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Abstract: The high index of simultaneous incidence of hypertension and hypercholesterolemia in the
population of many countries demands the preparation of more efficient drugs. Therefore, there is
a significant area of opportunity to provide as many alternatives as possible to treat these illnesses.
Taking advantage of the solubility enhancement that can be achieved when an active pharmaceutical
ingredient (API) is obtained and stabilized in its amorphous state, in the present work, new drug-drug
co-amorphous formulations (Simvastatin SIM- Nifedipine NIF) with enhanced solubility and stability
were prepared and characterized. Results show that the co-amorphous system (molar ratio 1:1)
is more soluble than the pure commercial APIs studied separately. Aqueous dissolution profiles
showed increments of solubility of 3.7 and 1.7 times for SIM and NIF, correspondingly, in the
co-amorphous system. The new co-amorphous formulations, monitored in time, (molar fractions
0.3, 0.5 and 0.7 of SIM) remained stable in the amorphous state for more than one year when stored
at room temperature and did not show any signs of crystallization when re-heating. Inspection on
the remainder of a sample after six hours of dissolution showed no recrystallization, confirming the
stability of co-amorphous system. The enhanced solubility of the co-amorphous formulations makes
them promising for simultaneously targeting of hypertension and hypercholesterolemia through
combination therapy.

Keywords: solubility; Nifedipine; Simvastatin; co-amorphous; amorphous drug; hypertension;
hypercholesterolemia

1. Introduction

Hypertension and hypercholesterolemia (HT-HCL) are present simultaneously in the population
of many countries. Studies have reported that, in Western Europe, United States, and Latin American
countries, the prevalence of concomitant hypertension and hypercholesterolemia in adult population is
in the range of 15 to 30% [1–4]. Table 1 shows a list of oral administrated drugs most commonly used to
treat these diseases. Even when a wide range of active pharmaceutical ingredients (APIs) are available
to treat these illnesses, the high simultaneous incidence of HT-HCL demands more efficient drugs
and as many alternatives as possible to treat these particular medical problems, including combined
therapy. This suggests that there is a significant area of opportunity for the improvement of current
pharmaceutical formulations. As it can be seen in Table 1, most of the APIs currently prescribed to
treat HT and HCL correspond to type II drugs (which have high permeability but low solubility);
therefore new formulations with enhanced solubility could be an alternative to more efficiently treat
health problems related with concomitant hypertension and hypercholesterolemia.
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Table 1. Principal active pharmaceutical ingredients (APIs) used in the treatment of hypertension
(HT) and hypercholesterolemia (HCL) and their respective classification in the biopharmaceutical
classification system (BCS).

API Illnes Solubility Permeability BCS Reference

Pravastatin HCL High High I [5]
Glimepiride HCL Low High II [6]
Atorvastatin HCL Low High II [7]
Simvastatin HCL Low High II [5]
Fenofibrate HCL Low High II [8]
Rosuvastatin HCL Low High II [9]
Gemfibrozil HCL Low High II [10]
Ezetimibe HCL Low High II [11]
Metoprolol HT High High I [6]
Telmisartan HT Low High II [6]
Losartan HT High Low III [12]
Irbesartan HT Low High II [5]

Formulation of active pharmaceutical ingredients (APIs) in amorphous state has been introduced
in the last two decades as an alternative to solve their low solubility problem. It has been demonstrated
that the amorphous state of an API has higher solubility and higher dissolution rate than its crystalline
state, which is the common structural state of commercial drugs [13–16]. The enhancement that
an amorphous drug presents in the release of a larger amount of molecules into a solution (which can
be explained in terms of the ease to overcome intermolecular forces in an amorphous state compared to
a crystal lattice) is also accompanied of a thermodynamic instability, since substances in the amorphous
state are metastable and tend to recrystallize. An effective strategy to stabilize the amorphous state
of an API is the preparation of amorphous binary formulations (co-amorphous systems), which is
based on the addition of a second component that breaks the crystalline order of the former, allowing
the formation of new intermolecular interactions that avoid recrystallization. Co-amorphous systems
in which both components act simultaneously as active ingredients and stabilizing agents have
gained interest in pharmaceutical research [16–18]. This strategy presents the opportunity to prepare
formulations for complementary or combination therapies: releasing both drugs in a synchronic way
to treat two different illnesses or to synergize the effect of two APIs used to treat a particular medical
problem. After a literature review, and to the best of the authors’ knowledge, just a few published works
were found in which the use of combination therapy relate to the treatment of HT-HCL. Furthermore,
these studies are limited to the evaluation of the dissolution kinetics or the stability of amorphous
state, but not both, indicating the need of a complete description of this kind of formulations [19,20].

The present work introduces a new co-amorphous system with two APIs intended for combination
therapy focusing on treating hypertension and hypercholesterolemia, whose thermal and structural
stability, as well as its enhanced solubility, were evaluated. The APIs selected for the study were
Simvastatin (SIM) and Nifedipine (NIF). SIM is a cholesterol-lowering agent that belongs to the class
of medication referred to as statins, widely used to treat hypercholesterolemia [21]. NIF is a calcium
channel blocker for the treatment of cardiovascular diseases, such as hypertension [22]. Chen et al. [23]
reported a protection effect of the presence of crystalline SIM and NIF on human umbilical vein
endothelial cell (HUVEC) cultures. The study demonstrates that there is a synergistic effect when
cells are grown in presence of both drugs resulting from an improved expression of mRNA and the
protein nitric oxide synthase (eNOS), which increases the secretion of NO by inhibiting intracellular
ROS generation, enhancing the protective effect of the two drugs on endothelial cells. It is important to
mention that these individual drugs are commonly used in their crystalline form in health services to
treat separately hypertension or hypercholesterolemia and both of them are classified as Class II drugs
(low solubility; high bioavailability) according to the Biopharmaceutical Classification System (BCS).
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2. Materials and Methods

2.1. Materials

Simvastatin (C25H38O5, pharmaceutical secondary standard, MW: 418.57 g/mol), and Nifedipine
(C17H18N2O6, ≥ 98% HPLC, MW: 346.33 g/mol) were purchased from Sigma Aldrich (St. Louis,
MO, USA). The structures are shown in Figure 1. USP Phosphate buffer solution pH 6.8 was prepared
using monobasic potassium phosphate (J.T. Baker, ACS reagent, Columbus, OH, USA) and sodium
hydroxide pellets (Macron, AR (ACS), Center Valley, PA, USA) dissolved with HPLC grade deionized
water. HPLC grade acetonitrile was purchased from J.T. Baker (Columbus, OH, USA).

(a) (b)

Figure 1. Chemical structures of active pharmaceutical ingredients (a) Simvastatin SIM (cholesterol
lowering agent) and (b) Nifedipine NIF (calcium channel blocker used to treat hypertension).

2.2. Sample Preparation

Crystalline mixtures of the APIs (SIM-NIF) were weighted according to the corresponding molar
ratio and gently mixed in a mortar for 1 min.

Amorphous pure APIs and co-amorphous formulations were prepared by melt-quenching: pure
crystalline APIs or binary mixtures of different molar fractions (xSIM = 0.1, 0.2, 0.3, 0.5, 0.7, 0.8 and 0.9)
were placed in an aluminum pan inside an oven and held at 180 ◦C for one minute for the binary
mixture, 165 ◦C for SIM and 190 ◦C for NIF. Once molten, the samples were removed from the oven
and left to cool at room temperature.

2.3. Thermal Characterization

Thermal characterization was performed using a DSC–Pyris Diamond (PerkinElmer, Waltham,
MA, USA) differential scanning calorimeter. Melting temperature of Indium (#LA94121V Perkin Elmer)
served for calibration purposes. Thermal analysis was performed by placing 5–9 mg of the samples
inside 50 µL aluminum pans (Perkin Elmer). In order to identify melting temperatures, samples
were heated from 30 ◦C to 180 ◦C, the heating rate was 10 ◦C/min under a constant nitrogen flow.
Once molten, samples were amorphized in situ by cooling them from 180 ◦C to −5 ◦C at a rate of
70 ◦C/min. After amorphization, a second thermal analysis was performed to determine their glass
transition temperatures (Tg). Amorphous samples were stored in a desiccator at room temperature
and measured after one year to determine the stability of the amorphous state calorimetrically.

2.4. Study of Storage Stability by XRD

Stability of the samples in their amorphous form was monitored using a Powder X-ray
Diffractometer (PXRD) Rigaku Miniflex 600 (Tokyo, Japan). Measurements were performed with
a source voltage of 30 kV and 15 mA using a Cu cathode (Kα) as a source. Samples were measured
from 5◦ to 37◦ with a step size of 0.05◦ and a speed of 2◦/min for crystalline samples and 5◦/min for
amorphous samples. The amorphous samples for PXRD analysis were prepared by melting crystalline
samples directly on a 22 × 22 mm cover glass used as a sample holder; this procedure allowed having
amorphous samples permanently mounted on the cell holder on a fixed position. Samples were stored
in a desiccator at room temperature and were continuously monitored as a function of storage time.
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Also, the remaining undissolved excess of the material from a tablet of a SIM–NIF 1:1
after dissolution profile was subjected to XRD analysis to investigate the possible occurrence of
recrystallization during the dissolution process.

2.5. Dissolution Profiles

For the study of the dissolution profiles, amorphous or crystalline samples were compacted into
tablets (140 mg total for co-amorphous formulations) using a hydraulic press, applying a compression
of 60 kg/cm2 for 1 min. Each tablet was inserted into a stainless steel basket, which was then placed
in a water-jacketed glass vessel with 200 mL of the dissolution medium at 37 ◦C and with magnetic
stirring at 350 rpm. Samples were tested for solubility in two different media: HPLC grade deionized
water and USP phosphate buffer pH 6.8. At predetermined times during 24 h, a 1 mL aliquot was
withdrawn using a syringe equipped with a 0.2 µm nylon filter and immediately replaced with 1 mL
of the corresponding dissolution medium. Experiments were performed in triplicate and analyzed by
HPLC as described below. Experiments with samples containing NIF were performed protected from
light due to its sensitivity [24].

2.6. Dissolution Kinetics Analysis by High Performance Liquid Chromatography (HPLC)

Simultaneous quantification of SIM and NIF was performed using a high-pressure liquid
chromatography (HPLC) reverse-phase method. HPLC method was developed based on a previous
methodology only for quantification of Simvastatin [25]. The analysis was carried out on an Agilent
1200 Series HPLC system (Agilent Technologies, Waldbronn, Germany) with a diode-array
detector (λ = 238 nm). 20 µL samples were injected into a hypersil gold selectivity 5 µm, C18,
(150 mm × 4.60 mm) column, with a pre-column guard cartridge (Thermo scientific, Rochester,
NY, USA). Conditions of separation were: mobile phase of acetonitrile: water (70:30 v/v), flow rate
of 1.2 mL/min and 25 ◦C in an isocratic mode. Retention time for SIM was 4.8 min and for NIF was
2.2 min, respectively. The concentration of both APIs was determined from the area under the peak.
A calibration curve in a range of 0.1–25 µg/mL was used.

2.7. Structural Analysis by FTIR

Structural analysis of crystalline SIM and NIF and co-amorphous binary system SIM–NIF
(1:1) were carried out by infrared spectroscopy using a Fourier transform infrared spectrometer,
Perkin-Elmer Spectrum 400 FTIR-ATR/NIR operating in the near-infrared region (Shelton, CT, USA).
Samples were placed in contact with a horizontal attenuated total reflectance (ATR) accessory (Shelton,
CT, USA). All spectra were scanned in the range of 380 to 4000 cm−1 with a resolution of 4 cm−1,
and 16 scans were acquired and averaged. SpectrumTM software from Perkin-Elmer was used for
analysis of spectra and the spectra were normalized and the baseline was corrected.

3. Results and Discussion

3.1. Thermal Characterization

Figure 2 shows thermal characterization results performed by DSC to determine the phase
transitions of the pure components, as well as the binary system SIM-NIF both in crystalline
and amorphous forms. Melting temperatures (Tm) of pure APIs were identified as a sharp single
endothermic peak (see Figure 2a), the specific onset values shown in Table 2 are in agreement with
values reported in the literature for pure SIM and NIF. According to previous reports, the NIF
polymorph with melting temperature around 174 ◦C corresponds to polymorph A. For SIM a single
crystalline form has been reported [25–27]. For the case of crystalline binary systems, which were
prepared with different molar compositions, the first endothermic peak corresponds to the melting
of the eutectic composition and the second small peak corresponds to the liquidus temperature.
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The heating curves shown in Figure 2b correspond to the amorphous samples in which a glass
transition process can be identified. Only some representative results are shown in Figure 2 for better
visualization. The complete set of experimental transition temperatures are summarized in Table 2.

Figure 2. Thermograms for SIM, NIF, and representative binary mixtures (a) First heating of samples in
crystalline phase. (b) Second heating of samples in amorphous form. (c) Glass transition temperatures
of the amorphous samples freshly prepared and after one year of storage. Thermograms were obtained
by diffential scanning calorimetry, DSC using a heating rate of 10 ◦C/min. Molar fractions are in terms
of SIM.

The thermogram for amorphous NIF (Figure 2b), in addition to the glass transition, also shows an
exothermic peak indicating crystallization, which means that this particular drug is thermally unstable
in the amorphous state when reheated. In contrast, pure SIM and the co-amorphous systems proved
to be stable in their amorphous state since none of them presented any sign of crystallization during
reheating. With this result, it can be established that SIM is a good stabilizer for NIF. It is important
to mention that NIF has been reported as very unstable API in the amorphous state even in the
presence of surfactants and excipients [28,29]. A zoom in to the glass transition temperatures (Tg) of
the amorphous samples prepared in situ is presented in Figure 2c, in which the thermograms for the
amorphous materials measured after one year storage are also added. The glass transition processes in
this case clearly show an overshoot resulting from the structural relaxation of the amorphous materials
towards an equilibrium structure.

Table 2. Experimental values for the eutectic (Teut), liquidus temperature (Tm) and glass transition
temperatures (Tg) for the pure components (SIM, NIF) and the binary systems. Molar fractions are
reported in terms of SIM.

Sample Teut/◦C Tm/◦C∗ Tg/◦C

SIM 136 30
XSIM = 0.9 122 132 26
XSIM = 0.8 123 126 30
XSIM = 0.7 124 133 35
XSIM = 0.5 124 146 37
XSIM = 0.3 124 157 42
XSIM = 0.2 123 165 40
XSIM = 0.1 124 170 42
NIF 174 46

* Tm corresponding to the liquidus temperature. Tg was measured at a heating rate of 10 ◦C/min.
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With the phase transition temperatures obtained for the system SIM-NIF a phase diagram was
built, shown in Figure 3. The data suggests that a eutectic composition exists close to XSIM = 0.84
with a eutectic temperature of 123 ◦C. The values for the glass transitions of the binary system are
also added to the phase diagram, both of the prepared in situ right after the melting and the ones
measured after one year of storage. The values of glass transition decrease linearly with higher molar
fractions of Simvastatin. There is just one prior observation reported of increments in Tg for amorphous
drugs during shelf life at room temperature [17]. These findings confirm that measurements of glass
transition should be made after enough time has passed as to reach a more relaxed glassy structure in
order to have a more objective value of this transition.

Figure 3. Phase transition diagram for the binary system SIM-NIF. Liquidus and eutectic temperatures
shown in filled circles. In the phase diagram are also included the glass transition temperatures
measured immediately after the quenching (empty circles) and after storage (empty squares).

3.2. Results of Stability of the Amorphous State by PXRD

In order to determine the stability of the amorphous state during storage time, all samples were
analyzed by PXRD to monitor recrystallization. Crystalline and amorphous samples of pure APIs,
physical mixtures of the two crystalline APIs of the components and the amorphous binary systems
were measured. Figure 4a shows the diffraction pattern for crystalline SIM; diffraction peaks are in
agreement with previous results, showing characteristic peaks at 9.3◦, 10.8◦, 17.2◦, 18.7◦, and 22.5◦ for
2θ, which correspond to reported values [25]; it is the only stable polymorph at standard conditions [30].
The PXRD pattern for crystalline NIF is shown in Figure 4c, and the diffraction peaks coincide with the
ones reported for the polymorph A [27], showing characteristic peaks at 7.9◦, 10.3◦, 11.6◦, 16.0◦, 24.5◦

and 25.7◦ for 2θ. For amorphous samples, as expected, there is a lack of short-range order and therefore
the PXRD pattern becomes a broad band. Amorphous samples were stored at room temperature
and monitored periodically. Pure vitreous or amorphous SIM remained stable in amorphous state
throughout the evaluation time of one year, not showing any signs of recrystallization. Amorphous
pure NIF showed crystallization before one month of storage and the intensity of the peaks grew with
time (see Figure 4c). Partially recrystallized NIF showed characteristic peaks at 9.5◦, 11.0◦, 17.1◦, 24.5◦

and 26.7◦ for 2θ, indicating recrystallization into polymorph C, which is in accordance to the results
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reported by Grooff et al. [31]. The PXRD pattern for recrystallized NIF sample after one year presented
also weak peaks corresponding to the polymorph A.

The co-amorphous system SIM-NIF 1:1 did not show recrystallization for the evaluation time of
one year, as shown in Figure 4b. It is important to emphasize that a significant stability of NIF against
recrystallization was achieved with the preparation of the amorphous binary systems, in comparison
to the pure API, including molar ratios 1:2 and 2:1 shown in Figure 4d,e, respectively.

An additional evidence of the stability in the amorphous state of SIM-NIF formulation during
dissolution profile is shown also as a part of the XRD results of Figure 4b. Analysis on the remainder
of a tablet after a dissolution profile experiment showed that the amorphous state was retained even
when sample was exposed to 6 h of contact with the solvent. Although it is expected that water serves
as a plasticizer, in this specific case this effect did not lower the physical stability of the sample. It is
important to mention that this particular sample was first stored for one year and then exposed to
dissolution process, confirming the high stability of the co-amorphous system.

Figure 4. Powder X-ray diffraction pattern for samples in crystalline form and samples in amorphous
form studied as a function of storage time, measured by X-ray diffraction (XRD). (a) Pure SIM (b)
SIM-NIF 1:1 (c) Pure NIF. (d) SIM-NIF 1:2 (e) SIM-NIF 2:1 Also, the XRD pattern of a remainder of a
sample subjected to a dissolution process is shown in (b).
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3.3. Results of Dissolution Profiles

Dissolution profiles were evaluated to compare the solubility of pure APIs in their crystalline form
with co-amorphous formulations. Figure 5 shows the results for the dissolution in water; as it can be
observed, a significant increment of solubility, of 3.7 times, was achieved for Simvastatin. For SIM–NIF
(1:1) formulation, besides the enhanced solubility of SIM also an increment of 1.7 times in NIF solubility
was observed in this new amorphous formulation. Dissolution profile was also studied in a controlled
pH medium using phosphate buffer (pH = 6.8). Increments in solubility were similar to the ones
observed in water, being 3.1 and 1.5 times for SIM and NIF, correspondingly, in the co-amorphous
system (see Figure 6).

The enhancement of solubility observed for SIM in the present study is a very important
achievement considering the previous attempts of co-amorphous formulations (API–API) containing
SIM in which no enhancement of solubility for this particular API was attained. In a previous
formulation prepared with Simvastatin and Glipizide; improvement of Glipizide’s solubility was
reported but no significant change in solubility for SIM was obtained [25]. Similarly, in a different
work of a formulation of Simvastatin-Gliclazide, even though there was an increment of Gliclazide’s
solubility, no increase for Simvastatin was observed [32].

Figure 5. Aqueous dissolution profiles for pure crystalline APIs (SIMc and NIFc) and co-amorphous
formulation SIM-NIF: (a) solubility for SIM (b) solubility for NIF.

Figure 6. Dissolution profiles in USP Phosphate Buffer pH 6.8 for pure crystalline APIs (SIMc and NIFc)
and co-amorphous formulation SIM-NIF: (a) solubility for SIM (b) solubility for NIF.
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In Figure 7a comparison of maximum solubilities for SIM and NIF in the different media
studied are shown. Taking into account that an increment for nifedipine was achieved as well as for
SIM, this makes the present formulation a promising alternative to be used in combination therapy.
Maximum solubility values are shown in Table 3.

It is important to mention that, although there are different studies with either SIM or NIF,
these formulations use sugars, amino acids or polymers as excipients [11,13,16]. Comparing the
solubility of our system with these previous studies is not part of the discussion of the present work
since the purpose of this paper is to make a contribution in the simultaneous treatment of high
incidence diseases such as hypertension and hypercholesterolemia through combination therapy.
The solubility enhancements of previous studies with these excipients may be used in synergy with
the API–API system presented in this work in combined therapy.

Figure 7. Comparison of maximum solubility values of pure APIs in their crystalline form (SIMc and
NIFc) and co-amorphous formulation (SIM-NIF). Maximum solubility values shown were obtained
in two different media: deionized water and a controlled pH medium using USP phosphate buffer
(pH = 6.8).

Table 3. Experimental values for the concentration of the dissolved drug in deionized water and
phosphate buffer pH 6.8. (n = 3 ± s.d.)

Drug Sample
Deionized Water Phosphate Buffer pH = 6.8

Concentration of Dissolved
Drug at 24 h (µg/mL)

Concentration of Dissolved
Drug at 24 h (µg/mL)

SIM SIMc 0.95 ± 0.01 0.82 ± 0.14
SIM–NIFa 3.51 ± 0.30 2.59 ± 0.48

NIF NIFc 5.60 ± 0.48 6.33 ± 0.38
SIM–NIFa 9.73 ± 0.30 9.43 ± 1.71

3.4. Results of Structural Analysis by FTIR

FTIR was used to analyze the possible formation of intermolecular interactions between SIM and
NIF in the co-amorphous binary system. Figure 8 shows the infrared spectra of pure crystalline and
amorphous APIs, and the 1:1 amorphous SIM–NIF system. For crystalline SIM, the signals found
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correspond to the most representative functional groups: at 3548 cm−1, assigned to the OH stretching;
2955 cm−1, for the methyl C–H asymmetric stretching; 1695 cm−1 for the carbonyl stretching (C=O) of
the ester, and 1162 and 1115 cm−1 assigned to the C–O–C bond of the ester; all these signals agree with
previous reports for SIM [25,33,34].

Figure 8. FTIR spectra of crystalline (c) and amorphous (a): SIM, NIF, and co-amorphous formulation
SIM–NIF 1:1.

In the case of crystalline NIF, the most important signals are assigned to the N–H stretching, ester
carbonyl C=O, –NO2 and C–C–O of the ester at 3324, 1678, 1309 and 1223 cm−1, respectively. As in the
case of SIM, these signals agree with the values previously reported [17,24,35,36].

When comparing the pure crystalline materials against the amorphous samples, spectra show
the characteristic broadening in the signals, due to the disorder in the molecules caused by the
amorphization (Figure 8). Shifts in signals for functional groups reveal inter-molecular interactions of
the hydrogen bond type. It was found that for SIM there were mainly two signals that presented shifts:
the first one the stretching of the O–H from 3548 cm−1 to 3443 cm−1; this shift from higher to lower
wavenumber was attributed to the formation of intermolecular interactions, mainly hydrogen bonds,
between different O–H from a molecule of SIM. A shift from lower to higher wavenumber (1695 to
1714 cm−1) was observed for the stretching of the C=O of the ester, in agreement with a previous
report [25]. Contrary to the observed shift for the –OH functional group, the increment in wavenumber
for the carbonyl indicates the loss of participation of this functional group in the hydrogen bonding
interactions of SIM after its amorphization [17,36].

In the case of amorphous NIF, similar results were reported by Martínez et al. [17] for NIF, since
both the –NH and the C=O signal of the ester presented a shift from lower to higher wavenumber,
from 3324 to 3334 cm−1 and from 1687 to 1698 cm−1, respectively indicating the loss of hydrogen bond
interactions. This result is in agreement with nifedipine instability in the amorphous state and its
tendency to crystallize as a function of time (see Figure 4) because of hydrogen-bonding ordering effect.

Figure 8 also shows the spectrum for the co-amorphous binary system. It is interesting to notice
that the signal corresponding to the C=O stretching of the carbonyl of SIM appears at 1700 cm−1,
compared to the pure amorphous SIM in which the shift is from higher to lower wavenumber
(1714 to 1700 cm−1), almost returning to the position observed for crystalline Simvastatin (1695 cm−1).
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As previously described, during the amorphization of SIM, hydrogen bonds in which carbonyl groups
are participating are lost by molecular disorder caused by amorphization.

In the case of signals corresponding to NIF, no shifts were observed when comparing the
co-amorphous binary system with the pure amorphous material. Therefore, its stability in the
amorphous state in the binary system cannot be related to the formation of intermolecular interactions;
it can, however, be explained in terms of the presence of molecules of SIM provoking a mechanical
hindrance [37], preventing the interactions between NIF molecules leading to its recrystallization,
and thus the binary system to remain in the amorphous state for a longer time than pure amorphous
nifedipine.

4. Conclusions

A new co-amorphous system with potential use in combination therapy of high incidence diseases
such as hypertension and hypercholesterolemia was prepared and characterized. Results show that
the formulations are stable in the amorphous state after long storage times (more than a year), during
heating and also after 6 hours of dissolution process. This result is an important accomplishment
since nifedipine has been reported as a very unstable API in the amorphous form. The increments
in aqueous solubility, of 3.7 and 1.7 times for SIM and NIF, correspondingly, in the co-amorphous
system, are significant as it is one of the few cases in which both APIs present an increment in solubility.
The present study contributes to the efforts currently made in the health sector and the pharmaceutical
industry since it provides a strategy for the combined treatment of common illnesses that currently
affect the general population worldwide.
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Abbreviations

The following abbreviations are used in this manuscript:

ACS American Chemical Society
AR (ACS) American Chemical Society Commitee on Analytical Reagents
HT Hypertension
HCL Hypercholesterolemia
SIM Simvastatin
NIF Nifedipine
API Active Pharmaceutical Principle
DSC Differential Scanning Calorimetry
HPLC High performance liquid chromatography
FTIR Fourier transform infrared spectroscopy
PXRD powder X-ray diffraction
Tg Glass Transition Tempeature
Tm Melting Temperature
USP United States Pharmacopeia.
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