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Abstract: The preparation of complex architectures has inspired the search for new methods and
new processes in organic synthesis. Multicomponent reactions have become an interesting approach
to achieve such molecular diversity and complexity. This review intends to illustrate important
gold-catalyzed examples for the past ten years leading to interesting skeletons involved in biologically
active compounds.
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1. Introduction

Multicomponent reactions (MCRs) have been defined as processes in which three or more reagents
are added to a single vessel at the same time affording final products containing most of the atoms
from the starting materials [1,2]. Therefore, more than one chemical transformation is involved in
this approach without the necessity of changing the reaction media and without purification of the
intermediates after each transformation. In the last years, MCRs have become powerful and efficient
tools to afford molecular diversity, giving rise to libraries of small organic molecules while requiring
less time and effort when compared with stop-and-go procedures [1,2]. These processes have also
gained special interest in the pharmaceutical industry because of the easy formation of large libraries
of compounds with potential biological activities [3].

This importance is reflected in the large number of publications reported in this field over the last
decade [4,5]. Moreover, the utility and potential of multicomponent procedures have been confirmed
by the development of a high number of molecules with remarkable biological activities [6–10].

Over the last two decades, gold catalysis has experienced a growing interest and an impressive
development. Proof of that is the huge number of works published in this area of research [11–13].
The application of Au(I) in homogenous catalysis has been predominant [14–17], while reports based
on Au(III) catalysis have been more scarce and have mainly focused on the application of simple salts
such as AuCl3 or AuBr3 [18–20].

In relation with both fields of research, important contributions have been achieved with gold
catalysts in the development of new multicomponent reactions, although many of these reactions have
been only focused on the coupling of aldehydes, amines and alkynes known as A3-coupling-type
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reactions for the synthesis of propargylamines [21,22]. Since this process has already been compiled
and revised in a previous pivotal review [23], we will give to the reader a broader vision of the scope
of gold catalysts in the design and development of new MCRs beyond A3-coupling-type reactions.

In this context, we compile here some other representative pioneer multicomponent reactions
for the construction of functionalized molecules such as those disclosed in Figure 1. Nevertheless,
the field of multicomponent reactions using gold catalysts still needs a future progress and growth
in comparison with other metals or approaches. Beyond the molecules depicted in Figure 1, other
interesting protocols using gold catalysts have also been developed [24–28].
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of a classical Biginelli MCR [32–34]. 

Tran and co-workers reported the first use of unsupported Au nanorods to catalyze the Biginelli 
reaction [35]. The authors prepared gold nanoparticles in different shapes, such as nanospheres, 
nanorods and nanostars and developed the Biginelli MCR with the gold nanorods. After a 
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2. Gold-Catalyzed Multicomponent Reactions

2.1. Multicomponent Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones. A Biginelli Approach

3,4-Dihydropyrimidin-2(1H)-ones 4 (DHPMs) have attracted considerable attention due to their
antiviral, antitumor or anti-inflammatory activity, as well as their use as calcium channel blockers and
as backbones of anticancer drugs [29–31]. The most common route to prepare DHPMs is the use of a
classical Biginelli MCR [32–34].

Tran and co-workers reported the first use of unsupported Au nanorods to catalyze the Biginelli
reaction [35]. The authors prepared gold nanoparticles in different shapes, such as nanospheres,
nanorods and nanostars and developed the Biginelli MCR with the gold nanorods. After a preliminary
screening of the reaction conditions, the reaction was utilized to prepare a variety of aromatic aldehydes
using 1.0 mL of Au nanorod colloid at 80–120 ◦C (Scheme 1) [35].
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Scheme 1. Biginelli reaction catalyzed by Au nanorods.

The final DHPMs were obtained in all cases with high yields, following a simple experimental
procedure with a high catalyst efficiency. Moreover, the protocol allowed the elimination of volatile
organic solvents and carrying out the reactions without an inert atmosphere Unfortunately, the authors
did not propose a plausible reaction mechanism.

2.2. Multicomponent Synthesis of 1,4-Dihydropyridines (1,4-DHPs)

The 1,4-dihydropyridine (1,4-DHP) structural core, commonly synthesized following a classical
Hantzsch condensation [36], has also attracted the attention of different research groups due to its
appealing biological activity, including, among other properties, antioxidant, antidiabetic or antitumor
effects (Figure 2) [37–39]. Therefore, their synthesis in racemic and chiral version is still an active area
of research that includes multicomponent approaches [40–44].
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In this domain of research Cao and co-workers pioneered a gold-catalyzed multicomponent
example to synthesize N-substituted DHPs 8, through reaction of alkynes 5a,b, methanamine 6 and
different substituted aldehydes 7a–r (Scheme 2). After an exploration of potential catalysts, base
additives, solvent and temperature, the scope of the reaction was explored with the best reaction
conditions (Scheme 2) [45].
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First, adduct A would be obtained after nucleophilic addition of 5a with 6, while the activation 
of 5a by PPh3AuOTf would afford Au(I)–alkyne complex B. The interaction of species A and B could 
produce intermediate C, which can undergo C–N bond formation to generate polarized intermediate 
D prior to the formation of intermediate E. This process is facilitated by the electrophilicity 
enhancement of the C-C bond promoted by the previous coordination of the gold complex to the 
species 5a. The iminium ion intermediate E′ can be obtained through an isomerization pathway from 
E, which can condense with aldehyde 7a affording intermediate F by the attack from E′ on the 
carbonyl carbon atom of the benzaldehyde. Finally, intermediate F can evolve to product 8aa through 
a 6π electrocyclization followed by a deprotonation process.  

2.3. Multicomponent Synthesis of Pyridines 

Polysubstituted pyridines are compounds attracting great attention mostly because they 
constitute the skeleton of many natural products and organic functional materials, and also because 
they can be found in many synthetic compounds with pharmaceutical applications [46–48]. For 

Scheme 2. Au(I)-catalyzed multicomponent synthesis of 1,4-dihydropyridines 8.

This convergent approach, by generation of C–C and C–N bonds, affords N-substituted DHPs
derivatives 8 in good yields. On the basis of the experimental results, a plausible mechanism was
suggested by the authors to explain the synthesis of 1,4-DHPs 8 (Scheme 3).
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Scheme 3. Proposed catalytic cycle for the synthesis of 8aa.

First, adduct A would be obtained after nucleophilic addition of 5a with 6, while the activation of
5a by PPh3AuOTf would afford Au(I)–alkyne complex B. The interaction of species A and B could
produce intermediate C, which can undergo C–N bond formation to generate polarized intermediate D
prior to the formation of intermediate E. This process is facilitated by the electrophilicity enhancement
of the C-C bond promoted by the previous coordination of the gold complex to the species 5a.
The iminium ion intermediate E′ can be obtained through an isomerization pathway from E, which can
condense with aldehyde 7a affording intermediate F by the attack from E′ on the carbonyl carbon atom
of the benzaldehyde. Finally, intermediate F can evolve to product 8aa through a 6π electrocyclization
followed by a deprotonation process.
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2.3. Multicomponent Synthesis of Pyridines

Polysubstituted pyridines are compounds attracting great attention mostly because they constitute
the skeleton of many natural products and organic functional materials, and also because they can
be found in many synthetic compounds with pharmaceutical applications [46–48]. For example,
2-amino-3-cyanopyridine derivatives (Figure 3) have gained considerable attention due to their use as
potent HIV-1 inhibitors [49,50].
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In this field, Jonnalagadda and co-workers developed an efficient and reusable Au/MgO catalyst
to promote the multicomponent synthesis of highly substituted pyridines 13 and 15 in high yields and
in short reaction times (Scheme 4) [51].
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A plausible reaction mechanism for the preparation of these highly substituted pyridines
has been proposed by Jonnalagadda and co-workers. The first step consists on the formation
of the arylidenemalononitrile intermediate 16 through a standard Knoevenagel condensation.
The subsequent Michael-type addition of ketone 10 to the activated double bond of the arylidene
affords species 17. Finally, condensation with ammonia, followed by the cyclization of the resulting
enamine 18 and the corresponding oxidation step forms compounds 13a–g (Scheme 5) [51].
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It should be noted that the catalyst was easily recovered and reused after the reaction without any
loss of its catalytic activity during at least 5 runs.

2.4. Multicomponent Synthesis of Oxazoles

The oxazole motif is found in many compounds with useful applications and their synthesis is an
active task in different areas of research [52–60]. In 2013, Strand and co-workers pioneered the first
efficient gold-catalyzed three-component domino reaction to generate trisubstituted oxazoles directly
from imines, alkynes, and acid chlorides (Schemes 6–8) [61]. The use of MCRs had already been used
for the synthesis of this family of products [62–64] and more recently Cai and co-workers have also
pioneered a gold-catalyzed example [65]. The scope of the reaction was investigated by varying the
corresponding alkyne compound 21 (Scheme 6), the acyl chloride 20 (Scheme 7) or the N-benzylimines
19 (Scheme 8), which provides variation on three substituted positions in the final oxazole ring [61].
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Scheme 8. Structural variations in the imines 19.

Several qualitative kinetic experiments confirmed that gold was not significantly involved
in the cyclization step but did contribute to the isomeric transformation of IX into X (Scheme 9).
Those observations led to propose the addition of metal acetylide II to the activated N-acyl iminium salt
V to give propargyl amide as the initial step for the formation of the oxazole derivative. The acylation
of amine (IV) induces the release of a chlorine anion that can subsequently react with VII to produce
intermediate IX and the respective benzyl chloride (VIII) release. Finally, the isomerization of IX
into the desired oxazole XI is achieved by a synergistic process between a Brønsted acid and a
metal-mediated catalysis [66]. The same research group has also reported a more recent example of a
gold-catalyzed multicomponent reaction for the synthesis of oxazoles [67].
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In this field, a gold(I)-catalyzed multicomponent synthesis of β-alkoxyketones from readily
available precursors such as aldehydes 23, alcohols 25, and alkynes 24 was described in 2012 by
Schultz and co-workers. The authors used the gold complex SPhosAuNTf2 as a catalyst to prepare
diverse β-alkoxyketone products 26 (Scheme 10) [73].
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Scheme 10. Gold(I)-catalyzed multicomponent synthesis of β-alkoxyketones 26.

With the best reaction conditions, the scope of this approach was explored by varying the aldehyde
23, alkyne 24, and alcohol 25 reaction partners. The resulting β-alkoxyketones 26 were obtained from
moderate to good yields.

The authors proposed that an intermolecular oxyauration reaction between the alkyne 24 and
the hemiacetal 27, generated in situ by the reaction of the aldehyde with one equivalent of the
alcohol 25, could provide 28, which could subsequent split into gold(I) enol 29 and oxocarbenium
ion 30 (Scheme 11). Both intermediates could then undergo an intermolecular addition to furnish the
β-alkoxyketone product 26 [74].
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5 n = 5 (Me)3CCH2 4-Br 73

6 n = 9 (Me)3CCH2 H 66

7 n = 5 Me(CO) 4-Br 53

Interestingly, water was also employed as an appropriate nucleophile for the formation of
alcohols 38 directly via hydroxyarylation, avoiding the deprotection of the previous alkoxy compounds
(Scheme 12).

A plausible mechanism for the formation of the alcohols 38 was proposed (Scheme 13).
The mechanism is similar to one previously reported by the same authors for a related intramolecular
aminoarylation reaction [76]. Hence, first, oxidation of the gold(I) bromide could occur generating a
cationic gold(III) species 39, which would activate the alkene toward the nucleophilic attack of H2O.
Then, an oxyauration followed by C-C bond formation of 40 with the boronic acid could happen (41).
Regeneration of the gold catalyst and release of the FB(OH)2 species would afford the final alcohol 38
(Scheme 13).
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2.7. Multicomponent Synthesis of Thiazoloquinolines

The use of microwave irradiation or sonication has also provided further possibilities to perform
chemical reactions, tuning the selectivity in organic synthesis [77]. Sadeghzadeh developed a green
approach for the four-component synthesis of thiazoloquinolines 46 using gold(III) dipyridine complex
immobilized on SBA-15 as nano catalysts at room temperature (Scheme 14) [78], based on a previously
reported work by Singh and co-workers [79].
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After a broad exploration of the synthesis of gold nanoparticles and the optimization of the
reaction conditions, the authors successfully developed an efficient synthesis of thiazoloquinolines 46
in very good yields using ultrasound.

It is worth noting that the gold catalyst could be efficiently recovered from the reaction mixtures.
The activity of the recycled catalyst was also evaluated under optimized conditions of temperature,
reaction time and the amount of catalyst. The gold catalyst was reused up to seven times. After each
catalytic cycle, ICP technique was used to estimate whether the reaction took place at the surface of the
SBA-15/Au catalyst. They found that the amount of Au(III) remaining after the seventh cycle was of
about 2.1%. This value suggested good stability of the heterogeneous gold catalyst under the reaction
conditions employed.

2.8. Multicomponent Synthesis of Spirocycles

A series of compounds containing an indole [80–83] or isatin [84–86] core have been described to
possess important biological activities. Therefore, the effect of these structures in the generation of
spirocycles could highly enhance biological activity of the resulting compounds [87]. Moreover, the
spirooxindole ring is involved in many pharmaceuticals and natural products as shown in Figure 5 [88].
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The Kidwai group developed a protocol for the efficient synthesis of functionalized
spirochromenes 50 and 51 mediated by a gold(III) catalyst [93]. They used PEG 400 as it is an
eco-friendly solvent medium, being inexpensive, thermally stable, recyclable and biodegradable
(Schemes 15 and 16) [94]. Several parameters were explored in order to optimize the processes.
Thus, the effect of catalyst loading, the presence of various Lewis acids as catalysts, a screening of
solvents and the study of temperature was also analyzed. With the optimal reaction conditions, the
methodology was firstly evaluated by using different isatins 47, activated methylene compounds 48
and cyclic 1,3-diketones 49 for the synthesis of a series of tetrahydrospiro[chromene-4,3′-indoline]
derivatives 50 and 51 (Scheme 14).
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All compounds 50 and 51 were obtained with very good results (up to 96% yield). The authors
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To explain the synthesis of spirooxindole derivatives 50 and 51 two plausible pathways were
proposed based on previous studies [95] (Scheme 17).Molecules 2018, 23, x 15 of 23 
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Path A would start with a Knoevenagel condensation between isatin 47a and malononitrile
48a catalyzed by HAuCl4. This step would give rise to isatylidene malononitrile I. In a second step
dimedone 49a would attack to Knoevenagel adduct I via Michael addition producing intermediate
II (path A). In contrast, path B would start with the attack of the dimedone 49a to the isatin 47a
coordinated with HAuCl4 to afford the aldol adduct III followed by a subsequent dehydration of III
and nucleophilic attack of 48a to afford the intermediate VI. In both reaction pathways, the intermediate
II would involve the cycloaddition between the hydroxyl group and the cyano moiety to form the
desired spirooxindole 50a (Scheme 17, path A and path B).

The recyclability of PEG 400 was also explored to proof the sustainability of the solvent.
The solvent could be recycled with minimum loss and decomposition during three runs. The recycled
PEG does not change in its reactivity but approximately 5% weight loss of PEG was observed after
each completed cycle. However, the recyclability of the catalyst after the extraction of the product was
accompanied by considerable leaching of the gold(III) chloride catalyst, avoiding its recyclability.

2.9. Multicomponent Synthesis of Butenolides

The butenolide scaffold is also found in many natural products [96]. Moreover, they can exhibit
interesting biological activities as antibiotic, antifungal, antifouling, or anticancer, among other
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properties [97–100]. In 2010, Ji and co-workers developed a gold-catalyzed three-component tandem
approach between commercially available alkynes, amines and glyoxylic acid for the generation of
two types of butenolides 57 and 59 (Schemes 18 and 19) [101].

The authors proposed a plausible reaction mechanism based on their experimental results and
previous studies (Scheme 20) [102–104]. The mechanism is suggested to be a tandem reaction involving
two catalytic cycles (I and II). Firstly, in cycle I a gold-catalyzed three component coupling reaction
between an alkyne, an amine, and glyoxylic acid occurs to give intermediate A. Next, gold-promoted
endo-dig cyclization of A giving rise to intermediate B. Active intermediate B is subsequently
transformed to butenolides 57 or 59 via electrophilic trapping along with a 1,2-hydride shift pathway
or deprotonation-protonation sequence (Scheme 20). This gold-catalyzed multicomponent tandem
protocol provides a valuable synthetic route to butenolides, expanding the area of gold catalysis.

Molecules 2018, 23, x 16 of 23 

 

The authors proposed a plausible reaction mechanism based on their experimental results and 
previous studies (Scheme 20) [102–104]. The mechanism is suggested to be a tandem reaction 
involving two catalytic cycles (I and II). Firstly, in cycle I a gold-catalyzed three component coupling 
reaction between an alkyne, an amine, and glyoxylic acid occurs to give intermediate A. Next, gold-
promoted endo-dig cyclization of A giving rise to intermediate B. Active intermediate B is 
subsequently transformed to butenolides 57 or 59 via electrophilic trapping along with a 1,2-hydride 
shift pathway or deprotonation-protonation sequence (Scheme 20). This gold-catalyzed 
multicomponent tandem protocol provides a valuable synthetic route to butenolides, expanding the 
area of gold catalysis. 

 
Scheme 18. Gold-catalyzed multicomponent synthesis of butenolides 57. Scheme 18. Gold-catalyzed multicomponent synthesis of butenolides 57.



Molecules 2018, 23, 2255 17 of 23
Molecules 2018, 23, x 17 of 23 

 

 
Scheme 19. Gold-catalyzed tandem process for the synthesis of butenolides 59. Scheme 19. Gold-catalyzed tandem process for the synthesis of butenolides 59.



Molecules 2018, 23, 2255 18 of 23
Molecules 2018, 23, x 18 of 23 

 

 
Scheme 20. Catalytic cycle for the synthesis of butenolides 57 and 59. 

3. Conclusions 

The preparation of complex architectures has inspired the search for new methods and new 
processes in organic synthesis. In this sense, multicomponent reactions have become interesting 
protocols to achieve such molecular diversity and complexity. This objective, joined to the interest in 
the chemistry of gold, has allowed the synthesis of model structures using new efficient approaches. 
This review has illustrated these important and scarce examples in order to give a general vision 
related to the application and scope of gold catalysts in multicomponent reactions, until now 
dominated by the A3 coupling reaction. However, here it has been demonstrated that new processes 
have been developed, for which there is a preponderance of alkynes, carbonyls and amines as 
components for the coupling reactions. The plausible catalytic cycles to understand the role of gold 
catalyst in addition of each reagent involved have also been discussed in this work, and they clearly 
state the high Lewis acid capacity of gold catalysts to activate alkyne or carbonyl groups. The 
increasing interest in both gold catalysis and the development of more sustainable an economical 
procedures, make that a significant progress in the next few years is expected, with the use of gold 
catalysts for the discovery of new coupling reactions involving novel components that will allow the 
preparation of more complex scaffolds with potentially interesting properties. 

Author Contributions: All authors wrote the paper; and all authors read and approved the final manuscript. 

Funding: Ministerio de Economía y Competitividad (MINECO/FEDER CTQ2016-75816-C2-1-P and CTQ2017-
88091-P). Gobierno de Aragón-Fondo Social Europeo (E07_17R). 

Conflicts of Interest: The authors declare no conflict of interest. 
  

Scheme 20. Catalytic cycle for the synthesis of butenolides 57 and 59.

3. Conclusions

The preparation of complex architectures has inspired the search for new methods and new
processes in organic synthesis. In this sense, multicomponent reactions have become interesting
protocols to achieve such molecular diversity and complexity. This objective, joined to the interest in
the chemistry of gold, has allowed the synthesis of model structures using new efficient approaches.
This review has illustrated these important and scarce examples in order to give a general vision related
to the application and scope of gold catalysts in multicomponent reactions, until now dominated by
the A3 coupling reaction. However, here it has been demonstrated that new processes have been
developed, for which there is a preponderance of alkynes, carbonyls and amines as components
for the coupling reactions. The plausible catalytic cycles to understand the role of gold catalyst in
addition of each reagent involved have also been discussed in this work, and they clearly state the high
Lewis acid capacity of gold catalysts to activate alkyne or carbonyl groups. The increasing interest in
both gold catalysis and the development of more sustainable an economical procedures, make that a
significant progress in the next few years is expected, with the use of gold catalysts for the discovery of
new coupling reactions involving novel components that will allow the preparation of more complex
scaffolds with potentially interesting properties.
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