Supplementary Materials

The role of (H₂O)₁₋₂ in the CH₂O + ClO gas-phase reaction

Junyao Li, Narcisse T. Tsona, and Lin Du*

Environment Research Institute, Shandong University, Binhai Road 72, 266237 Shandong, China; <u>lijunyaoeri@mail.sdu.edu.cn</u> (J.L.); <u>tsonatch@sdu.edu.cn</u> (N.T.)

* Correspondence: lindu@sdu.edu.cn; Tel.: +86-532-58631980

compound	ΔΕ	Δ (E+ZPE)	ΔH(298K)	ΔG(298K)
CH ₂ O+ClO+H ₂ O	0	0	0	0
IM3-W	-9.0	-6.5	-3.9	9.4
TS-IMc	6.6	9.1	10.4	27.3
IMc-W	-11.7	-8.0	-5.4	11.7
TS1W2	8.7	7.9	6.1	22.9
PC1W2	0.6	-1.1	-2.5	10.9
TS2W2	21.4	21.4	20.4	37.3
PC2W2	-77.3	-71.4	-66.8	-49.6
H+HCOOCl+H2O	4.7	1.6	-1.6	1.5
Cl+HCOOH+H2O	-60.5	-57.5	-54.9	-52.6

Table S1 Electronic energies (ΔE and $\Delta(E + ZPE)$), enthalpies [($\Delta H(298 \text{ K})$], and Gibbs free energies [$\Delta G(298 \text{ K})$] for the reaction with water monomer occurring through IM3 + H₂O. All energies are calculated relative to the energy of CH₂O + ClO + H₂O, in units of kcal mol⁻¹.

Table S2 The equilibrium constants (in cm³·molecule⁻¹) for the formation of CH₂O···H₂O, ClO···H₂O, H₂O···ClO, CH₂O···(H₂O)₂ and ClO···(H₂O)₂ complexes at different altitudes.

h(km)	T(K)	[H2O]a	Keq1	Keq2	Keq3	Keq4	Keq5
0	298.15	7.7×1017	2.2×10 ⁻²³	4.8×10 ⁻²³	6.4×10 ⁻²³	4.2×10 ⁻²⁷	1.5×10 ⁻²⁷
0	288.19	4.0×10^{17}	2.4×10 ⁻²³	5.0×10-23	6.8×10 ⁻²³	5.9×10 ⁻²⁷	1.9×10 ⁻²⁷
2	275.21	1.9×10^{17}	2.7×10 ⁻²³	5.3×10 ⁻²³	7.6×10 ⁻²³	9.6×10 ⁻²⁷	2.6×10 ⁻²⁷
4	262.23	7.3×1016	3.1×10 ⁻²³	5.7×10-23	8.5×10 ⁻²³	1.6×10 ⁻²⁶	3.8×10-27
6	249.25	2.6×1016	3.6×10 ⁻²³	6.2×10-23	9.7×10 ⁻²³	3.0×10 ⁻²⁶	5.5×10-27
8	236.27	8.0×10^{15}	4.2×10 ⁻²³	6.8×10 ⁻²³	1.1×10 ⁻²²	5.7×10 ⁻²⁶	8.5×10 ⁻²⁷
10	223.29	2.1×1015	5.1×10 ⁻²³	7.6×10-23	1.3×10 ⁻²²	1.2×10 ⁻²⁵	1.4×10^{-26}
12	216.69	10.0×10^{14}	5.7×10 ⁻²³	8.1×10 ⁻²³	1.5×10^{-22}	1.8×10^{-25}	1.8×10^{-26}

 $K_{eq1}-K_{eq5}$ are the computed equilibrium constants for the formation of CH₂O···H₂O, ClO···H₂O H₂O···ClO, CH₂O···(H₂O)₂ and ClO···(H₂O)₂ complexes, respectively. ^aWater concentrations are taken from Ref 1. [1]

h(km)	T(K)	[H2O]a	Keq(IM1)	K _{eq} (IM2)	K _{eq} (IM3)
0	298.15	7.7×1017	1.6×10^{-24}	3.5×10 ⁻²⁵	1.7×10 ⁻²³
0	288.19	4.0×10^{17}	1.6×10^{-24}	3.2×10 ⁻²⁵	1.8×10 ⁻²³
2	275.21	1.9×10^{17}	1.7×10^{-24}	2.8×10 ⁻²⁵	2.0×10 ⁻²³
4	262.23	7.3×10^{16}	1.7×10^{-24}	2.4×10 ⁻²⁵	2.3×10 ⁻²³
6	249.25	2.6×10 ¹⁶	1.7×10^{-24}	2.0×10-25	2.6×10 ⁻²³
8	236.27	8.0×10^{15}	1.8×10^{-24}	1.7×10 ⁻²⁵	3.0×10 ⁻²³
10	223.29	2.1×10 ¹⁵	1.8×10^{-24}	1.4×10^{-25}	3.6×10 ⁻²³
12	216.69	10.0×10^{14}	1.9×10^{-24}	1.3×10 ⁻²⁵	4.0×10 ⁻²³

Table S3 The equilibrium constants (cm³·molecule⁻¹·s⁻¹) for the formation of IM1, IM2 and IM3 complexes at different altitudes.

 $K_{eq}(IM1)$, $K_{eq}(IM2)$, $K_{eq}(IM3)$ are the computed equilibrium constants for the formation of binary complexes IM1, IM2 and IM3, respectively. ^aWater concentrations are taken from Ref 1.[1]

h(km)	T(K)	k 1	k' RW1	k'rw2	k' RW3	k ′ім1-w1	k ′1M2-W1
0	298.15	2.6×10-16	9.6×10 ⁻²⁵	2.4×10 ⁻²⁵	2.0×10-24	5.2×10 ⁻²⁶	7.0×10 ⁻³⁰
0	288.19	1.8×10^{-16}	4.5×10 ⁻²⁵	1.1×10^{-25}	1.0×10^{-24}	2.4×10 ⁻²⁶	1.2×10^{-29}
2	275.21	1.1×10^{-16}	1.5×10^{-25}	3.9×10 ⁻²⁶	3.8×10 ⁻²⁵	8.3×10 ⁻²⁷	2.6×10 ⁻²⁹
4	262.23	6.5×10-17	4.6×10 ⁻²⁶	1.2×10 ⁻²⁶	1.3×10 ⁻²⁵	2.5×10-27	5.9×10 ⁻²⁹
6	249.25	3.6×10-17	1.2×10 ⁻²⁶	3.1×10 ⁻²⁷	3.8×10 ⁻²⁶	6.8×10 ⁻²⁸	1.5×10^{-28}
8	236.27	1.8×10^{-17}	2.7×10-27	7.1×10 ⁻²⁸	9.8×10 ⁻²⁷	1.5×10^{-28}	3.9×10 ⁻²⁸
10	223.29	8.8×10 ⁻¹⁸	5.0×10 ⁻²⁸	1.3×10 ⁻²⁸	2.1×10-27	2.9×10 ⁻²⁹	1.2×10 ⁻²⁷
12	216.69	5.9×10 ⁻¹⁸	2.0×10 ⁻²⁸	5.2×10 ⁻²⁹	9.0×10 ⁻²⁸	1.2×10 ⁻²⁹	2.1×10-37

Table S4 Effective rate constants (cm^3 ·molecule⁻¹·s⁻¹) for CH₂O + ClO reaction in the presence of one water molecule at different altitudes (h) in the earth atmosphere.

k1 is the rate constant of Path 1, k'RW1, k'RW2, k'RW3 and k'IM1-W1, k'IM2-W1 are the effective rate constants of Paths RW1, RW2, RW3, RW4, IM1-W1 and IM2-W1, respectively.

h(km) T(K) **k'**_{RW1}/**k**₁ k'_{RW2}/k_1 **k'**RW3/**k**1 **k**′ім1-w1/**k**1 k'1M2-W2/k2 0 298.15 3.7×10-9 9.3×10-10 7.8×10-9 2.0×10-10 3.2×10-7 0 288.19 2.4×10-9 6.2×10-10 5.5×10-9 1.3×10^{-10} 2.2×10-7 2 275.21 1.4×10^{-9} 3.5×10-10 3.4×10-9 7.4×10^{-11} 1.3×10-7 4 262.23 7.0×10-10 1.8×10^{-10} 2.0×10-9 3.9×10-11 7.6×10-8 6 249.25 3.4×10^{-10} 8.8×10^{-11} 1.1×10^{-9} 1.9×10^{-11} 4.0×10^{-8}

5.3×10⁻¹⁰

 2.4×10^{-10}

 1.5×10^{-10}

8.4×10⁻¹²

 3.3×10^{-12}

2.0×10⁻¹²

1.9×10-8

8.5×10-9

5.3×10-9

3.9×10-11

 1.5×10^{-11}

 8.9×10^{-12}

Table S5 Ratios of effective rate constants to corresponding rate constants for the CH₂O + ClO reaction with and without water at different heights in the earth atmosphere.

Table S6 Rate constants and corresponding effective rate constants (cm^3 -molecule⁻¹·s⁻¹) for the reactions with a water dimer inclusion.

h(km)	T(K)	[H2O]2	k 1	k rww1	krww2	k' RWW1	k' RWW2
0	298.15	3.1×10^{14}	2.6×10-16	1.9×10 ⁻²³	1.1×10^{-24}	2.5×10-35	5.1×10 ⁻³⁷
0	288.19	1.2×10^{14}	1.8×10^{-16}	2.0×10 ⁻²³	1.0×10^{-24}	1.3×10^{-35}	2.3×10-37
2	275.21	2.8×10^{13}	1.1×10^{-16}	2.0×10 ⁻²³	9.6×10 ⁻²⁵	5.4×10^{-36}	7.0×10 ⁻³⁸
4	262.23	5.7×10^{12}	6.5×10 ⁻¹⁷	2.1×10 ⁻²³	9.0×10 ⁻²⁵	1.9×10 ⁻³⁶	1.9×10^{-38}
6	249.25	1.3×10^{10}	3.6×10-17	2.1×10-23	8.4×10 ⁻²⁵	6.1×10-37	4.5×10 ⁻³⁹
8	236.27	9.6×10 ¹¹	1.8×10^{-17}	2.2×10 ⁻²³	7.8×10 ⁻²⁵	1.7×10^{-37}	8.6×10^{-40}
10	223.29	1.3×10^{10}	8.8×10^{-18}	2.4×10 ⁻²³	7.3×10 ⁻²⁵	3.7×10-38	1.3×10^{-40}
12	216.69	3.7×10 ⁹	5.9×10 ⁻¹⁸	2.4×10 ⁻²³	7.0×10 ⁻²⁵	1.6×10^{-38}	4.7×10^{-41}

 $k_{RWW1},\,k_{RWW2}$ are the rate constants of Path RWW1 and Path RWW2, respectively.

8

10 12 236.27

223.29

216.69

 1.5×10^{-10}

 5.7×10^{-11}

 3.4×10^{-11}

k'RWW1, k'RWW2 are the effective rate constants of Path RWW1 and Path RWW2, respectively.

CH ₂ O			
С	0.00000000	-0.52697800	0.00000000
Н	0.93839200	-1.11325700	0.00000000
Н	-0.93839200	-1.11325700	0.00000000
0	0.00000000	0.67354800	0.00000000
ClO			
Cl	0.00000000	0.00000000	0.50894700
0	0.00000000	0.00000000	-1.08151200
H ₂ O			
0	0.0000000	0.00000000	0.11698300
Н	0.00000000	0.76357100	-0.46793300
Н	0.00000000	-0.76357100	-0.46793300
(H2O)2			
0	-1.51085600	-0.00035800	-0.12133700
Н	-1.92655100	0.00240700	0.74489600
Н	-0.55683200	0.00163600	0.05156100
О	1.38936100	0.00053100	0.11224800
Н	1.72460400	-0.76904300	-0.35882900
Н	1.73073800	0.76361600	-0.36491600
IM1			
С	1.99298500	0.46146100	0.00033500
Н	1.14305100	1.17253700	0.00206600
Н	3.00626800	0.90397600	-0.00078800
О	1.82264300	-0.72666600	-0.00030000
Cl	-1.31024500	-0.46377400	0.00012700
О	-1.05177500	1.10652600	-0.00038100
IM2			
С	-1.77391500	-0.11299700	0.00002800
Н	-1.12813100	0.78963200	0.00006800
Н	-1.22992400	-1.08006100	0.00002900
О	-2.96939700	-0.05287600	-0.00002200
Cl	1.66749400	-0.41602600	-0.00000300
0	1.05116400	1.05798200	-0.00000400
IM3			
С	-2.41893400	0.50741600	-0.00001400
Н	-1.81236100	1.43082900	0.00037200
Н	-3.51570500	0.63601600	-0.00049300
О	-1.91077600	-0.58275300	0.00008200
Cl	0.91814200	-0.16937800	-0.00004300
О	2.43993300	0.30376400	0.00003400

Table S7 Cartesian coordinates of the optimized geometries at the B3LYP-D3/aug-cc-pVTZ level of theory.

IM1-W	
11111-11	

С	-2.07510100	-1.33605300	-0.10203400
Н	-1.00436600	-1.38972400	-0.35723100
Н	-2.63731600	-2.28494300	-0.09031200
О	-2.61331500	-0.28810100	0.15660100
Cl	1.43710000	0.16689200	-0.00308100
О	2.59658100	-0.92777200	0.05473500
О	-0.73159700	1.84127300	-0.13067500
Н	-0.86558200	2.60149500	0.44138400
Н	-1.48617100	1.24912200	0.02545600
IM2-W			
С	-0.92689900	0.91981600	0.00760700
Н	-0.03324600	1.57000900	0.01201700
Н	-0.74569200	-0.16785700	-0.05634300
О	-2.04145400	1.36961300	0.06921900
Cl	2.18597500	-0.73313600	0.04863100
О	2.20949500	0.85104400	-0.11969100
0	-3.12220900	-1.29025200	-0.03836400
Н	-3.15329800	-0.32366200	0.00891600
Н	-4.03459700	-1.57732900	-0.12626800
CH ₂ O…H ₂ O			
С	1.30623900	0.46515800	0.00083000
Н	2.38323500	0.70709700	0.00062200
Н	0.60052100	1.31233300	0.00224900
0	0.92051900	-0.67679500	-0.00050300
О	-1.81385400	0.17663600	-0.00227600
Н	-1.06879400	-0.44248500	-0.00076100
Н	-2.60571500	-0.36662400	0.01514800
IM1W1			
С	0.96186100	0.90738500	0.00008200
Н	0.00069300	1.45324100	0.00014100
Н	1.88753300	1.50583300	-0.00005500
О	0.99478800	-0.29745200	0.00008500
О	3.87148500	-0.19406100	0.00000100
Н	3.01263700	-0.63973700	0.00004300
Н	4.53051900	-0.89281900	-0.00060500
Cl	-2.16185600	-0.62640300	0.00000700
0	-2.17264800	0.96376500	-0.00010400
ClO…H2O			
Cl	1.26605300	-0.32970200	0.00025400
О	0.31906200	0.94493600	-0.00032500
О	-2.41262800	-0.31218300	-0.00085800
Н	-1.62171100	0.24192900	-0.00325800
Н	-3.15265600	0.30098500	0.00840000

Cl	-2.04695100	-0.38263300	-0.27241400
0	-0.96398000	-0.11556600	0.88711200
О	0.76362400	1.99164900	-0.17996100
Н	0.08335400	1.60399600	0.38694100
Н	1.20622800	2.65549500	0.35628100
С	1.72916700	-0.65720400	-0.30443800
Н	1.58600500	-0.31749900	-1.34534600
Н	0.79914700	-0.68568600	0.31447700
0	2.79391100	-0.97712300	0.13601400
H ₂ O…ClO			
Cl	-0.47763900	0.00030800	-0.02041500
О	-2.06951900	-0.00040500	0.03546800
0	2.37710200	-0.00006600	-0.06692700
Н	2.83040100	0.76509300	0.29977500
Н	2.82880600	-0.76656100	0.29895800
IM2W2			
Cl	1.43710800	0.16702800	-0.00304700
О	2.59662500	-0.92759900	0.05461600
0	-0.73197000	1.84114000	-0.13054700
Н	-1.48661500	1.24901900	0.02526900
Н	-0.86628000	2.60154900	0.44118200
С	-2.07461200	-1.33612000	-0.10184900
Н	-2.63644300	-2.28524500	-0.09031500
Н	-1.00370200	-1.38946000	-0.35641200
О	-2.61342000	-0.28836900	0.15632800
CH2O…(H2O)2			
С	1.60922800	-0.77009000	-0.00596200
Н	0.65689000	-1.32049200	-0.04108200
Н	2.54326100	-1.35781900	0.02209300
О	1.64562100	0.43907000	0.00263800
0	-1.63748200	-1.22608700	0.08426500
Н	-2.38408200	-1.48929500	-0.45960600
Н	-1.59593700	-0.25305800	0.02539300
О	-0.97228700	1.49001500	-0.09505300
Н	-0.01697600	1.29701200	-0.05525900
Н	-1.14534400	2.12020800	0.60943000
ClO…(H2O)2			
Cl	1.01642000	0.24878500	-0.01218300
О	2.38338100	-0.57396900	0.01837200
О	-1.48860300	1.44641400	-0.09755000
Н	-1.93596100	0.58949600	0.00301900
Н	-1.79950800	1.99655500	0.62646500
0	-2.11804600	-1.30790000	0.09924400
Н	-2.57285900	-1.79780900	-0.59268400
Н	-1.18467000	-1.53394100	0.00978300

С	-0.36906700	-0.79647700	-0.00591700
Н	-1.33203300	-1.32977400	-0.02036200
Н	0.56020800	-1.39515100	0.01020000
О	-0.31560800	0.41183200	-0.00853200
О	-3.59719700	-1.20603400	0.05249400
Н	-4.32313000	-1.46522200	-0.52058300
Н	-3.56170500	-0.23206500	0.01418400
О	-2.92909400	1.51494200	-0.05634400
Н	-1.97637100	1.31276400	-0.03022800
Н	-3.09289600	2.11813500	0.67367300
Cl	2.86612400	0.50641600	-0.03577500
0	2.74392500	-1.07560200	0.07698100
IMWW2			
Cl	0.96410600	-0.96588200	0.16210300
0	1.81312700	-2.25815700	-0.24562000
О	-0.41409400	1.24304200	0.77074900
Н	0.20144300	1.86627100	0.35599400
Н	-1.24560300	1.29608400	0.27635400
О	1.91266800	2.38562400	-0.44173300
Н	2.52053600	2.96289900	0.03016800
Н	2.31413400	1.50936500	-0.41802100
С	-2.91088900	-0.64554700	-0.08064300
Н	-3.75317600	-1.32051300	-0.31048500
Н	-2.05737200	-1.07805600	0.46734000
0	-2.92475500	0.51164300	-0.41755100

	B3LYP-D3/aug-cc-pVTZ	CCSD(T)/aug-cc-pVTZ
CH ₂ O	-114.5260934	-114.3163046
ClO	-535.3330406	-534.7459781
H ₂ O	-76.4449697	-76.3210675
(H2O)2	-152.8949676	-152.6470296
IM1	-649.8998327	-649.0649102
IM2	-649.8982715	-649.0617391
IM3	-649.9000708	-649.0668856
IM1-W	-726.3530071	-725.3955847
IM2-W	-726.3490404	-725.3908083
CH ₂ O····H ₂ O	-190.9767223	-190.6431829
IM1W1	-726.3503672	-725.3922124
ClO…H2O	-611.8182165	-611.0708309
IM2W1	-726.3486748	-725.3870967
H ₂ O…ClO	-611.8187577	-611.0714715
IM2W2	-726.3530071	-725.3955847
CH2O…(H2O)2	-267.4323846	-266.9742547
ClO…(H2O)2	-688.271151	-687.3993747
IMWW1	-802.8060616	-801.723293
IMWW2	-802.8039919	-801.7222533

 Table S8 ZPE corrected electronic energies of individual species with different methods.

Figure S1 Optimized geometries for the hydrogen-bonded CH₂O···H₂O, ClO···H₂O, H₂O···ClO, CH₂O···(H₂O)₂ and ClO···(H₂O)₂ complexes calculated at the B3LYP-D3/aug-cc-pVTZ level of theory. The atoms in green, white and red color denote Cl atom, H atom and O atom, respectively.

Figure S2 Optimized geometries for the CH₂O + ClO reaction without water calculated at the B3LYP-D3/aug-cc-pVTZ level of theory. The atoms in green, white and red color denote Cl atom, H atom and O atom, respectively.

Figure S3 The energy profile of the CH₂O + ClO reaction in the presence of water vapor occurring through IM3 + H₂O pathway. Energies (in kcal mol⁻¹) are calculated at the CCSD(T)/aug-cc-pVTZ//B3LYP/aug-cc-pVTZ level.

Figure S4 Optimized geometries of the double hydrogen transfer path starting from ClO…H₂O + CH₂O pathway. The atoms in green, white and red color denote Cl atom, H atom and O atom, respectively.

Figure S5 The energy profile of the double hydrogen transfer path starting from ClO \cdots H₂O + CH₂O pathway. Energies (in kcal mol⁻¹) are calculated at the CCSD(T)/aug-cc-pVTZ//B3LYP/aug-cc-pVTZ level.

Figure S6 The energy profile of the CH₂O + ClO reaction in the presence of water dimer occurring through $IM1 + (H_2O)_2$ and $IM2 + (H_2O)_2$ pathways. Energies (in kcal mol⁻¹) are calculated at the CCSD(T)/aug-cc-pVTZ//B3LYP/aug-cc-pVTZ level.

Reference:

1. Lowe, P. R. An approximating polynomial for the computation of saturation vapor pressure. *J. Appl. Meteorol.* **1977**, 16, 100-103.