
molecules

Article

Euphosantianane A–D: Antiproliferative
Premyrsinane Diterpenoids from the Endemic
Egyptian Plant Euphorbia Sanctae-Catharinae

Mohamed-Elamir F. Hegazy 1,2 ID , Ahmed R. Hamed 1,3, Mahmoud A. A. Ibrahim 4 ID ,
Zienab Talat 5, Eman H. Reda 5, Nahla S. Abdel-Azim 1 ID , Faiza M. Hammouda 1,
Seikou Nakamura 6, Hisashi Matsuda 6 ID , Eman G. Haggag 7, Paul W. Paré 8,* ID and
Thomas Efferth 2

1 Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622,
Egypt; Elamir77@live.com (M.-E.F.H.); n1ragab2004@yahoo.com (A.R.H.);
nahlaabdelazim@yahoo.com (N.S.A.-A.); fmhammouda@yahoo.com (F.M.H.)

2 Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz,
Staudinger Weg 5, 55128 Mainz, Germany; efferth@uni-mainz.de

3 Biology Unit, Central Laboratory for Pharmaceutical and Drug Industries Research Division,
National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt

4 Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University,
Minia 61519, Egypt; m.ibrahim@compchem.net

5 Phytochemistry Lab., National Organization for Drug Control and Research, Giza 12622, Egypt;
zizishakour@yahoo.com (Z.T.); dremanhusseinreda@gmail.com (E.H.R.)

6 Department of Pharmacognosy, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8412,
Japan; naka@mb.kyoto-phu.ac.jp (S.N.); matsuda@mb.kyoto-phu.ac.jp (H.M.)

7 Department of Pharmacognosy, Helwan University, Cairo 12622, Egypt; wemisr@hotmail.com
8 Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
* Correspondence: paul.pare@ttu.edu; Tel.: +1-806-834-0461; Fax: +1-806-742-1289

Received: 28 July 2018; Accepted: 15 August 2018; Published: 1 September 2018
����������
�������

Abstract: Euphorbia species are rich in diterpenes. A solvent extraction of Euphorbia sanctae-catharinae,
a species indigenous to the Southern Sinai of Egypt, afforded several premyrsinane diterpenoids
(1–4) as well as previously reported metabolites (5–13) that included three flavonoids. Isolated
compounds were chemically characterized by spectroscopic analysis. Identified compounds were
bioassayed for anti-proliferative activity in vitro against colon (Caco-2) and lung (A549) tumor cell
lines. Compound 9 exhibited robust anti-proliferative activity against A549 cells (IC50 = 3.3 µM).
Absolute configurations for 8 versus 9 were determined by experimental and TDDFT-calculated
electronic circular dichorism (ECD) spectra.

Keywords: Euphorbia sanctae-catharinae; Euphorbiaceae; diterpenes; flavonoids; TDDTF-ECD; tumor
anti-proliferative activity

1. Introduction

The genus Euphorbia is the largest genus in the family Euphorbiaceae. The genus comprises
over 2000 species worldwide [1] and its global distribution includes more than 750 species in Africa
and 42 indigenous to Egypt [2]. All plants in the genus share a poisonous, milky-white, latex-like
sap as well as a unique floral structure, in which each flower in the cluster is reduced to its barest of
essential parts for sexual reproduction. Euphorbia species have been widely used in folk medicine for
the treatment of diarrhea, inflammation, and swellings and the milky sap has been tested as a wart
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remover [3–5]. Some species have been used in the treatment of dermatosis, paralysis and body pain as
well as a poultice for skin ulcerations [6]. A number of biological activities ranging from cytotoxic [7],
hepatoprotective [8,9], antispasmodic [10], anti-inflammatory [11], antibacterial [12,13], antifungal [10]
and anti-mutagenic [14], antiviral [15] have been reported.

Some Euphorbia species are indigenous to the Sinai Peninsula [16,17] with E. sanctae-catharinae
(also known as St. Katherine spurge) endemic to the Gebel Wadi, a system of deep/dry river
valleys separated by the high elevation Katherine Mountains. As part of our research to investigate
and biologically evaluate the wild Egyptian plants [18–25], herein, it is the first phytochemical
investigation of E. sanctae-catharinae that specifically targets secondary metabolites that may exhibit
anti-tumor activity.

2. Results and Discussion

A methylene chloride/methanol (1:1) extract of air-dried, aerial parts of E. sanctae-catharinae
was separated into pure chemical components using normal and reversed phase chromatographic
separations to afford new (1–4) as well as previously isolated (5–13) compounds (Figure 1).
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Figure 1. Identified compounds from Euphorbia sanctae-catharinae. Ac = acetyl, Bz = benzoyl,
Nic = nicotinoyl, Bu = butanoyl, iBu = isobutanoyl, 2MeBu = 2-methylbutanoyl, 2MeBu
3-dimethylbutanoyl, Nic = nicotinoyl.
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Compound 1 was obtained as colorless oil with positive optical rotation ([α]25
D + 20.0 in MeOH).

HRFABMS analysis showed a molecular ion peak at m/z 673.3203 [M + Na]+ corresponding to a
molecular formula of C34H50O12Na (calcd. 673.3200). The IR spectrum displayed absorption bands for
OH (3532 cm−1) and ester carbonyl (1741 cm−1) groups. The 1H-NMR spectrum contained signals
typical for three acetyl groups at δH 2.06, 2.08 and 2.09. The spectrum also displayed signals for seven
methyl groups (one primary at δH 1.08 (6H), three secondary at δH 0.87, 0.90 and 0.92, four tertiary
at δH 0.87, 1.04 and 1.68) and three oxygenated methine protons referred to ester functions at δH 4.48
(d, J = 6.6), 5.24 (dd, J = 3.6, 6.0), 6.18 (d, J = 11.4) and one oxygenated methyelene at δH 4.39 (d, J = 12.0)
and 4.31 (d, J = 12.0). Additionally, two aliphatic methine δH 0.72 (m) indicated the presence of a
cyclopropane moiety (Table 1). 13C-NMR and DEPT spectra displayed 32 carbons including five
ester carbonyls (δC 170.0, 170.4, 170. 7, 174.2 and 174.3), one free keto carbon (δC 204.5), 7 methyls,
5 methylenes (one of them oxygenated), 8 methines (two of them oxygenated), and four quaternary
carbons (two of them oxygenated). Ten degrees of unsaturation were deduced suggesting a tetracyclic
diterpene premyrsinane skeleton. Two-dimensional NMR (COSY, HMQC and HMBC) comparisons
with 7 that had been previously published suggested a 5/7/6 cyclic structure [16,26,27]. Differences
in the spectroscopic data between 1 and 6 were limited to C-5. Indeed, functionality differences for
Euphorbia premyrsinane diterpenoids are usually localized to C-3, C-5, C-7 and/or C-17. HRFABMS
of 1 indicated the addition of a methlyene unit in comparison with 6. DEPT analysis confirmed an
additional methylene group at δC 42.8 (δH 2.32, m) and correlations with signals at δH 1.97 (m) and
δC 174.2 in DQF-COSY and HMBC analyses, respectively, situated the methyl as an addition to the
butyrate unit [28]. Moreover, an HMBC correlation between H-5 (δH 6.18, d, J = 11.4) and δC 174.2
established the presence of 2-methylbutyrate at C-5 (δC 68.8). These data suggested that signals for a
2-methylbutyryl unit in 5 was replaced by 3-methylbutyryl moiety (δC 174.2, 21.4, 21.4, 26.5, 42.8) in 1
(Figure 2). This small modification was confirmed by COSY, HMBC analysis.
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The relative configuration was elucidated as based on biosynthetic presidency. For all naturally
derived myrsinol diterpenes isolated to date, the three (5/7/6) fused ring system that forms the
myrsinol skeleton are joined in a trans configuration with H-4 and H2-17 α-oriented. Based on this
initial configuration, NOE correlations between H-4 and H-1 provided evidence for an α-assignment
H-1. NOE correlations between H-1α/H-2 and H-1β/CH3-16 established an α-orientation for H-2.
NOE interactions between H-5/7-OAc, H-5/H-12 and H-7/H2-17 established an α-orientation for H-7
and a β-orientation for H-12. NOESY correlations observed between H-1β, H-14 and H-16 indicated
the positioning of these functional groups on the same ringside consistent with a cis configuration
(Figure 3). All stereochemical assignments are consistent with previously reported premyrsinane
diterpenes [16,26]. Therefore, the structure was assigned as premyrsinol-3-propanoate-5(α-3 methyl)
butyrate-7, 13, 17-triacetate (euphosantianane A).
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Table 1. 1H-NMR and 13C-NMR spectral data of compounds 1–5 (600 MHz, δ-ppm).

No. 1 2 3 4

dH (J in Hz) δC dH (J in Hz) δC dH (J in Hz) δC dH (J in Hz) δC

1α 3.12 dd (8.4, 13.8) 42.9 3.14 dd (8.4, 13.8) 42.9 3.15 dd (7.2, 13.8) 42.9 3.14 dd (7.8, 13.2) 42.9
1β 1.59 dd (12.6, 13.2) 1.60 dd (13.2) 1.61 dd (13.8, 13.2) 1.61 dd
2 1.80 m 37.5 1.86 m 37.5 1.87 m 37.3 1.79 m 37.5
3 5.24 dd (3.6, 6.0) 78.4 5.23 t 78.4 5.36 t (3.6) 78.3 5.21 t 77.3
4 2.32 m 50.4 2.32 m 50.5 2.34 m 50.4 2.36 dd (3.0) 50.6
5 6.18 d (11.4) 68.8 6.21 d (12.0) 69.1 6.46 d (11.4) 69.9 6.23 d (12.0) 69
6 —- 47.4 —- 47.8 —- 48.2 —- 47.7
7 4.48 d (6.6) 70.7 4.72 d (6.6) 71 4.97 d (6.6) 70.7 4.85 d (12.6) 70.8

8α 2.09 m 23.9 2.14 m 21.4 2.05 m 22.2 2.09 m 23.9
8β 1.80 brd (17.0) 23.9 1.77 brd (17.0) 21.4 1.87 brd (17.0) 22.2 1.90 d (13.2) 23.9
9 0.72 m 18.9 0.77 m 18.4 0.72 m 19.1 0.62 m 19

10 —- 18.2 —- 18.3 —- 18.4 —- 18.3
11 0.72 m 21.4 0.77 m 18.5 0.72 m 21.5 0.62 m 21.3
12 3.37 d (6) 34.8 3.46 d (5.4) 33.9 3.55 d (6.6) 35.3 3.46 d (3.6) 35
13 —- 86.0 —- 85.9 —- 85.9 —- 85.8
14 —- 204.5 —- 204.5 —- 204.4 —- 204.3

15-OH 4.44 s 84.1 4.44 s 84.1 4.45 s 84.2 4.48 s 84.1
16 0.87 d (6.0) 14.1 0.86 d (1.8) 14.2 0.86 d (6.0) 14 0.87 d (14.4) 14.7

17α 4.39 d (12.0) 63.6 4.81 d (12.0) 64 4.58 d (11.4) 63.4 4.67 (d, J = 11.4 Hz) 64.5
17β 4.31 d (12.0) 4.46 d (12.0) 4.91 d (10.8) 4.46 brd (11.4)
18 1.04 s 29.5 1.05 s 29.5 1.06 s 29.5 1.05 s 29.5
19 0.90 s 14.9 0.94 s 14.9 0.95 s 15 0.93 s 14.9
20 1.68 s 24.6 1.73 s 24.6 1.66 s 25 1.71 s 25.8
1H-NMR of other signals (δ), for 1: O-Prop: 2.31 (q, J = 7.0 Hz), 1.08 (t, J = 7.0 Hz); O-3MeBu, 1.97 m, 2.32 m, 0. 90 (d,
J = 7.8 Hz), 0.92 (d, J = 7.8 Hz); OAc-7, 2.08 (s); OAc-13, 2.09 (s); OAc-17, 2.06 (s). For 2: O-Prop: 2.30 (q, J = 8.4 Hz),
1.08 (t, J = 8.4 Hz); O-iBu, 2.39 m, 1.07 (d, J = 7.0 Hz), 1.09 (d, J = 7.0 Hz); OBz, 7.91 (AA′), 7.58 (C), 7.47; OAc-7,
2.14 (s); OAc-13, 2.15 (s). For 3: O-Prop: 1.08 (t, J = 7 Hz), 2.45 (q, J = 7 Hz); OBz, 7.70 (brd, J = 7.2 Hz), 7.52 (brdd,
J = 7.2 Hz), 7.33 m, 7.11 (m), 7.00 (brt, J = 7.2); OAc-7, 2.12 (s); OAc-13, 2.17 (s). For 4: O-Prop: 1.08 (t, J = 7.8 Hz),2.25
(q, J = 9.0 Hz); O-MeBu, 2.14 m, 1.29 m, 1.06 (d, J = 7.8 Hz), 1.07 (t, J = 7.8 Hz); O-Nic, 7.43 (dd, J = 4.8, 7.8 Hz), 8.18
(t, J = 7.8 Hz), 8.80 (br d, J = 7.8 Hz), 9.14 br s; OAc-7, 2.10 (s); OAc-13, 2.05 (s). 13C-NMR other signals (δ), for 1:
O-Prop: 8.9, 27.8; O-3MeBu, 21.4, 21.4, 26.5, 42.8; OAc-7, 170.0; OAc-13, 170.7; OAc-17, 170.4; C=O (prop, 174.2); C=O
(3-MeBu, 174.3). For 2: O-Prop: 8.9, 27.7; O-iBu, 34.9, 18.6, 19.0; OBz, 128.9, 129.4, 133.6, 128.9, 129.4, 130.1; OAc-7,
170.0; OAc-13, 170.0; C=O (prop, 170.7); C=O (iBu, 174.1). For 3: O-Prop: 8.8,27.6; OBz-17, 132.9, 129.2, 127.9, 132.7,
127.9, 129.2, 129.4; OBz-5, 129.4, 129.2, 127.9, 129.6, 127.9, 129.2; OAc-7, 170.2; OAc-13, 170.2; C=O (prop, 170.8); C=O
(OBz-5, 165.3); C=O (OBz-17, 173.6). For 5: O-Prop: 8.9, 27.8; O-MeBu, 11.6, 40.8, 14.9, 26.0; O-Nic, 153.9, 150.6, 136.9,
125.8, 123.7; OAc-7, 170.0; OAc-13, 170.7.
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Compound 2 was obtained as colorless oil with positive optical rotation ([α]25
D + 27.0 in MeOH).

HRFABMS analysis showed a molecular ion peak at m/z 721.3206 [M + Na]+ corresponding to
a molecular formula of C38H50O12Na (calcd. 721.3200). The IR spectrum displayed absorption
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bands for OH (3532 cm−1) and ester carbonyl (1741 cm−1) groups, as well as characteristic aromatic
ring absorptions (1450 and 716 cm−1). 1D- and 2D-NMR spectra (Table 1, Figures 2 and 3) were
similar to those of previously published 7 [25,26] albeit signals for the acetate group at C-17 are
replaced by a benyzoly moiety in 2. NOESY correlations were observed to be the same for both 2 and
6. Therefore 2 was assigned as premyrsinol-3-propanoate-5-isobutyrate-7,13-diacetate-17-benzoate
(euphosantianane B).

Compound 3 was obtained as colorless oil with positive optical rotation ([α]25
D + 64.0 in MeOH).

HRFABMS analysis showed a molecular ion peak at m/z 755.3050 [M + Na]+ corresponding to a
molecular formula of C38H50O12Na (calcd. 755.3043). The IR spectrum displayed absorption bands
for OH (3532 cm−1) and ester carbonyl (1741 cm−1) groups, as well as characteristic aromatic ring
absorptions (1450 and 716 cm−1). 1D- and 2D-NMR spectra (Table 1, Figures 2 and 3) were similar to
those of compound 2 except for an isoproponate group at C-5 in 2 being replaced by a second benyzoly
moiety in 3. The same NOESY correlations were detected in both 2 and 3. Therefore, the structure was
assigned as premyrsinol-3-propanoate-5-benzoate-17-benzoyl (euphosantianane C).

Compound 4 was obtained as colorless oil with positive optical rotation ([α]25
D + 30.4 in MeOH).

HRFABMS analysis showed a molecular ion peak at m/z 736.3312 [M + Na]+ corresponding to
a molecular formula of C38H50O12Na (calcd. 736.3309). The IR spectrum displayed absorption
bands for OH (3532 cm−1) and ester carbonyl (1741 cm−1) groups, as well as characteristic
aromatic ring absorptions (1450 and 716 cm−1). 1D- and 2D-NMR spectra (Table 1, Figures 2
and 3) were similar to those of 5 except that the 2-methyl butyl substitution at C-17 in 5 was
replaced by a nicotedial moiety in 4. NOESY correlations were observed to be the same in both
4 and 5 [16]. Therefore, the structure was assigned as premyrsinol-3-propanoate-5(α-2-methyl)
butyrate-7,13-diacetate-17-nicotinate (euphosantianane D).

Nine known compounds have been isolated for the first time from E. sanctae-catharinae including
five diterpenes: 7β,13β,17-O-triacetyl-5α-O-(2-methylbutyryl)-3β-O-propanoyl14-oxopremyrsinol
(5) [16], premyrsinol-3-propanoate-5-isobutyrate-7,13,17-triacetate (6) [26], premyrsinol-3-propanoate-5-
isobutyrate-7,13-triacetate-17- nicotinate (7) [26], 4,20-Dideoxy(4α)phorbol-12-benzoate-13-isobutyrate
(8) [29], 4,12,20-trideoxyphorbol-13-(2,3-dimethyl) butyrate (9) [30]; and four flavonoid
gylcosides: quercetin-3-O-α-rhamnopyranoside (10) [31], kaempferol-3-O-rhamnoside (11) [32],
myricetin-3-O-rhamnoside (12) [33], quercetin-3-O-galactopyranoside (13) [34].

The potent activity of 9 rather than it epimer encourage motivated a greater examination of the
absolute configurations of 8 and 9 utilizing TDDFT-ECD calculations. Conformational search was
first carried out using MMFF94S force field (time-dependent density functional) within a 10 kcal/mol
energy window with the use of Omega2 software, OpenEye Scientific Software, Santa Fe, NM, USA.
Molecular dynamics simulation of 10 ns was then performed for each conformer in methanol.

Uncorrelated snapshots were collected every 10 ps over 10 ns MD simulation and subjected to
a geometrical optimization in methanol at the B3LYP/6-31G* level of theory, followed by frequency
calculations. TDDFT calculations were then performed for each set of conformers at the same level of
theory. The Boltzmann-weighted ECD (Equivalent Circulating Density) curves were generated and
compared to the experimental spectra (Figure 4). The calculated ECD curves of compounds 8 and 9
gave a good agreement with the experimental data (Figure 4i,ii, respectively). A negative Cotton effect
at 287 nm for the lactone ring π→π* transitions and a positive Cotton effect of 315 nm for the lactone
n→π* transitions was observed for 8, while 9 gave opposite Cotton effects (Figure 4). The TDDFT-ECD
calculations and spectral data supported the conclusion that the absolute configuration at C-10 for 8
and 9 are S and R, respectively.
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Compounds 1–13 were tested for cytotoxic activity against human cancer cell lines of colon
(Caco-2) and lung (A549) using doxorubicin HCl as positive control (Figure 5A,B and Table 2).
Compound 9 showed the highest cytotoxic activity against lung cancer cells with an IC50 value
of 3.3 µM (Figure 6), while an epimer of 8 exhibited cytotoxic activity against colon cancer cells with
an IC50 of 26.1 µM.

Table 2. IC50 values for 1–13 against proliferation of human Caco-2 and A549 tumor cell lines.

Compound IC50 on Caco-2 (µM) a IC50 on A549 (µM) a

1 75.8 (0.950) >100
2 40.5 (0.989) 48.5 (0.927)
3 31.0 (0.999) 21.5 (0.924)
4 33.2 (0.993) 32.8 (0.988)
5 43.5 (0.999) 50.1 (0.9960)
6 33.3 (0.984) 33.1 (0.983)
7 40.3 (0.979) 60.3 (0.937)
8 26.1 (0.979) 31.3 (0.971)
9 29.4 (0.972) 3.3 (0.996)

10 43.9 (0.975) >100
11 50.2 (0.993) >100
12 44.7 (0.961) >100
13 79.4 (0.843) >100

Doxorubicin HCl 0.7 (0.999) 0.4 (0.987)
a Goodness of fit values (R2) given in parentheses based on non-linear regression using GraphPad prism V 6.0
software (GraphPad Software Inc., San Diego, CA, USA).
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Figure 5. Concentration-response curve fits of the effect of isolated compounds 1–6 (A) and 7–13 (B) 

on the cell proliferation of Caco-2 (green triangles) or A549 (blue spheres). Cell proliferation was 

determined as % of vehicle control (MTT reduction assay) as detailed in the Experimental section. 
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Figure 5. Concentration-response curve fits of the effect of isolated compounds 1–6 (A) and 7–13 (B)
on the cell proliferation of Caco-2 (green triangles) or A549 (blue spheres). Cell proliferation was
determined as % of vehicle control (MTT reduction assay) as detailed in the Experimental section.
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Figure 5. Concentration-response curve fits of the effect of isolated compounds 1–6 (A) and 7–13 (B) 

on the cell proliferation of Caco-2 (green triangles) or A549 (blue spheres). Cell proliferation was 

determined as % of vehicle control (MTT reduction assay) as detailed in the Experimental section. 
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Figure 6. Photomicrographic images of A549 cells depict increasing morphological toxicity include 

cell monolayer disruption and cell shrinkage with 48 h exposure to 9 at increasing concentrations. 

Magnification = 150×. 
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Figure 6. Photomicrographic images of A549 cells depict increasing morphological toxicity include
cell monolayer disruption and cell shrinkage with 48 h exposure to 9 at increasing concentrations.
Magnification = 150×.
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3. Experimental Section

3.1. General Experimental Procedures

Specific rotation was measured with Perkin–Elmer-341 MC digital polarimeter (Wellesley, MA,
USA) and IR spectra were collected on a JASCO FT/IR-6300 spectrometer (Easton, MD, USA). 1H- and
13C-NMR spectra were recorded in CDCl3 on a JEOL ECA- 600 spectrometer (600 MHz for 1H and
150 MHz for 13C) (JEOL Ltd., Tokyo, Japan). All chemical shifts (δ) are given in ppm units with reference
to TMS as an internal standard and coupling constants (J) are reported in Hz. FAB-MS experiments
were performed using a Thermo ISQ Single Quadrupole system and HR-FAB-MS experiments were
performed on Fourier transform ion cyclotron mass spectrometer (Thermo Scientific, San Jose, CA,
USA). High performance liquid chromatography (HPLC) was performed with an Agilent pump
equipped with an Agilent-1200 with refractive index (RI) detector (Santa Clara, CA, USA) and a
semi-preparative reversed-phase column (Econosphere™, RP-C18, 5 µm, 250 × 4.6 mm, Alltech,
Deerfield, IL, USA). Silica gel 60 (230–400 mesh, Merck, Darmstadt, Germany) was used for column
chromatography; reversed-phase silica gel for column chromatography, Chromatorex ODS DM1020T
(Fuji Silysia Chemical, Ltd., 100–200 mesh. Pre-coated silica gel plates (Kieselgel 60 F254, 0.25 mm,
Merck, Darmstadt, Germany) were used for TLC analyses. Spots were visualized by heating after
spraying with 10% H2SO4.

3.2. Plant Material

Euphorbia sanctae-catharinae plants were collected in May 2013 from Wadi Jibaal in St Katherine
Protectorate, south Sinai, Egypt in the flowering stage. A voucher specimen (#212) has been deposited
in the herbarium of the National Research Centre. The collection was taking place under the
permission of St Katherine Protectorate for scientific purposes. The plant was kindly authenticated by
Dr. Mona Marzouk, Associate Professor of Taxonomy, National Research Center, Cairo, Egypt.

3.3. Extraction and Isolation

Aerial parts (2.0 kg) were powdered and extracted with CH2Cl2:MeOH (1:1) at room temperature.
The extract was concentrated in vacuo to obtain a gummy residue (110 g). The concentrated crude
extract (110 g) was fractionated on silica gel flash CC (5 × 60 cm) and eluted with gradient solvents of
increasing polarity starting with (100%) n-hexane followed by a gradient of n-hexane/ethyl acetate up
to 100 % ethyl acetate. Seventeen fractions were collected and pooled together according to the TLC
profile (using solvent systems: S1: n-hexane:EtOAc (4:1 v/v), S2: methylene chloride:methanol (7:0.5
v/v), S3: n-hexane:EtOAc (1:1 v/v)). Vanillin-sulphuric acid spray reagent was used as spray reagents
for spots dete ction on the chromatograms. The chromatograms were visualized in visible and under
UV light (at 254 nm and 365 nm). Similar fractions were combined according to their chromatographic
patterns to yield nine collected fractions. These fractions were then subjected for chemical investigation.
The nine different subfractions that obtained were A (10 gm), B (8 gm), C (8.5 gm), D (6 gm), E (10 gm),
F (12 gm), G (11 gm), H (9 gm), I (20 gm). From TLC profiles, fractions that appeared to contain
mainly fatty acids and low levels of terpenes and flavonoids were not advanced for additional HPLC
purification. Fraction D (6 gm) as subjected to further fractionation on ODS column (3 × 60 cm) using
85% MeOH: 15% H2O and finally wash with 100% MeOH. The obtained fraction was subjected to
isolation and purification by a reversed phase HPLC (20 × 250 cm) using MeOH:H2O (85%:15%,
2.5 L) to afford nine compounds (1, 20 mg), (2, 8.5 mg), (3, 7.0 mg), (4, 6.5 mg), (5, 14 mg), (6, 11 mg),
(7, 8 mg), (8, 9 mg) and (9, 6 mg). Fraction F (12 gm) was also subjected to further fractionation on
ODS column (3 × 60 cm) using (85% MeOH: 15% H2O) and finally washed with 100% MeOH. The
obtained fraction was further purified by a reversed phase HPLC using MeOH: H2O (1:1, 2.5 L) to
afford one compound (10, 6.5 mg). Fraction G (11 gm) was also subjected for isolation and purification
by a reversed phase HPLC using MeOH: H2O (1:1, 2.5 L) to afford one compound (11, 7 mg). Fraction
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H (9 mg) was subjected for isolation and purification by a reversed phase HPLC using MeOH/H2O
(50%/50%, 2.5 L) to afford two compounds (12, 8.5 mg) and (13, 6 mg).

Premyrsinol-3-propanoate-5(α-3methyl)butyrate-7,13,17-triacetate (euphosantianane A, 1):
colorless oil; [α]25

D + 20.0 (c 0.01, MeOH); FT-IR (KBr) vmax: 3532, 1741,1450 and 716 cm−1; 1H-
and 13C-NMR data, see Table S1; HRFABMS m/z 673.3203(M + Na); (calcd. for C20H30O2Na, 673.3200).

Premyrsinol-3-propanoate-5-isobutyrate-7,13diacetate-17-benzoate (euphosantianane B, 2): white
powder; [α]25

D + 27.0 (c 0.01, MeOH)); FT-IR (KBr) vmax: 3532, 1741, 1450 and 716 cm−1; 1H- and
13C-NMR data, see Table S1; HRFABMS m/z 721.3206 (M + Na); (calcd. for C38H50O12Na, 721.3200).

Premyrsinol-3-propanoate-5-benzoate-17-benzoyl (euphosantianane C, 3): white powder; [α]25
D

+ 64.0 (c 0.01, MeOH); FT-IR (KBr) vmax: 3532, 1741, 1450 and 716 cm−1; 1H- and 13C-NMR data, see
Table S1; HRFABMS m/z 755.3050 (M + Na); (calcd. for C41H48O12Na, 755.3043).

Premyrsinol-3-propanoate-5(α-2methyl)butyrate-7,13-diacetate-17-nicotinate (euphosantianane
D, 4): white powder; [α]25

D + 30.4 (c 0.01, MeOH); FT-IR (KBr) vmax: 3532, 1741,1450 and 716 cm−1;
1H- and 13C-NMR data, see Table S1; HRFABMS m/z 736.3312 (M + Na); (calcd. for C38H51O12NNa,
736.3309).

3.4. Biological Activity

3.4.1. Cell Culture

All materials and reagents for the cell cultures were purchased from Lonza (Verviers, Belgium).
Human colon cancer cell line Caco-2 and human lung cancer cell line A549 were maintained as
monolayer culture in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% FBS,
4 mM glutamine, 100 U/mL penicillin, and 100 µg/mL streptomycin sulfate. Monolayers were
passaged at 70–90% confluence using trypsin-EDTA solution. All cell incubations were maintained at
humidified CO2 incubator with 5% CO2 at 37 ◦C.

3.4.2. Cell Proliferation Assay

Anti-proliferative studies were performed using a modified MTT (3-[4,5-dimethylthiazole-2-yl]-2,
5-diphenyltetrazolium bromide) assay based on a previously published method [35,36]. Appropriate
cell densities of exponentially growing A549 and Caco-2 cells (5000 cells/well) were seeded onto
96-well plates. After a 24 h incubation period with 5% CO2 at 37 ◦C, stock test compounds (1–13)
dissolved in dimethyl sulfoxide (DMSO) were added at concentrations of 100, 50, 25, 12.5, and 6.25 µM
in culture medium (final DMSO concentration in medium = 0.1%, by volume). After 48 h of incubation,
MTT solution in PBS (5 mg/mL) was added to each well, after which the incubation was resumed for
a further 90 min [37,38]. The formation of intracellular formazan crystals (mitochondrial reduction
product of MTT) was confirmed by a phase contrast microscopic examination. Photomicrographs were
taken using an inverted microscope (Ziess, Germany) with attached eye-piece digital camera (Total
magnification = 150×). At the end of the incubation period, the medium was removed and 100 µL of
DMSO was added to each well to dissolve formed formazan crystals with shaking for 10 min (200 rpm).
Dissolved crystals were quantified by reading the absorbance at 492 nm (OD) on a microplate reader
(Sunrise™ microplate reader, Tecan Austria GmbH, Grödig, Austria) and were used as a measure of
cell proliferation.

3.4.3. Anti-Proliferation Quantitative Analysis

Cell proliferation was determined by comparing the average OD values of the control wells with
those of the samples (quadrate to octuplet treatments) both represented as % proliferation [control
proliferation (0.1% DMSO) = 100%]. The IC50 values (concentration of sample causing 50% loss of
cell proliferation of the vehicle control) were calculated using the concentration-response curve fit to
the non-linear regression model using GraphPad Prism® v6.0 software (GraphPad Software Inc., San
Diego, CA, USA).
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3.5. Computational Calculations

Conformational ensembles for 8 and 9 were generated with MMFF94S force field and an energy
window of 10 kcal/mol using Omega2 software [39,40]. To avoid missing any possible conformers, all
generated conformers were subjected to molecular dynamics (MD) simulation for 10 ns in methanol
with AMBER14 software (University of California, San Francisco, CA, USA) [41]. Uncorrelated
conformations were then collected every 10 ps over the 10 ns MD simulation time and minimized using
the truncated Newton linear conjugate gradient method with LBFGS preconditioning implemented
in AMBER14 software [41]. All unique conformations, in terms of energy, were then geometrically
optimized at the B3LYP/6-31G* level of theory using Gaussian09 (Gaussian, Inc., Wallingford CT,
USA) [42]. A vibrational frequency calculation was performed to confirm the minimum energy
state of the optimized conformers as well as to calculate the corresponding free energies. TDDFT
calculations were carried out at the B3LYP/6-31G* level of theory and the first 50 excitation states
were calculated. To consider the solvent effect in optimization and TDDFT calculations, a polarizable
continuum model (PCM) using methanol as a solvent was incorporated. ECD spectra were then
generated using the SpecDis 1.71 (Berlin, Germany) [43,44] by applying Gaussian band shapes with
sigma = 0.25 ev. The theoretical ECD spectrum was generated by averaging the ECD spectra of each
conformer using Boltzmann statistics. Wavelength shift and intensity scaling were applied in the
computational/experimental comparison.

Supplementary Materials: The supplementary materials are available online at http://www.mdpi.com/1420-
3049/23/9/2221/s1.
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