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Abstract: Na-magadiite exchanged with cetyl-trimethylammonium cations provided organophilic
silicate materials that allowed for the effective removal of the acidic dye “eosin”. The organic
cations were intercalated into the interlayer spacing of the layered silicate via an exchange reaction
between the organic cations from their bromide salt and the solid Na-magadiite at room temperature.
Different techniques were used to characterize the effect of the initial concentration of the surfactant
on the structure of the organo-magadiites. The C, H, and N analysis indicated that a maximum of
organic cations of 0.97 mmol/g was achieved and was accompanied by an expansion of the basal
spacing of 3.08 nm, with a tilted angle of 59◦ to the silicate layers. The conformation of the organic
surfactants was probed using solid-state 13C, finding mainly the trans conformation similar to that
of the starting cetyl trimethylammonium bromide salt (C16TMABr). Thermal gravimetric analysis
was carried out to study the thermal stability of the resulting organo-magadiites. The intercalated
surfactants started to decompose at 200 ◦C, with a mass loss percentage of 8% to 25%, depending
on the initial loading of the surfactant, and was accompanied by a decrease of the basal spacing
from 3.16 nm to 2.51 nm, as deduced from the in situ X-ray diffraction studies. At temperatures
below 220 ◦C, an expansion of the basal spacing from 3.15 to 3.34 nm occurred. These materials were
used as a removal agent for the anionic dye eosin. The maximum amount of the dye removed was
related to the organic cation content and to the initial concentration of eosin, with an improvement
from 2.5 mg/g to 80.65 mg/g. This value decreased when the organo-magadiite was preheated at
temperatures above 200 ◦C. The regeneration tests indicated that an 85% removal efficiency was
maintained after six cycles of use for the organo-magadiite using Ci of 200 mg/L.
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1. Introduction

Layered materials have attracted great attention due to their wide application in different fields
and due to their characteristic cation exchange capacity, acceptance of intercalated guest molecules,
exfoliation in different polymer matrixes, and catalytic properties [1]. The layered silicate, magadiite,
is an important member of this family, and it is easily prepared in the laboratory by the hydrothermal
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treatment of a silica source dissolved in an alkaline solution at a specific temperature of 150 ◦C
for a period of time varying from two to three days [2]. Magadiite consists of multiple negatively
charged layers of tetrahedral SiO4 with abundant silanol groups on their surfaces. The negative
charge is balanced by exchangeable hydrated cations, such as Na+ or protons (H+), in the interlayer
spacing [3]. The magadiite exhibited a theoretical high cation exchange capacity (CEC) of nearly
200 meq/100 g [4], resulting in good ion exchange properties as a host for many organic and inorganic
cations [5–11]. Magadiite was used as a silica precursor to prepare some new microporous zeolite
materials with unique structures and properties using small organic templates [12,13]. The acidic
properties of the magadiite could be enhanced by the insertion of other cations into the layered
silicate, achieved during the synthesis by adding the cations precursors to the mixture of the silica
source and NaOH. This adjustment allowed for the diversification of magadiite as a catalyst in
special catalytic reactions [14–16]. However, using long alkyl ammonium cations, the modified
cetyltrimethylammonium-magadiite was used as an intermediate precursor to synthesize mesoporous
materials with a controlled distribution of pores sizes [17,18]. In the removal of dyes process, it was
underlined that the removal efficiency of organo-clay minerals was affected by the surfactant alkyl
chain length [19–22]. A clay mineral modified with a long-chain surfactant exhibited a higher removal
capacity than did short-chain surfactant. For this purpose, cetyl trimethyl ammonium (C16TMA) was
the most commonly used cation, obtained from the corresponding salt; the bromide form was used
to prepare organo-clays or silicates [23,24]. The effect of the counteranion anion of surfactants was
reported in a few studies [25]. In the case of organo-clays, the highest intercalated amounts were
achieved using the bromide form [25], while using acid-activated clays, the C16TMAOH starting
solution led to the highest uptake value [26]. In the case of a layered silicate, such as magadiite,
a previous study reported that the maximum amount of intercalated organic surfactants was achieved
using a C16TMAOH solution [27,28]. On the other hand, H-magadiite had difficulty modifying either
a C16TMABr or C16TMACl solution [28].

In this study, Na-magadiite was modified by different initial C16TMABr solutions at room temperature.
The chemical stability of the intercalated surfactants was investigated in NaCl, HCl, and NaOH solutions.
In situ XRD technique was used to study the thermal stability of the organo-magadiites. Na-magadiite and
its protonated form were used as removal agents for basic dyes, such as methylene blue and other dyes,
without modification [29–32]. However, for acidic dyes, no studies were reported in the literature. Eosin Y,
a heterocyclic dye containing bromine atoms, was selected as a model dye, as it is used in printing, dyeing,
printing ink, and fluorescent pigments, as well as in the leather and paint industries [33] The modified
magadiites and the preheat-treated organo-magadiite were applied as a removal agent for the acidic dye
eosin from artificially polluted water. Different factors were investigated during the removal process of the
eosin dye. The regeneration process determines the feasibility of using an applied material in large-scale
operations. The resulting spent materials were regenerated by a process friendly to the environment,
and their reuse was studied after different consecutive cycles.

2. Materials and Characterization

2.1. Chemicals

We obtained fumed silica and the salt of cetyl trimethyl ammonium bromide (C16TMABr), which
is a cationic surfactant with an average molar mass of 384.44 g/mol from Sigma-Aldrich (St. Louis, MO,
USA). The dye eosin Y was an analytical reagent purchased from Acros Organics (Loughborough,
UK). Eosin yellow, also known as Acid Red 87, C.I. 45,380 with molecular formula C2OH6Br4Na2O5,
and molecular weight equal 691.58 g/mol. All the reagents were used as received. Figure 1 presents
the chemical structure of C16TMABr salt, and Figure 2 depicts the optimized three-dimensional
structural formula of the eosin Y, obtained from MarvinSketch software, version 14.9.22.0 (ChemAxon,
Budapest, Hungary).
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Na-magadiite was prepared as reported previously [27]. Fumed silica (16 g) was added to a basic 
solution formed from 4.8 g of NaOH dissolved in 105 g of water in a SiO2/alkali ratio of 4. The mixture 
was sealed in a Teflon-lined autoclave and left at 150 °C for three days in a dry oven. After cooling, 
the product was filtered, washed with deionized water, and dried overnight in an oven at 40 °C. The 
Na-magadiite was named Na-mag. 

2.3. Organo-Magadiites 

Different quantities of the solid C16TMABr salt were dissolved in 50 mL of deionized water. 
Then, 2 g of Na-mag were added to these solutions, which were mixed at room temperature 
overnight. The samples were filtrated and washed with water several times (seven to eight times). 
The resulting materials were dried at room temperature. The samples were identified as C16Mag-X, 
where X represents the initial loading of the C16TMA cation in mmol per 100 g of Na-magadiite. 
C16Mag-40 corresponds to an organo-magadiite with a loaded amount of 40 mmol of C16TMA 
cations per 100 g. 

2.4. Chemical Properties 

One selected organo-magadiite (C16Mag-80) was treated with solutions of NaOH, NaCl, and 
HCl to explore the stability of the intercalated surfactants. For this purpose, one gram of the C16Mag-
80 sample was added to 50 mL of a NaOH, HCl, or NaCl (0.5 M) solution and left overnight. The 
sample was filtered and washed extensively with deionised water and dried at room temperature.  

2.5. Eosin Removal 

In the removal experiments, 100 mg of magadiite or organo-derivatives was added to a fixed 
volume (10 mL) of eosin dye at different initial concentrations varying from 50 mg/L to 1000 mg/L in 
a sealed tube. Then, the tubes were shaken laterally in a water-bath shaker at a controlled temperature 
of 25 °C for eighteen hours. After the separation of the two phases (solid and solution) by 
centrifugation, the change in the eosin concentration solution was determined by a UV 
spectrophotometer (Cary 100 Conc, Varian, Australia) at the maximum wavelength absorption (λmax) 
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2.2. Na-Magadiite

Na-magadiite was prepared as reported previously [27]. Fumed silica (16 g) was added to a basic
solution formed from 4.8 g of NaOH dissolved in 105 g of water in a SiO2/alkali ratio of 4. The mixture
was sealed in a Teflon-lined autoclave and left at 150 ◦C for three days in a dry oven. After cooling,
the product was filtered, washed with deionized water, and dried overnight in an oven at 40 ◦C.
The Na-magadiite was named Na-mag.

2.3. Organo-Magadiites

Different quantities of the solid C16TMABr salt were dissolved in 50 mL of deionized water. Then, 2 g
of Na-mag were added to these solutions, which were mixed at room temperature overnight. The samples
were filtrated and washed with water several times (seven to eight times). The resulting materials were
dried at room temperature. The samples were identified as C16Mag-X, where X represents the initial
loading of the C16TMA cation in mmol per 100 g of Na-magadiite. C16Mag-40 corresponds to an
organo-magadiite with a loaded amount of 40 mmol of C16TMA cations per 100 g.

2.4. Chemical Properties

One selected organo-magadiite (C16Mag-80) was treated with solutions of NaOH, NaCl,
and HCl to explore the stability of the intercalated surfactants. For this purpose, one gram of the
C16Mag-80 sample was added to 50 mL of a NaOH, HCl, or NaCl (0.5 M) solution and left overnight.
The sample was filtered and washed extensively with deionised water and dried at room temperature.

2.5. Eosin Removal

In the removal experiments, 100 mg of magadiite or organo-derivatives was added to a fixed volume
(10 mL) of eosin dye at different initial concentrations varying from 50 mg/L to 1000 mg/L in a sealed
tube. Then, the tubes were shaken laterally in a water-bath shaker at a controlled temperature of 25 ◦C for
eighteen hours. After the separation of the two phases (solid and solution) by centrifugation, the change
in the eosin concentration solution was determined by a UV spectrophotometer (Cary 100 Conc, Varian,
Australia) at the maximum wavelength absorption (λmax) of 610 nm, using a prepared calibration curve.
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The experiments were carried out using duplicate samples, and the presented values are the average with
an error percentage in the range of 4% to 6%.

The removal properties of a selected organo-magadiite (C16Mag-80) preheated at different
temperatures were also investigated using the same procedure described above.

2.6. Regeneration Studies of Spent Organo-Magadiites

The following method was applied in previous studies [34]. It is friendly to the environment
since small amounts of chemicals and water solutions are used. The spent organo-magadiites were
dispersed into a mixture of 10 mL of aqueous solution of Co(NO3)2·6H2O, and a specific amount of
oxone. The mixture of the used organo-magadiite and above aqueous solution was stirred for 30 min.
The solid was separated by centrifugation, washed six to seven times with deionized water, and reused
for the next run.

2.7. Characterization

The C, H, and N contents in the modified magadiites were carried out by an CHNS-O Analyzer
from EURO EA (Waltham, MA, USA). The success of the modification of the organo-magadiites was
examined using X-ray powder diffraction with a Bruker Advance 8 diffractometer (Ni-filtered Cu-Kα

radiation with a wavelength of 0.154 nm, Germany) was used to obtain the XRD patterns. A field
scanning electron microscopy (FSEM model JSM-6700F technique, Jeol, Japan) was performed to
examine the changes in morphology of the synthesized samples. The nitrogen adsorption isotherms
were performed to estimate the microtextural properties of the samples. The isotherms were measured
on a Micrometrics ASAP 2040 (Ottawa, ON, Canada). Prior to the adsorption, the samples were
evacuated overnight at 373 K. The surface area was estimated using the Brunauer-Emmett-Teller
(BET) method, and the pore volume was deduced at a relative adsorption pressure (P/Po) of 0.95.
Thermal gravimetry analysis (TGA) was used for the study of the thermal stability of the synthesized
samples and to select the temperature values at which the organo-magadiites would be treated prior
the removal studies. The analyses were made on a TA Instruments calorimeter (New Castle, DE, USA),
model SDT2960. During the runs, the samples were heated to 800 ◦C (heating rate: 10 ◦C/min) in air.
Solid-state NMR spectra were measured with a Bruker DSX 400 MHz instrument under Magic Angle
Spinning (MAS) conditions in 2.5 mm ZrO2 rotors with a sample volume of 12 µL (rotation frequency:
20 kHz), as reported in previous studies.

3. Results and Discussion

3.1. C, H, and N Elemental Analysis

The carbon, nitrogen, and hydrogen analysis was used to quantify the organic contents in
organo-clays and other organo-silicates [27,35–37]. The elemental analysis of the organo-magadiites
is summarized in Table 1. The data revealed that the contents of carbon and nitrogen increased after
modification with the surfactant, and then remained unchanged for initial concentrations greater
than 0.80 mmol. The amount of intercalated C16TMA in the magadiite interlayer spaces varied from
0.17 mmol/g to 0.97 mmol/g. The later value was lower than the expected cation exchange capacity,
and it indicated that the modification of the Na-magadiite occurred mainly via a cation exchange
process. The electron dispersive X-ray analysis (EDX) data indicated that traces of Na cations occurred
with high loadings of organic surfactants. In the case of the similarly layered structure kenyaite, only
a partial exchange occurred [36]. This result was not the same for clay minerals, where the uptake
amount of C16TMA largely exceeded the cation exchange capacity (CEC) values [24]. This variation
was related to the different uptake mechanisms for surfactants and layered silicates.
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Table 1. C, H, and N elemental analysis of organo-magadiites prepared with different initial C16TMABr
loading solutions.

Sample C% H% N% Intercalated C16TMA Amount (mmol/g)

C16Mag-20 4.04 1.09 0.06 0.17
C16Mag-40 8.82 2.78 0.21 0.38
C16Mag-80 15.40 3.80 0.73 0.67
C16Mag-120 22.20 4.82 1.11 0.97

When the C, H, and N analysis was performed for the organo-magadiite treated with NaOH or
NaCl solutions, the percentages of C and N did not vary, indicating that the organic surfactants were
stable and did not exchange with the Na cations from the NaOH solution. However, the percentages
of C and N decreased dramatically when the organo-magadiite was treated with the HCl solution,
indicating that the organic surfactants were replaced by the protons of the acid solution, Similar data
were obtained from organo-clays and organo-silicates. For the sample treated with deionized water,
no change occurred.

3.2. X-ray Diffraction Data

The powder XRD patterns of the Na-magadiite and the organo-derivatives are presented in Figure 3.
The Na-magadiite exhibited a basal spacing of 1.56 nm, close to that reported in the literature [2,38,39],
when it was reacted with an initial surfactant loading of 0.40 mmol and a broad reflection corresponding to
3.07 nm was obtained, indicating that a partial exchange of the Na-magadiite occurred. The intensity of the
broad reflection at 3.07 nm was improved by increasing the loading concentration of C16TMABr, and the
pattern exhibited sharp reflections for a basal spacing of 3.08 nm. This value remained unchanged for initial
loading concentrations greater than 0.80 mmol, while an additional reflection at 1.54 nm was detected and
could be related to a second-order reflection of the first at 3.08 nm or to an unreacted Na-magadiite phase.
In a previous study, a similar organo-magadiite prepared from protonated magadiite (H-mag) exhibited a
first reflection at 3.10 nm and a second one at 1.54 nm. The later value was close to that of Na-magadiite
and lower than the reflection of the starting protonated magadiite at 1.21 nm (Figure 3) [6,28]. These data
confirmed that the reflection at 1.54 nm was indeed related to the organo-magadiite phase and not to the
starting Na-magadiite phase.

The basal spacing of the organo-magadiite of 3.10 nm was higher than the value reported for
organo-magadiite prepared with the same C16TMA cations (2.45 nm, [40]), This difference could
be related to different arrangement of the C16TMA cations, and to the used solvent during the
modification process, N-dimethylacetamide was employed instead of deionized water. The effect
of the solvent on the arrangement of C16TMA into the basal spacing of organo-clay minerals was
reported using pure ethanol or a mixture of water/ethanol [41].

The chemical stability tests indicated that the intercalated surfactants were not readily exchanged
with Na+ cations using either a NaCl solution or a NaOH solution. The powder XRD pattern of the
reacted organo-magadiite exhibited a similar pattern with a reflection at 3.08 nm, close to that of the
starting organo-magadiite (Figure 4). However, a different powder XRD pattern was obtained when
the organo-magadiite was reacted with the HCl solution, exhibiting a reflection at 1.15 nm (Figure 4).
This value was close to that reported for H-magadiite in the literature [6,28,42] and indicated that the
intercalated C16TMA cations were exchanged with protons from the HCl solution.
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The lengths of C16TMA cations in all trans configurations were in the range of 2.2 nm to
2.5 nm [28,43]. The basal spacing of Na-magadiite completely dehydrated (similar to H-magadiite)
was approximately 1.12 nm [6,28]. The basal spacing was estimated by adding the size of C16TMA
cations and the basal spacing of H-magadiite, and had an average of 3.47 nm, higher than the observed
value (3.10 nm). The difference between the observed and calculated values was presumably due to
some degree of tilting of the vertically C16TMA+ cations with the magadiite surface and the presence
of H2O in the interlayer spacing [44,45]. This configuration was necessary to balance the charge of the
silicate layers. The tilt angle in the organo-magadiite was higher than the tilt angle (57◦ to 59◦) in the
organo-clays with a lower charge density [27].

3.3. Solid-State NMR Studies

The stability of the layered silicate during the exchange process was deduced using solid-state
29Si MAS NMR. In fact, the spectrum of the starting Na-magadiite exhibited one main resonance
peak centered at −99 mg/L, related to Q3-type silicon, and multiple peaks in the range of −110 to
−114 mg/L, associated with Q4-type sites in the basic layered structure of magadiite (Figure S1) [46].
After the reaction with the C16TMABr solution, a similar spectrum was obtained with main resonance
peaks at −99 and −110 mg/L (Figure S1). The overall features of the spectrum did not change with
different initial loadings of the surfactant solution, indicating that the layered structure of the silicate
material was conserved [5,27].

The presence of the C16TMA cations was confirmed by C, H, N, and XRD techniques,
as mentioned previously. The 13C CP-NMR technique gave more details about the structure and
the conformation of the intercalated cations [47,48]. The 13C CP-NMR of the pure C16TMABr solid
exhibited an intense resonance peak at 33 mg/L that was assigned to C4–C13, corresponding to a
dominant trans conformation for the CH2 groups, and an additional shoulder at 30 mg/L associated
with a minor degree of the gauche conformation [26,27,36] (Figure 4). The peaks at 63 mg/L and
56 mg/L were related to C1 and the methyl groups bonded to N (CN), respectively [26,27,36].
Full assignments of the other peaks were described in previous works. The intercalated C16Mag-40 and
C16Mag-120 exhibited a resonance spectrum similar to that recorded for the C16TMABr solid with
an intense peak at 32.5 mg/L, resulting from the all-trans conformation of the organic cations [49]
(Figure 5). The conformation was quite homogeneous, which was not the case of other organo-materials
with a certain degree of cis conformation (with a peak at 30 mg/L). The intensity of the other resonance
peaks was enhanced; however, the peaks became broad, and this fact was related to the restricted
mobility of the surfactant cations between the silicate layers. In good agreement with the XRD data,
the content of the organic cations did not affect the features of the spectra, indicating that the cations
mainly adopted the trans conformation (Figure 5). Similar data were reported for organo-kenyaites
and organo-clays with closely packed organic contents [26,28,36].
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3.4. Microtextural Studies and Specific Surface Areas

The N2 adsorption studies were performed to study the changes in the textural properties of
Na-magadiite. The starting Na-magadiite exhibited an adsorption isotherm of type IV, related to a
non-porous material, with the condensation of nitrogen molecules occurring at higher relative pressure
values and within the voids of the magadiite particles (Figure S2). The organo-magadiites showed
the same feature of the N2 isotherms with a decrease of the N2 uptake at relatively low pressure
values. This decrease continued to when the magadiites were fully exchanged with C16TMA cations.
The decrease in the N2-adsorbed volume indicated that the N2 molecules accessed the interlayer space;
however, the intercalated C16TMA molecules occupied the active sites, which left the least active
sites for N2 adsorption. In addition, the BET surface was related to the active sites on the surface,
and since the C16TMA intercalation proceeded through cation exchange, the surface adsorption of the
intercalated molecules would be accounted for in the SBET surface diminution [36].

The BET surface areas (SBET), total pore volume (TPV) and average pore diameter (APD) are
summarized in Table 2. The Na-magadiite exhibited a SBET value of 35 m2/g, close to that reported for
similar materials and other layered silicates such as kanemite and kenyaite [36,39,50]. The modification
with C16TMA cations led to a decrease of the SBET value from 23 m2/g for the partially exchanged
magadiite (C16Mag-20) to 13 m2/g for the fully exchanged magadiite (C16Mag-80). These values
were similar to those of other organo-silicates and organo-clay minerals [36,51,52]. The average pore
volume deduced from the N2 isotherms was mainly related to the voids between the particles of
the organo-magadiites. In the case of organo-clays, Bhatt et al. have attributed the reduction in the
average pore volume to the formation of closely packed aggregates due to interparticle hydrophobic
interactions and to the shape of the voids [52]. The APD size increased withthe content of C16TMA+

cations (Table 2).
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Table 2. Microtextural properties of Na-magadiite and its organo-derivatives prepared with different
initial C16TMABr loading solutions.

Samples SBET (m2/g) TPV * (cc/g) APD + (nm)

Na-mag 35 0.082 10.25
C16Mag-20 23 0.068 11.80
C16Mag-40 20 0.062 12.10
C16Mag-80 15 0.054 13.09

C16Mag-120 13 0.042 12.58

* (TPV) total pore volume, + (APD) average pore diameter.

3.5. SEM Micrographs

The SEM micrographs of the starting magadiite and the resulting organo-magadiites are
presented in Figure 6. Na-magadiite exhibited silicate layers intergrown to form spherical rosettes [38].
When reacted with organic surfactants at initial concentrations of less than 0.8 mM (C16Mag-80),
the resulting magadiites exhibited similar morphologies due to the partial exchange. However, for the
fully exchanged magadiite, the rosette structure vanished, and the layers of silicates were clearly
separated (C16Mag-120). 29Si MAS NMR indicated that the layered structure was not altered during
the exchange reaction; however, a morphological change occurred. Similar data were reported for
Na-kenyaite and Na-magadiite modified by similar cations from a hydroxide solution [26,36].
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3.6. Thermal Stability

3.6.1. Thermal Gravimetric Analysis (TGA)

The TGA curve of the as-synthesized Na-Mag showed two general mass losses within the
temperature ranges of the respective derivative thermogravimetric analysis (DTG) peak limits. The first
mass-loss step of 7.5%, in the range of 26 to 100 ◦C, corresponded to the loss of the surface-adsorbed
water molecules and was associated with a maximum temperature peak at 80 ◦C. The second mass
loss of 7.5%, between 100 to 150 ◦C, followed the loss of water molecules more strongly bound to Na+

cations and was associated with the DTG peak at a maximum temperature of 130 ◦C. A weak third
mass step of 1.2%, at temperatures above 200 ◦C, was assigned to the dehydroxylation of the silicate
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layers that occurred at a maximum temperature of 288 ◦C (Figure 7A). This feature was similar to that
reported for the magadiite materials [3,4,39].

After the reaction with the C16TMABr solution with an initial loading of 0.40 mM, the TGA
curve exhibited an additional mass-loss step, in the range of 200 ◦C to 400 ◦C, that started at 180 ◦C
and was due to the pyrolysis followed the combustion of the organic materials (Figure 7A). This loss
was approximately 8% and was accompanied by a maximum loss temperature peak at 220 ◦C [26].
A continuous mass loss occurred in the temperature range of 290 to 450 ◦C and was associated with
the burnout of the residual carbonaceous material of the decomposed surfactants with two DTG
temperatures peaks at 353 and 430 ◦C [27] (Figure 7A’). As the content of the surfactants increased
in the organo-magadiites, the features of the TGA and DTG did not change (Figure 7A,A’); however,
the intensity (or the area) of the DTG peak related to the mass loss of the surfactants increased and
reached a maximum for organo-magadiite prepared using an initial loading concentration of 2.8 mmol.
A mass loss of 28% was achieved in the range of 200 to 350 ◦C. At the same time, the percentage
related to the loss of water molecules decreased, indicating the exchange of Na cations by the organic
surfactants and the hydrophobic character of the organo-magadiites and was associated with a decrease
in the intensity of the DTG peaks in the temperature range of 25 to 120 ◦C (Figure 7A’) [36]. Compared to
the pure C16TMABr salt (Figure S3), the decomposition of the intercalated surfactants occurred at low
temperatures and with different steps, which were associated with the presence of silicate layers that
acted as a retardant.
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Figure 7.TGA (A) and DTG (A’) features of (a,a’) Na-magadiite treated with different concentrations: 
(b,b’) 0.40 mM, (c,c’) 0.80 mM, and (d,d’) 1.20 mM of C16TMABr solution. 

3.6.2. In Situ Powder XRD Studies 

Figure 7. TGA (A) and DTG (A’) features of (a,a’) Na-magadiite treated with different concentrations:
(b,b’) 0.40 mM, (c,c’) 0.80 mM, and (d,d’) 1.20 mM of C16TMABr solution.

3.6.2. In Situ Powder XRD Studies

The thermal stability of the organo-magadiites was followed by in situ studies, meaning the real
temperature values were obtained when collecting the powder XRD patterns and without cooling
down the samples. To better understand the thermal stability of the organo-magadiites, the thermal
stability of the starting magadiite and the C16TMABr salt was studied. In the first stage, the powder
XRD pattern of the C16TMABr solid corresponded to a layered structure consisting of a series of
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(001) reflections with high rationality order at 2.61 nm, 1.31 nm, and 0.86 nm (Figure 8) [27,36].
Indeed, the structure of the C16TMABr salt was described as nonpolar bilayers located between polar
layers. The (001) reflection was detected at 2.61 nm, and this value was slightly higher than the length
of the C16TMA cations, reported to be close to 2.50 nm [27]. When the C16TMABr salt was preheated
at different temperatures, the layered structure was preserved until 215 ◦C. Then, further expansion of
the basal spacing followed, as mainly deduced from the variation of the (001) reflection from 2.61 nm to
3.23 nm. Finally, the C16TMABr melted, and no reflections were detected (Figure 8). The increase in the
basal spacing was related to a solid-solid transition phase at 103 ◦C, as deduced from the differential
scanning calorimetry DSC study [53].
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For the case of the fully exchanged organo-magadiite (C16Mag-80 was selected as a model sample),
the in situ PXRD patterns are depicted in Figure 9. The intercalated C16TMA cations behaved in the
same manner as the solid C16TMABr salt. Indeed, the basal spacing of the organo-magadiite increased
from 3.16 nm to 3.34 nm when preheated in the temperature range from 50 ◦C to 150 ◦C. The reflection
at 1.56 nm followed the same behavior, confirming that it was a second-order reflection of the first one.
Upon heating at 200 ◦C, the basal spacing started to shrink to 3.10 nm, and then it collapsed to 2.51 nm
at 215 ◦C. The presence of the silicate layers caused the expansion of the intercalated cations in a short
temperature range compared to that of the pure C16TMABr salt. At temperatures higher than 215 ◦C,
further collapse was recorded at 1.42 nm, and the spacing was retained close to this value at higher
temperatures, with a slight decrease from 1.42 nm to 1.39 nm. [27]. Loss of crystallinity was observed
with a decrease of intensity and general broadening of the XRD reflections.

These obtained values (1.40 nm) were higher than the basal spacings of the pristine Na-magadiite
preheated at the same temperature values, as presented in Figure S4. The Na-mag exhibited a basal
spacing of 1.15 nm at 200 ◦C [27]. This fact was related to the presence of residual carbonaceous
materials between the silicate layers regenerated during the heating. The loss of water molecules in
the interlayer spacing occurred at a temperature of 100 ◦C, accompanied by a decrease in the basal
spacing from 1.54 nm to 1.38 nm and that of water molecules bound to Na cations occurred at a higher
temperature of 150 ◦C, resulting in a further shrinkage of the basal spacing from 1.38 nm to 1.15 nm
(Figure S3). These data were in good agreement with the TGA results [39].
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3.7. Removal of Eosin Studies

3.7.1. Effect of Initial Concentrations (Ci)

The organo-magadiites were applied as a removal agent for the eosin dye. C16Mag-80 was used
as a model sample in this paragraph. A given amount of organo-magadiite can only remove a fixed
amount of dye, hence, the initial dye concentration is an important factor to study. Figure S4 shows the
variation in the amount removed (milligram of eosin per gram of used material, mg/g) with the initial
concentration (Ci), which varied from 25 mg/L to 1000 mg/L, at an equilibrium time of 18 h and using
0.1 g of material. The increment of initial eosin concentration enhanced the amount of the removed
eosin from 2.5 mg/g to 60 mg/g, as the driving force of mass transfer became large [54,55]. In the
meantime, the removal percentage was noticed to decrease from 100% at lower Ci values (less than
200 mg/L) to 57% at values greater than 700 mg/L (Figure S5). This fact was related to the available
surface sites on the organo-magadiite. At lower Ci values, sufficient adsorption sites were available
for the removal of a smaller number of dye molecules. However, at higher Ci values, the number
of eosin dye molecules was high compared to the available sites, causing a decrease in the removal
efficiency [36]. These data indicated that the organo-magadiite exhibited a performance with the
potential to remove eosin from polluted water.

3.7.2. Effect of Organic Content

The removal of eosin was investigated using the organo-magadiites with different organic
(surfactant) contents, prepared previously. We previously reported that the organic contents improved
the removal capacity of acidic dyes [36,56]. We used magadiite in this fashion due to its higher CEC
(200 meq/100 g); thus, a higher organic content on the same order of magnitude as that in organo-clay
minerals could be achieved.
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The non-modified Na-magadiite removed an amount of eosin, approximately 4 mg/g (Figure 10),
which was lower than those reported for other silicate materials such kenyaite or clay minerals [36,56].
These materials have a consistent negative charge and a poor affinity for negatively charged anionic
dyes [57]. Therefore, Na-magadiite had to be modified with suitable quaternary amine cations to
enhance its capacity and gain a net positive charge on its surface [58,59]. Figure 10 shows the effect of
the modification of Na-magadiite by C16TMA cations on the removal capacity of the eosin dye. For all
the tested organo-magadiites, the amount removed was enhanced when the initial concentration (Ci)
was increased from 25 mg/L to 1000 mg/L, and it was highly dependent on the C16TMA content at
high initial eosin concentration values above 500 mg/L. The maximum amount of eosin removed was
74 mg/g for C16Mag-120.
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In general, the modification of Na-magadiite with organic surfactants improved the removal
properties of eosin compared to that of Na-magadiite, and the organo-magadiites removed a
high amount compared to that of the Na-magadiite. Similar results were observed in the case of
organo-kenyaites and organo-clays for the removal of eosin or acidic dyes [36,56,58]

The modification of the silicate surface by organic cations and mainly long ones, such as C16TMAs,
rendered the magadiite an organophilic material similar to organo-clays [60].The negatively charged
surface of the silicate adsorbed the C16TMA+ cations via an ion exchange mechanism, where a
monolayer of cationic surfactants on the surface of the clay was formed. The positively charged ends
of the cationic surfactants were exchanged with the exchangeable interlayer cations of the magadiite
(Na+), and the hydrophobic head of the cationic surfactants was arranged outward [59]. The C16TMA+

cations generated an organophilic phase partition in the interlayer spacing, and the partition occurred
through the interaction of the dye with the cationic C16TMA+ cations [61–63].

In other words, the higher removal capacity of eosin by the organo-magadiite was estimated due
to the electrostatic attraction between negatively charged of the anionic dye and the positively charged
heads of the surfactants. It should be noted that the organo-magadiites exhibited lower specific surface
areas; however, the amount of removed eosin remained high, which suggested that the eosin molecules
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were removed into the interlamellar space. The PXRD patterns after the removal of dyes indicated
a slight increase of the basal spacing, and could indicate an anion exchange of Br anions with the
removed eosin dyes.

3.7.3. Effect of Removal Temperature

The removal of eosin was performed at different initial concentrations (Ci) for a representative
sample (C16Mag-80) and at different temperatures. The maximum temperature for the removal
properties was selected as 50 ◦C because no change in the XRD pattern of organo-magadiite was
observed (see above paragraph). The data indicated that the removal efficiency at lower initial
concentrations was not affected by the temperature change since 100% removal occurred at room
temperature (RT) for values from 25 mg/L to 200 mg/L. This fact was due to nearly all the initial
eosin being fixed by the available active sites on the adsorbent in accordance with a process that was
not temperature dependent. However, at higher initial concentrations above 500 mg/L, the removal
percentage and the amount removed depended on the temperature value. At 50 ◦C, the removal was
enhanced to 85% and a maximum of amount removed of 90 mg/g was achieved for a Ci of 900 mg/L.
These results were due to a higher partitioning rate of dye molecules in organophilic silicates, similar
to that of organoclays and organo-kenyaites [36,51], or to the temperature activation of other sites (a
function of the intercalated C16TMA) that started to fix eosin molecules and led to the increase of the
amount removed. This fact indicated that the removal of eosin was an endothermic process [64].

3.7.4. Effect of Preheated Temperature of Organo-Magadiite

The thermal treatment at a fixed temperature above 200 ◦C of organo-silicates, such as
organo-clays, was used as a method to regenerate spent absorbents for further reuse. In this study,
we reported in detail the effect of the preheat treatment of C16Mag-80 on its removal properties.
Figure 11 depicts the variation in the amount of removed eosin as a function of the preheated
temperature of the organo-magadiite for an initial concentration of 25 to 900 mg/L. The amount
removed was not affected by preheated temperatures less than or equal to 150 ◦C for Ci values less
than 200 mg/L. A reduction in the amount of eosin removed was noted for organo-magadiite preheated
at temperatures higher than 200 ◦C, and this fact was related to the start of the breakdown of the
intercalated C16TMA cations, as indicated by the TGA data and the in situ studies. A noticeable
decrease in the eosin amount removed occurred at temperatures greater than 230 ◦C due to the
complete disintegration of the intercalated C16TMA cations (as indicated by the in situ XRD studies),
and thus, a loss of the active sites necessary for the removal of eosin.

In comparison to pristine Na-mag, the amount removed was still high, and it could be associated
with the presence of the remaining active sites necessary for the removal of the eosin dye, that could
have originated from the residual carbonaceous materials. This suggestion would not be useful,
as the improvement in the removal capacity was associated with the intercalated C16TMA cations.
Nevertheless, the heat treatment may help to find the optimal temperature at which the modified
magadiite could be used. Similar data were noticed for an organo-kenyaite preheated at different
temperatures for the removal of eosin and for organo-clays for the removal of nitrobenzene [36,65].
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3.7.5. Maximum Amount of Eosin Removed

To determine the maximum amount of eosin removed using different organo-magadiites under
different conditions (before or after the preheat treatment), the Langmuir model was used. This model
is based on the assumption that the maximum adsorption corresponds to a saturated monolayer of
adsorbate molecules on the adsorbent surface [66]. The linearized Langmuir isotherm allows for the
calculation of the adsorption capacity (qmax) and the Langmuir constant (KL) that are equated by the
following Equation (1):

Ce

qe
=

1
qmax KL

+
Ce

qmax
(1)

where Ce and qe are the concentration at equilibrium (mg/g) and the amount adsorbed at equilibrium
(mg/g), respectively, qmax is the maximum adsorption capacity (mg/g), and KL is the Langmuir
constant (L/mg). These constants can be estimated from the intercept and slope of the linear plot of
the experimental data of Ce/qe versus Ce.

The isotherms of interest fitted well with this model with a linear square regression correlation
coefficient of R2 greater than 0.995. The parameters of the Langmuir model are presented in Table 3.
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Table 3. Langmuir parameters for the removal of eosin by different organo-magadiites.

Samples qmax (mgg−1) KL (Lg−1) R2

Na-Mag 3.47 0.006 0.931
C16Mag-20 25.06 0.116 0.9943
C16Mag-40 42.54 0.093 0.9961
C16Mag-80 63.06 0.0562 0.9943

C16Mag-120 80.65 0.0712 0.9965
C16Mag-80 (100) * 62.12 0.0562 0.9913
C16Mag-80 (150) * 59.23 0.0551 0.9856
C16Mag-80 (200) * 54.00 0.0284 0.9946
C16Mag-80 (215) * 44.62 0.0216 0.9875
C16Mag-80 (250) * 33.43 0.0207 0.9665

* corresponds to heating temperature value (in ◦C) of the organo-magadiites.

The maximum amount of eosin removed (qmax) was enhanced as the content of C16TMA cations
increased in the organo-magadiites and reached a maximum of 80.64 mg/g for eosin using the
C16Mag-120 sample. Similar data were obtained for organo-kenyaite and clay minerals. However, this
value depended on the preheated temperature for a fixed content of C16TMA cations, and a slight variation
of the removed capacity was maintained when the sample was preheated at temperatures below 200 ◦C
(before its usage), due to the stability of organo-magadiite in this temperature range (as indicated by the
in situ XRD study). However, at temperatures higher than 200 ◦C, a reduction began, and it continued
to decrease with the preheat temperature to a value of 54 mg/g. This fact was due to the initial loss of
C16TMA intercalated cations. The increase of KL during the removal of eosin by organo-magadiites could
be related to the strong interaction with the silicate surface; however, the role of the C16TMA should
also be taken into account, given that the increase was significant in comparison to the KL value for pure
Na-magadiite and that for C16Mag-120 preheated at temperatures higher than 215 ◦C.

The amount of eosin removed by organo-magadiites was higher than that of organo-kenyaites,
local organo-clay minerals and other materials (Table 4). This difference was due to the high
organic content on the organophilic magadiite derivatives, which was enhanced by its high cation
exchange capacity compared to kenyaite and local clay minerals. However, the organo-magadiites
exhibited lower removal capacity compared to ethylenediamine modified chitosan (EDA-CS) and a
saccharomyces cerevisiae biosorbent (SC). Nevertheless, the organo-silicates could be considered as a
potential candidate for removal of eosin Y dye.

Table 4. Removal capacities of various adsorbents for eosin dye.

Samples qmax (mg/g) References

Organo-kenyaites 48.01 [36]
Organo-magadiites 63.06–80.65 [This study]

RFA 43.48 [67]
PAC 62.28 [67]

Alumina nanoparticles 47.78 [68]
Organo-local clays 48.66 [56]

Pineapple peels 12.49 [69]
EDA-CS 294.12 [70]
PPy/SD 5.70 [71]

Chitosan hydrobeads 76.00 [72]
SC 200.00 [73]

3.8. Removal/Regeneration Tests

The removal of dyes from wastewater by solid adsorbents is a transfer process of pollutants from
the liquid to the solid phase; thus, it brings another type of pollution for the spent adsorbents because
of its disposal in landfills. The regeneration process is of great interest to reuse these spent materials
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and to reduce further contamination of landfills and its environmental impact. Different methods
of regeneration have been investigated including biological, Fenton oxidation, wet air oxidation,
microwave, ultrasound, electrochemical, and thermal treatments [74]; each method has its drawbacks,
as reported in the literature, mainly involving time consumption and energy use [74].

In this study, a simple method that did not require many chemicals or a large volume of water was
adopted and was used in our previous studies [34,36]. C16Mag-120 was used as the model sample with
a Ci of 500 mg/L. As shown in Figure 12, the removal efficiency of organo-magadiite was unchanged
over three removal/regeneration cycles, and it varied slightly from 86% to 80%. Then, it dropped to
50% after seven cycles. The decrease in the removal efficiency could indicate that some eosin molecules
were strongly adhered to the removal sites, making it difficult to remove them. However, using
a low Ci value of 200 mg/L, the removal efficiency was not altered and remained unchanged for
five removal/regeneration cycles. dropping to 80% after the six cycles. These data indicated that
organo-magadiite could be used as a potential removal agent for eosin dye.
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4. Conclusions

The modification of Na-magadiite with C16TMA cations was successfully achieved, and the
content of the surfactants could be tuned by using different initial loading concentrations; a maximum
C16TMA concentration of 0.97 mmol/g was achieved. The expansion of the basal spacing at 3.08 nm
was independent of the intercalated surfactant. The 13C CP-NMR study indicated that the intercalated
cations exhibited a homogeneous trans conformation similar to the C16TMABr solid. The in situ PXRD
results indicated an increase in the basal spacing in the temperature range of 50 to 200 ◦C due to the
expansion of the intercalated surfactants. Above this temperature, a decrease in the basal spacing to
2.15 nm occurred and was related to the decomposition of the surfactant cations.

The removal of negatively charged dye molecules was weak at the Na-magadiite surface; however,
the modification with C16TMA exhibited considerable improvement in the removal efficiency and
capacity; a maximum of 80.65 mg/g was achieved. This capacity depended on the initial concentration,
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the operating temperature, and the preheat treatment of C16Mag-120 prior to the removal process.
The intercalated cations played an important role in the eosin removal, and their decomposition
reduced and affected this property. These results showed that modified magadiite could be used as a
potential candidate for the removal of eosin, and its reuse was maintained after three to six cycles of
regeneration, depending of the Ci values.

Supplementary Materials: Supplementary materials are available online. Figure S1: 29Si MAS NMR spectra of
(a) Na-magadiite before and after reaction with C16TMABr solution at different initial concentrations (b) 0.20 mM,
(c) 0.40 mM, (d) 0.80 mM, Figure S2: Nitrogen adsorption isotherms of (a) Na-magadiite and its organo-derivatives,
(b) C16Mag-20, (c) C16Mag-40 and (d) C16Mag-80, Figure S3: TGA (black) and (red) DTG features of C16TMABr salt,
Figure S4: in-situ powder XRD patterns of (a) Na-magadiite treated at different temperatures, (b) 50 ◦C, (c) 100 ◦C,
(d) 150 ◦C, (e) 200 ◦C, (f) 250 ◦C and (g) 400 ◦C, Figure S5: Removal properties of C16Mag-80 for eosin dye.
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Abbreviation

CEC Cation exchange capacity
C16TMA Cetyl trimethylammonium
C16TMAOH Cetyl trimethylammonium hydroxide
C16TMACl Cetyl trimethylammonium chloride
C16TMABr Cetyl trimethylammonium bromide
C16Mag-20 An organo-magadiite with a loaded amount of 20 mM C16TMA cations per 100 g
C16Mag-20 An organo-magadiite with a loaded amount of 40 mM C16TMA cations per 100 g
C16Mag-80 An organo-magadiite with a loaded amount of 80 mM C16TMA cations per 100 g
C16Mag-120 An organo-magadiite with a loaded amount of 120 mM C16TMA cations per 100 g
UV UV visible
Co(NO3)2·6H2O Cobalt nitrate hexahydrate
XRD X-ray diffraction
SEM Scanning electron microscope
NMR Nuclear magnetic resonance
CP Coupled proton
MAS Magic Angle Spinning
EDX Energy dispersive X-ray spectroscopy
T.P.V. Total pore volume
A.P.D. Average pore diameter
TGA Thermal gravimetric Analysis
DTG Derivative thermal gravimetric
DSC Differential scanning calorimetry
qmax Maximum adsorption capacity (mg/g)
KL Langmuir constant (L/mg)
Ci Initial concentration
RFA Raw fly carbon ash
PAC Powdered activated carbon
PPy/SD Polymerpyrrole/sawdust
EDA-CS Ethylenediamine modified chitosan
SC Saccharomyces cerevisiae biosorbent
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