled circles for btCS-A). Then, the
pool of hexasaccharides was applied to a HPLC-SAX column for fractionation of isomers. (D) Both
mixtures of hexasaccharides were obtained from peak 6 of their respective Bio-Gel P-10 chromatograms.
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The characterized structures of the fractionated isomers are the following: Top chromatogram:
∆C6;6;6S-ol (∆UA-(β1-3)-GalNAc6S-(β1-4)-GlcA-(β1-3)-GalNAc6S-(β1-4)-GlcA(β1-3)-GalNAc6S-ol)
and ∆C4;2,6;6S-ol (∆UA-(β1-3)-GalNAc4S-(β1-4)-GlcA2S-(β1-3)-GalNAc6S-(β1-4)-GlcA-(β1-3)-
GalNAc6S-ol) for scCS-C digestion. Bottom chromatogram: ∆C6;6;6S-ol, ∆C4;6;6S-ol (∆UA-(β1-3)-
GalNAc4S-(β1-4)-GlcA-(β1-3)-GalNAc6S-(β1-4)-GlcA(β1-3)-GalNAc6S-ol) and ∆C4;4;4S-ol (∆UA-
(β1-3)-GalNAc4S-(β1-4)-GlcA-(β1-3)-GalNAc4S-(β1-4)-GlcA(β1-3)-GalNAc4S-ol) for btCS-A digestion.
The nomenclatures ∆UA, “S”, and -ol used for the structures stand, respectively, for ∆4,5 unsaturated
uronic acid, sulfation group, which the number before “S” represent the ring position, and reduced
sugars (open rings at the reducing-ends). The percentage of material yielded in each peak is given
in parentheses. The NaCl gradient is shown with the continuous light grey line. Modified with
permission from Oxford University Press. License in conditions provided by Oxford University Press
and Copyright Clearance Center, Inc. [37].

3.2. Isotopically Labeled Oligosaccharides

Although there are great barriers in total chemical synthesis of GAGs, fortunately GAG
precursors, such as heparosan [-4)-GlcNAc-(α1-4)-GlcA-(β1-]n, can be found in capsules surrounding
Escherichia coli K5 and Pasteurella multocida. This has been exploited in biotechnology for
chemoenzymatic synthesis of heparin- and heparin sulfate-like polymers [38]. Since the growth
of E. coli K5 in minimal media supplemented with 13C-glucose and 15N-(NH4)2SO4 is easily achievable,
13C,15N-doubly labeled heparosan-derived heparan sulfate and heparin can be produced in small but
sufficient quantities [39], and can be used as ligands in protein interaction studies [40]. No prokaryotic
system has been reported so far to obtain chondroitin sulfate precursors, but efforts are in progress to
obtain metabolically engineered E. coli for production of such precursors [41].

Another alternative is to generate isotopically labeled GAGs while using mammalian cells culture.
An example uses commercially available side chain 15N-labeled glutamine to produce 15N-labeled
amino sugars and consequently GAGs in Chinese Hamster Ovary cells and human lung endothelial
cells. (Figure 9) [42]. These 15N-labeled GAGs were structurally characterized via 15N-NMR, whose
signals have proven to be sensitive and diagnostic to a series of GAG structural features, such as
lengths (disaccharides, oligosaccharides, and even high-order polymers), anomericity, glycosylation
sites, hexosamine types, sulfation types (O-linked or N-linked) and positions, and neighboring
uronate types (IdoA or GlcA) [43]. Although the GAG quantity produced in the above example
was never sufficient for biochemical studies with GAG-binding proteins, attempts are underway to
produce GAG in large scale cell cultures [44]. The 15N-labeling on these ligands can be exploited
as a structural probe in GAG-protein interaction studies. In particular, 15N chemical shifts in these
ligands were very sensitive to the surrounding environment, therefore protein-induced chemical shift
perturbations on 15N resonances of these GAG ligands would offer a strategy to monitor interactions
with GAG-binding proteins.
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Figure 9. Schematic representation of the cytosolic biosynthesis of 15N-labeled UDP-N-
acetylgalactosamine and UDP-N-acetylglucosamine, using side chain 15N-labeled glutamine as 15N
donor. These nucleotide-N-acetyl-hexosamines will be further used inside the Golgi apparatus to
synthesize GAG backbones in proteoglycans. The names of the enzymes are fully written in red
while the substrates and products are mostly written in black. The 15N-labeling are indicated with the
red asterisks throughout the reaction steps. Adapted with permission from Pomin et al. Analytical
Chemistry 2010, 82, 4078–4088. Copyright 2018 American Chemical Society [42].

3.3. Paramagnetically Labeled Oligosaccharides

Paramagnetically labeled GAG ligands have proven to be useful in structural studies of
GAGs’ interactions with several different proteins [31,45–49]. The paramagnetic effect relies on
the dipole-dipole interactions between unpaired electrons and surrounding atoms. Such interactions
produce relaxation effects on nearby nuclei. The extent of the paramagnetism-induced increase in
transverse relaxation of proton can be calculated using the following Equation (3):
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where R2,pre is the increase in transverse relaxation rates due to the paramagnetic center, r is the distance
between the paramagnetic center and the proton under analysis, γH is the gyromagnetic ratio of proton,
gs is the electron g factor for the unpaired electron, ωH is the resonance frequency of the proton under
analysis, and τc is the overall rotational correlation time of the whole system. This effect is called PRE
and it can be accurately quantified using specific experiments [50,51]. However, paramagnetism can
change more than the relaxation rate of a NMR signal. As seen in Figure 10, all paramagnetic labels
can produce NMR signal line-broadening (∆ν2 is bigger than ∆ν1) on nearby atoms, but paramagnetic
center with asymmetric g-tensors and favorable relaxation properties can also produce chemical shift
displacements (∆δ) in these atoms. These chemical shift changes are referred to as pseudo-contact shifts.
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Figure 10. Paramagnetically tagged ligands affect the relaxation properties of their binding partners
causing two major effects: pseudo-contact shifts (∆δ) and line-broadening (∆ν2 > ∆ν1). These effects
can be useful for mapping the binding site of the ligand. Adapted with permission of RSC Nat. Prod.
Rep. from Application of NMR methods to the study of the interaction of natural products with
biomolecular receptors. Calle L.P., Cañada F.J., Jiménez-Barbero J. 28, 6, 2011; permission conveyed
through Copyright Clearance Center, Inc. [52].

Since the magnitude of PRE is primarily dependent on the distance between the paramagnetic
center and nearby atoms, data from this technique are simpler to interpret than CSP, which is also
sensitive to allosteric effects. Therefore, PRE is a reliable validation of CSP data. Another key advantage
of PRE is that the effective range of the paramagnetic effect can be up to 20 Å. This is ideal for detecting
long-range or transient contacts between GAGs and proteins. In several works [45–47], GAG ligands
have been functionalized with the paramagnetic tag TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl)
through the reductive amination of the reducing end of the oligosaccharide (Figure 11). This method
has the distinct advantage of being specific to the reducing end of the GAG ligand, allowing for the
location of the reducing end of the ligand to be identified.
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A particular interesting application of the technique was provided by Deshauer et al [45]. In this
study, TEMPO-tagged chondroitin sulfate hexasaccharides were used to investigate GAG interactions
of the chemokine CCL5/RANTES. Figure 12 revisits the data. The 15N HSQC spectra of RANTES
in the presence of either oxidized or reduced TEMPO-labeled chondroitin sulfate hexasaccharide
CS6;4;4 (GlcA-(β1-3)-GalNAc6S-(β1-4)-GlcA-(β1-3)-GalNAc4S-(β1-4)-GlcA(β1-3)-GalNAc4S-TEMPO)
are shown in Figure 10A. When comparing the 15N-HSQC spectra, several signals have disappeared
upon the oxidation of TEMPO. Those belonging to residues A16 and R21 are highlighted in the upper
spectrum. This indicates these residues are in close contact with the paramagetically tagged ligand.
Quantitative measurements of the 1H PRE of the amide protons were carried out (graph on Figure 12B)
and used to identity of the binding site on RANTES (Figure 12B). This approach was also similarly
employed in investigations of GAG binding by the bacterial adhesion decorin-binding proteins A
and B [47,53].
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Because of their ability to participate in ionic interactions with GAGs, lysines and arginines are the 
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Figure 12. (A) 15N-HSQC spectra of RANTES in the presence of oxidized (top panel) and reduced
(bottom panel) forms of TEMPO-labeled chondroitin sulfate hexasaccharide CS6;4;4. (B) Quantitative
measurements of paramagnetic TEMPO-induced transverse relaxation (R2,pre). Graph and surface plot
of amide proton R2,pre produced by TEMPO-labeled CS6;4;4. Residues Y14, A16 and R21 disappeared
upon addition of the ligand, but re-appeared upon its reduction. They are given the same magnitude
of R2,pre as residue Y3, which showed the largest PRE effect. Reproduced with permission of RSC New
developments in NMR. NMR in Glycoscience and Glycotechnology. Chapter 11. Xu Wang, page 264,
2017 [36].

4. Characterizing Lysine and Arginine Residues in GAG-Binding Sites

4.1. Direct Observation of Lysine Amine Signals

Because of their ability to participate in ionic interactions with GAGs, lysines and arginines
are the most important residues in GAG-binding sites. However, studying these side chains is not
routine. Specifically, the positively charged functional groups at the termini of their side chains
contain labile protons that are not usually NMR detectable. Since interactions are mediated by these
functional groups, their invisibility in NMR meant that much of GAG-protein interactions remains
undetectable. This problem is especially acute with lysines since protons on their terminal amine are
highly exchangeable, whereas some information on arginine can usually be gleaned from Hε-Nε of
arginine while using only 15N-HSQC.

The group of Junji Iwahara has contributed greatly to NMR investigations of lysine side chain
amine groups. In particular, Iwahara and co-workers have shown that the heteronuclear in-phase single
quantum coherence experiment (HISQC) is more sensitive at detecting side chain amine signals because
of its ability to reduce the relaxation effect of hydrogen exchange on 15N atoms [54]. The Iwahara group
also developed much of the theory behind the relaxation of 15N atoms in -NH3

+ groups and showed
that DNA binding to a protein changes dynamics of some of its lysine and arginine residues [55,56].
Their methodology is easily adaptable to GAG-binding proteins. The first instance of these is reported
by Sepuru et al. in the study of the interactions of chemokines CXCL1 and CXCL5 with heparin. They
noted that, in the absence of GAG octasaccharides, very few lysine side chain amine signals from
the two chemokines can be seen even at pH 5.7 and 10 ◦C. However, the addition of several molar
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equivalents of GAG octasaccharides greatly increased the number and intensity of detectable amine
signals [57].

We have applied the same methodology to the cytokine pleiotrophin. Figure 13 shows lysine
side chain amino HSQC and HISQC of pleiotrophin. The HISQC showed significant enhancements
in intensity when compared to the HSQC. However, in both cases, signals can only be observed
at pH 6.0 and low temperature (~10 ◦C). Unlike CXCL1/5, there is little dispersion in the lysine
side chain signals of pleiotrophin, which reflect the fact that many of the lysines in pleiotrophin are
located in the unstructured C-terminal tail. Similar to CXCL1/5, the presence of GAG dramatically
enhanced the intensities of the lysine signals of pleiotrophin, indicating that interactions between
GAG and protein likely reduced solvent exchange rates of amine protons. Despite the change in signal
intensity, there is no significant change in the chemical shifts of the signals, which is indicative of
highly dynamic interactions.

Molecules 2018, 23, x FOR PEER REVIEW  16 of 26 

 

their invisibility in NMR meant that much of GAG-protein interactions remains undetectable. This 
problem is especially acute with lysines since protons on their terminal amine are highly exchangeable, 
whereas some information on arginine can usually be gleaned from Hε-Nε of arginine while using only 
15N-HSQC. 

The group of Junji Iwahara has contributed greatly to NMR investigations of lysine side chain amine 
groups. In particular, Iwahara and co-workers have shown that the heteronuclear in-phase single 
quantum coherence experiment (HISQC) is more sensitive at detecting side chain amine signals because 
of its ability to reduce the relaxation effect of hydrogen exchange on 15N atoms [54]. The Iwahara group 
also developed much of the theory behind the relaxation of 15N atoms in -NH3+ groups and showed that 
DNA binding to a protein changes dynamics of some of its lysine and arginine residues [55,56]. Their 
methodology is easily adaptable to GAG-binding proteins. The first instance of these is reported by 
Sepuru et al. in the study of the interactions of chemokines CXCL1 and CXCL5 with heparin. They noted 
that, in the absence of GAG octasaccharides, very few lysine side chain amine signals from the two 
chemokines can be seen even at pH 5.7 and 10 °C. However, the addition of several molar equivalents of 
GAG octasaccharides greatly increased the number and intensity of detectable amine signals [57]. 

We have applied the same methodology to the cytokine pleiotrophin. Figure 13 shows lysine side 
chain amino HSQC and HISQC of pleiotrophin. The HISQC showed significant enhancements in 
intensity when compared to the HSQC. However, in both cases, signals can only be observed at pH 6.0 
and low temperature (~10 °C). Unlike CXCL1/5, there is little dispersion in the lysine side chain signals 
of pleiotrophin, which reflect the fact that many of the lysines in pleiotrophin are located in the 
unstructured C-terminal tail. Similar to CXCL1/5, the presence of GAG dramatically enhanced the 
intensities of the lysine signals of pleiotrophin, indicating that interactions between GAG and protein 
likely reduced solvent exchange rates of amine protons. Despite the change in signal intensity, there is 
no significant change in the chemical shifts of the signals, which is indicative of highly dynamic 
interactions.  

 
Figure 13. Lysine side chain amine 15N-HSQC and HISQC of pleiotrophin in the presence and absence of 
heparin octasaccharides. HISQC of the protein produced significantly stronger signals than HSQC. 
Addition of heparin octasaccharides also induced appearance of additional signals. 

Because GAG-induced chemical shift changes in lysine side chain signals can be small in many 
instances, it can be difficult to identify lysines that are involved in GAG binding by direct examination 
of the HISQC spectrum. Uhrin and co-workers showed that a more sensitive way to identify GAG-
binding lysines is through direct cross-linking with GAGs [58]. To do this, they prepared GAG ligands 
whose carboxyl groups are activated with sulfo-N-hydroxysuccinimide. Activation of carboxyl groups 
on these ligands led to amidation reactions between the activated carboxyls on GAGs and nearby lysine 

Figure 13. Lysine side chain amine 15N-HSQC and HISQC of pleiotrophin in the presence and absence
of heparin octasaccharides. HISQC of the protein produced significantly stronger signals than HSQC.
Addition of heparin octasaccharides also induced appearance of additional signals.

Because GAG-induced chemical shift changes in lysine side chain signals can be small in many
instances, it can be difficult to identify lysines that are involved in GAG binding by direct examination
of the HISQC spectrum. Uhrin and co-workers showed that a more sensitive way to identify
GAG-binding lysines is through direct cross-linking with GAGs [58]. To do this, they prepared
GAG ligands whose carboxyl groups are activated with sulfo-N-hydroxysuccinimide. Activation of
carboxyl groups on these ligands led to amidation reactions between the activated carboxyls on GAGs
and nearby lysine side chains on proteins. The conversion of amine to amide eliminated signals of
these lysines from the HISQC spectrum, allowing for them to be identified easily. It should be noted
that the identity of these modified lysines can also be obtained through mass spectrometry.

4.2. Specific Labeling of Lysine and Arginine Side Chains

Detecting intermolecular NOE cross-peaks between protein and GAG is usually quite difficult.
Many factors contribute to this, including a lack of non-labile protons at the interface and the often
dynamic nature of interactions between protein and GAGs. Compounding the difficulty is that the
traditional 13C/15N-filtered/edited NOESY experiment used to obtain intermolecular contacts is
low in sensitivity as a result of multiple isotopic filters and the need for 13C-labeling. To increase
the sensitivity of the NOESY experiments, we have been exploring the use of deuterated protein
containing specifically protonated lysines and arginines as a way to improve the sensitivity of the
NOESY experiment to intermolecular contacts. By avoiding 13C-labeling, we increase the transverse
relaxation time of protons and improve resolution in the both direct and indirect dimensions. However,
a lack of 13C-labeling means spectral crowding cannot be resolved with 13C-edited experiments.
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Fortunately, specifically protonating the amino acids of interest while deuterating other amino acids
mostly alleviate the problem. This method of specific labeling has the additional benefit of reducing
spin diffusion and longitudinal relaxation, which can further enhance the sensitivity of NOESY to
crucial long range intermolecular NOEs [59]. It also reduces transverse relaxation and eliminates some
1H homonuclear coupling, leading to additional increases in the signal-to-noise. However, it should be
noted that the reduction in longitudinal relaxation requires increases in recycle delay time in order to
re-establish the equilibrium magnetization.

To examine the efficiency and specificity of labeling, we have prepared 2H pleiotrophin containing
either protonated lysines or arginines. Figure 14 shows the NOESY spectra of these samples. All lysines
in the structured region of the protein can be identified. Most lysines have strong Hα signals, indicating
that the deamination of the amino acid is not extensive. Attempts at specific labeling of arginine also
produced relatively clean spectra, but Hα correlations of arginines are generally weak, a sign that the
amino acid underwentsignificant deamination. Despite the weak Hα signals, correlations between
other protons in the side chain are visible and three out of five arginines can be identified. Addition of
heparin tetrasaccharide to the specifically lysine labeled sample showed that heparin can induce drastic
changes in the Hα chemical shifts of K92 and K93, two lysines identified as crucial for GAG binding in
mutagenesis studies. The higher resolution of homonuclear NOESY also allowed identification of K93
as having strong interactions with the uronic acids in the tetrasaccharide, but not glucosamine residues.
In fact, both the non-reducing end unsaturated uronate and the iduronate close to the reducing end
have similar contacts to K93. This indicates the tetrasaccharide is likely sliding along the GAG binding
site and it does not have a single binding position. One remaining obstacle to the present methodology
is that single lysine labeling is not possible. However, this can potentially be solved while using the
amber codon technology and pyrollysyl-tRNAsynthetase, which allow for the incorporation of a single
lysine terminated with the removable protecting group BOC.Molecules 2018, 23, x FOR PEER REVIEW  18 of 26 
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be found on the website of the Northeast Structural Genomics Consortium 
(http://www.nmr2.buffalo.edu/nesg.wiki/NMR_determined_Rotational_correlation_time). In some 
instances, such as the case of the chemokine CCL5/RANTES, the monomeric and oligomeric species are 
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identified in the NMR spectrum (Figure 15). In this particular case, the disappearance of the monomeric 
species in the presence of chondroitin sulfate hexasaccharide offered conclusive evidence that GAG-
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Figure 14. 2D homonuclear NOESY spectra of deuterated pleiotrophin containing either 1H-labeled
lysine or arginine. (A) Hα region of the NOESY spectrum of 2H-pleiotrohpin with specific 1H lysine
labeling. Signals from lysines in the structured regions of pleiorophin are labeled in red. (B) Hδ region
of the NOESY spectrum of 2H-pleiotrohpin with specific 1H arginine labeling. Signals from assigned
arginines are labeled in red. (C) NOESY cross-peaks arising from intermolecular contacts involving
GAG anomericprotons of 0.2 mM 2H-pleiotrophin with 1H lysine labeling in the presence of 2 mM
heparin tetrasaccharide, ∆UA2S-GlcNS6S-IdoA2S-GlcNS6S.

5. Probing GAG-Induced Changes in Protein Dynamics and Oligomerization

Interactions of GAG with target proteins often result in oligomerization and aggregation of the
target. GAG-induced oligomerization is an important aspect of GAG’s activity and is crucial to the
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activation of many signaling proteins, including chemokines, growth factors, and membrane receptors.
Knowledge of the protein oligomer formed in the presence of GAG is often vital to understanding the
mechanism of signaling events. NMR is very sensitive to changes in protein oligomerization, which
increases the transverse relaxation time and leads to peak broadening. In fact, by measuring spin
longitudinal (R1) and transverse (R2) relaxation rates of protein complexes, the total correlation time of
the complex can be calculated, and because MW is known to be correlated with the total correlation
time, the size of the GAG-induced oligomer can be estimated. The detailed instruction on the procedure
can be found on the website of the Northeast Structural Genomics Consortium (http://www.nmr2.
buffalo.edu/nesg.wiki/NMR_determined_Rotational_correlation_time). In some instances, such as
the case of the chemokine CCL5/RANTES, the monomeric and oligomeric species are in slow exchange
on the NMR timescale under the right conditions, and therefore can be separately identified in the
NMR spectrum (Figure 15). In this particular case, the disappearance of the monomeric species in
the presence of chondroitin sulfate hexasaccharide offered conclusive evidence that GAG-induced
oligomerization has occurred.Molecules 2018, 23, x FOR PEER REVIEW  19 of 26 
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Figure 15. 15N-HSQC spectra of CCL5 in the presence (red) and absence (black) of chondroitin sulfate
hexasaccharide. At 40 ◦C, CCL5 exists in both dimer and monomer forms. However, addition of
chondroitin sulfate hexasaccharide induces the formation of CCL5 dimer, leaving only dimeric CCL5
signals in the 15N-HSQC spectrum.

Besides the use of global dynamics in the characterization of GAG-induced oligomerization,
quantitative characterization of GAG-induced local changes in protein dynamics can also be done.
NMR is an excellent tool for studying protein dynamics at a wide range of timescales. For fast motion
on the ps-to-ns timescale in 15N atoms, the model-free formalism can be used to estimate local motion
of individual atoms using their heteronuclear NOE, R2, and R1 relaxation rates [60]. For slow motion
on the µs-to-ms timescale, relaxation dispersion experiments can be used to estimate the frequency of
the motion as well as the change in chemical shift of the atom as a result of the motion. Such analyses
have been carried out on several protein-GAG systems. One example comes from the study of vascular
endothelial growth factor-165 (VEGF165) by Kim et al. [61]. They looked at the effects of GAGs on slow
timescale motions of 15N atoms in the protein backbone in heparin binding sites of VEGF165 while
using relaxation dispersion experiments. They noticed that many residues in the GAG-binding sites
exhibit dynamic motion in the ms timescale, but these motions were decreased dramatically by the
presence of heparin octasaccharide, indicating heparin has stabilized the GAG-binding site.

On the other hand, Feng et al. looked at GAG-induced slow timescale motion of decorin-binding
protein B (DBPB), a GAG-binding surface adhesin that is found on the Lyme disease bacterium
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Borrelia burgdorferi. They found that GAG binding does not change the ps-to-ns timescale motion of
DBPB. However, dermatan sulfate oligosaccharides were able to induce slow timescale motion of the
residues in the GAG-binding site [46]. Interestingly, this phenomenon is only seen with dermatan
sulfate and not other GAGs, such as heparin, indicating that the kinetics of interaction between
DBPB and GAG is GAG-type specific. Methods also exist to look at the relaxation of the 15N atom in
lysine side chain amine groups. They have been productively applied to the study of DNA-binding
proteins [55,56]. Although there is currently no report of application of these methods to GAG-binding
proteins, the utilization of these methods on GAG-binding proteins should shed important insights
into protein-GAG interactions.

6. Solid-State NMR Studies of GAG-Protein Interactions

One important biological activity of GAG is their ability to induce formation of amyloids. In fact,
GAG is known to promote amyloid formation of a number of proteins, including Aβ40/42, α-synuclein,
tau, amylin, and calcitonin [62–66]. Because the aggregates of these proteins are beyond the size regime
of solution NMR and are not capable of forming crystals, solid state NMR has become a favored tool for
investigatinginteractions of GAG with amyloids. One particular notable series of studies was carried
out by the groups of David Middleton and Sheena Radford [67–70]. They discovered that low-MW
heparin only associates strongly with Aβ40 amyloid, and not Aβ42 or shorter peptides. The structure
of the amyloid was also found to be important as amyloid with three-fold cross-sectional symmetry
has significantly higher affinity for heparin than those with two-fold symmetry. Using solid-state NMR
and a synthetic 13C-enriched heparin octasaccharide, they determined that the octasaccharide remains
rigid and is in contact with the amyloid throughout. They also examined amino acids involved in
binding heparin by looking at signal dephasing caused by dipolar interactions between 15N atoms in
lysine, arginine and histidines, and 13C atoms in the heparin octasaccharide. Surprisingly, the contact
between heparin and the amyloid was mediated mostly by histidine residues. Since most of the
histidines are located at the junction between peptides in the same cross-sectional layer, they were able
to construct a model of these GAG-Aβ40 amyloid complexes. The results also explained the lower
heparin affinity of Aβ40 amyloids with two-fold symmetry, since the arrangement of amino acids in
two-fold symmetric structures did not allow for correct clustering of the basic amino acids. It should
be noted that the availability of 13C-labeled heparin ligands was crucial to their studies. Without
this ligand, the important frequency selective rotational echo double resonance experiment used to
measure dipole-dipole interactions between 15N and 13C atoms would not be possible.

7. Computational Modeling of Protein-GAG Complexes Using Sparse Constraints

Obtaining a large quantity of experimental high-resolution structural information on GAG-protein
systems is usually not feasible. As a result, constructing of models of protein-GAG complexes cannot
be accomplished while using conventional NMR structure determination protocols. This is because the
default simulation conditions in these procedures use simplified force-fields in either implicit solvent
or vacuum models. Although these parameters greatly expedite the calculation, they require more
experimental information to arrive at the correct structure, which is unattainable for most protein-GAG
systems. The available force field parameters for creating GAG ligands are also lacking in these
software. For instance, molecular topology specification in XPLOR-NIH [71] and CNS [72] cannot
easily be used to define the puckering of the sugar ring. However, IdoA residues in most GAG
ligands adopt the 1C4 rather than the traditional 4C1 puckering. The inability to consistently specify
ring puckers means that the generation of the correct ligand structure using the software is usually
cumbersome. The imprecision in the carbohydrate parameters also means longer calculation times are
required to find the minimal energy conformation of the ligand in some cases. This makes obtaining
ligand structures that are consistent with experimental data difficult. On the other hand, although fully
fledged molecular dynamics simulation software usually have more accurate force field and realistic



Molecules 2018, 23, 2314 20 of 25

simulation conditions, the relatively large size of most protein-GAG systems means that unrestricted
molecular dynamics simulation is not likely to produce accurate structures in a realistic time frame.

To overcome these limitations, we have been using a hybrid approach to create realistic models
of protein-GAG complexes. In particular, we first obtain the coordinate of the GAG ligands while
using AMBER and its GLYCAM force field, which has just been updated to include monosaccharides
specific to GAGs [73]. This step also allows us to put the ligand in the correct bound-conformation
prior to structure calculation. We then use the structure in XPLOR-NIH or CNS to dock the glycan
onto protein using NMR constraints. The lowest energy structures are then further refined in AMBER.
Other groups have adopted similar protocols in which an approximate model is constructed while
using traditional NMR software, such as XPLOR-NIH, CNS, and HADDOCK [74], and further refined
under more realistic environments in molecular dynamics simulations if necessary. Figure 16 displays
a general scheme for the workflow in computational modeling of GAG-protein complexes while using
NMR data. GAG-binding proteins studied using such an approach include CXCL1 [75], CXCL5 [76],
β-defensin [21], Robo-1 [77], and LAR [31]. HADDOCK has proven to be especially popular because
of its ability to incorporate a large array of ambiguous data from NMR, including information from
chemical shift perturbation, ambiguous NOEs, residual dipolar couplings and pseudo-contact shifts.
It should be noted that there are several docking softwarethat are designed specifically for protein-GAG
systems [78–81]. However, it is not clear whether they can easily incorporate experimental constraints
from NMR.
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information. To ensure proper ring puckering and stereo chemistry, the initial ligand structure
should be created with AMBER using the updated GLYCAM force field. After docking the ligand
using experimental data in either XPLOR-NIH or HADDOCK/CNS, an explicit solvent refinement is
highly desirable.

8. Conclusions

GAG-dependent regulation of proteins is a pivotal biochemical process in many physiological
and pathological events. The understanding of the resultant GAG-protein complexes at the atomic
level is necessary to better comprehend the underlying mechanisms that are involved in these events
and makes the design of new drugs targeting these proteins possible. NMR spectroscopy is a versatile
and robust analytical technique that is often employed in the studies of GAG-protein interactions.
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Through isotopic labeling, not only is NMR capable of examining the physicochemical properties of
the complexes as a whole, but it also excels at examining changes affected by its binding partner in
each individual component. Multiple NMR methods are available or under development for assessing
the characteristics of the GAG-protein complexes. Here, we reviewed the theoretical and practical
aspects of the most common methods that are found in the literature. The experiments discussed
herein were CSP, STD, trNOE, PRE, and waterLOGSY. In addition, more recent methods utilized to
assess contribution of arginine and lysine side chains in interactions with GAGs and computational
approaches commonly employed to model GAG-protein interactions while using NMR-derived
information are also presented. We also discussed the importance of measuring spin relaxation rates
for assessing dynamic information of the GAG-protein complexes in solution as well as the preparation
of GAG oligosaccharides of defined chemical structures for isotopic and paramagenetic labeling so
they can be used as functional probes in GAG-protein interaction studies. The number of investigations
in this field has increased considerably during the last few years. These methods have been proven to
be essential not only to the structural biologists, but also offer benefits to those professionals working
in drug discovery. In this regard, we believe that NMR spectroscopy will continue to play a key role in
future investigations of GAG-protein interactions.
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