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Abstract: Human apurinic/apyrimidinic (AP)-endonuclease APE1 is one of the key enzymes taking
part in the repair of damage to DNA. The primary role of APE1 is the initiation of the repair of
AP-sites by catalyzing the hydrolytic incision of the phosphodiester bond immediately 5′ to the
damage. In addition to the AP-endonuclease activity, APE1 possesses 3′-5′ exonuclease activity,
which presumably is responsible for cleaning up nonconventional 3′ ends that were generated as
a result of DNA damage or as transition intermediates in DNA repair pathways. In this study,
the kinetic mechanism of 3′-end nucleotide removal in the 3′-5′ exonuclease process catalyzed
by APE1 was investigated under pre-steady-state conditions. DNA substrates were duplexes of
deoxyribonucleotides with one 5′ dangling end and it contained a fluorescent 2-aminopurine residue
at the 1st, 2nd, 4th, or 6th position from the 3′ end of the short oligonucleotide. The impact of the
3′-end nucleotide, which contained mismatched, undamaged bases or modified bases as well as an
abasic site or phosphate group, on the efficiency of 3′-5′ exonuclease activity was determined. Kinetic
data revealed that the rate-limiting step of 3′ nucleotide removal by APE1 in the 3′-5′ exonuclease
process is the release of the detached nucleotide from the enzyme’s active site.

Keywords: AP-endonuclease; DNA repair; exonuclease activity; pre-steady-state kinetics

1. Introduction

Human apurinic/apyrimidinic endonuclease 1 (APE1), also known as a redox factor 1
(Ref-1) is a multifunctional enzyme [1]. The primary physiological function of APE1 is the
incision of the phosphodiester bond immediately 5′ to an apurinic/apyrimidinic (AP) site, which
generates a single-strand break with 5′-deoxyribose phosphate and 3′-hydroxyl ends (Figure 1) [2–4].
APE1 possesses some minor activities: 3′-5′ exonuclease, 3′-phosphodiesterase, 3′-phosphatase, and
RNase H [5–8]. In addition to these activities, APE1 can recognize and convert some damaged or
modified nucleotides such as 5,6-dihydrouridine [9], α-anomers [10], etheno derivatives [11,12], bulky
photoadducts [13], benzene derivatives [14], and 2′-deoxyuridine [15]. This type of APE1 activity was
named as the “nucleotide incision repair” (NIR) activity [16]. The heterogeneity of substrate specificity
of the enzyme could be elucidated by structural data. Nonetheless, the currently available structural
data mainly represent different variants of the free enzyme [17–19] and its complexes with nicked
or abasic DNA [20–22]. Analysis of these data has shown that, for endonuclease activity, specific
contacts in the complex APE1·DNA are formed, which result in the change of DNA conformation
including eversion of an AP-site from the double helix. At the same time, the binding to DNA leads to
slight structural rearrangements in the APE1 molecule itself. It has also been shown that amino acid
residues of APE1 interact mainly with only one DNA chain, which contains an AP-site by forming
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hydrogen bonds and electrostatic contacts between DNA backbone phosphates and amino acid side
groups or amide groups of peptide bonds. Recently, a set of APE1-DNA structural snapshots was
reported revealing that APE1 removes 3′ mismatches and 3′-phosphoglycolate by placing the 3′ group
within the intra-helical DNA cavity via a non-base-flipping mechanism [23]. It has been suggested
that the hydrophobic pocket, which is composed of Phe-266 and Trp-280, plays a role in the substrate
specificity [23,24]. The catalytic reaction is initiated by a nucleophilic attack of the oxygen atom of an
H2O molecule coordinated directly or through an Mg2+ ion by Asp-210 on the 5′-phosphate group of
the AP-site [20,22]. In alternative catalytic mechanisms [25,26], the role of the nucleophilic base plays
the His-309 residue or the phenolate form of the Tyr-171 residue.
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comparative kinetic analysis of the conformational changes of model DNA substrates in the course 

Figure 1. Types of catalytic activity for APE1.

In our earlier studies, kinetic analysis of conformational changes of the enzyme and of a DNA
molecules has been performed on the endonuclease process catalyzed by APE1 [27–29]. For DNA
substrates containing an AP-site or its synthetic analog 2-oxymethyl-3-oxy-tetrahydrofuran (F-site),
the kinetic scheme containing two reversible steps of DNA-substrate binding has been determined
(Scheme 1) [30,31]. It was hypothesized that the first binding step represents the formation of a
nonspecific complex of APE1 with DNA: (E·S)1. In the course of the second step, when the (E·S)2

complex is produced, the amino acid residues and a Mg2+ ion in the active site of the enzyme form
specific contacts with 5′ and 3′ phosphates and ribose residues of AP-DNA. During this step, the
AP-site is everted to the active site of the enzyme so that a catalytically active conformation of APE1 is
generated. After that, the irreversible chemical step of hydrolysis of the phosphodiester bond 5′ to the
AP-site proceeds. The final, fourth step is the reversible release of product P, which contains a nick in
one DNA chain from the complex with the enzyme E·P.
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site. E is the enzyme, S is a DNA substrate, (E·S)1 and (E·S)2 are complexes of the enzyme with the
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and k−i denote rate constants of direct and reverse reactions (i = 1 or 2) of reversible steps, k3 is a rate
constant of the catalytic reaction, and Kp is the equilibrium dissociation constant for the E·P complex.

In spite of intensive studies regarding the features of the major endonuclease activity of APE1,
the mechanisms of other activities of this enzyme toward DNA substrates with significantly different
structures are still insufficiently examined. It was shown earlier that, under conditions optimal for AP
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endonuclease activity, the 3′-5′ exonuclease activity is six to seven orders of magnitude lower than
the endonuclease activity [32]. Therefore, in the present work we were focused on the comparison
of various DNA substrates in the course of only 3′-5′ exonuclease processing. For this purpose, a
comparative kinetic analysis of the conformational changes of model DNA substrates in the course
of their recognition and 3′-5′ exonuclease cleavage by APE1 was performed. By the stopped-flow
fluorescence technique, changes in the fluorescence of 2-aminopurine residues introduced at various
positions of the DNA substrate were recorded. The effects of undamaged and damaged 3′-end
nucleotides or stability of the 3′-end pair on the 3′-5′ exonuclease activity were estimated. Taken
together, the obtained data allowed us to elucidate kinetic features of the mechanism underlying
the 3′-5′ exonuclease activity of APE1 and to conclude that the rate-limiting step is the release of the
detached nucleotide from the active site of the enzyme.

2. Results and Discussion

Exonuclease activity of APE1 is effective toward duplexes containing gaps or 5′-dangling
ends [32–34]. Therefore, for the kinetic analysis of the 3′-5′ exonuclease reaction, the duplexes of
15 and 28 nucleotides (nt) with a 5′-dangling end served as model DNA substrates (Figure 2). The 15 nt
oligonucleotides contained the aPu residue at position 1, 2, 4, or 6 from the 3′ end in the duplexes
Exo-aPuj/T (j = 1, 2, 4, and 6). The fluorescence of aPu is significantly quenched when this base is
incorporated into single-stranded or double-stranded DNA [35–37]. This property of aPu enabled us
to follow the rates of its removal from the different positions in a DNA chain.
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Figure 2. Schematic structures of DNA duplexes Exo-aPuj/T (a), Exo-aPu1/N (b), and Exo-aPu2-X/N
(c) used as substrates and ligands of APE1.

Moreover, using DNA substrates containing mismatched or damaged 3′ nucleotides allowed
us to estimate the influence of the opposite-strand nucleotide (Exo-aPu1/N) and the structure of the
3′-neighboring nucleotide (Exo-aPu2-X/N) on the 3′-5′ exonuclease reaction.

2.1. The Position of aPu in the Duplex Affects APE1 3′-Exonuclease Efficiency

To determine the effect of a position of the aPu nucleotide in the duplex on the rate of its
APE1-catalyzed removal, fluorescence kinetic traces were obtained for each of the duplexes Exo-aPuj/T
at different concentrations of APE1 using the stopped-flow instrument (Figure 3). For all substrates,
Exo-aPuj/T, the aPu fluorescence intensity increased with time, but the rate of this process decreased
with the increase of the j value, i.e., with the moving of aPu away from the 3′ end of the short
oligonucleotide. This result can be attributed to the process of sequential removal of non-fluorescent
nucleotides beginning at the 3′ end until APE1 reaches the aPu nucleotide inside the sequence.
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To support this conclusion and find a possible correlation of the changes of aPu fluorescence
intensity with the process of detachment of 3′ nucleotides, hydrolytic cleavage of 5′-32P-labeled
15 nt oligonucleotide of substrate Exo-aPu1/T was studied by polyacrylamide gel electrophoresis
(PAGE, Figure 4). Fast accumulation of the total reaction products at various concentrations of
substrate Exo-aPu1/T (Figure 4a) coincides with the time point of the aPu fluorescence intensity
increase detected for this substrate. Moreover, as shown in Figure 4b,c, PAGE analysis allowed us to
resolve the appearance and disappearance of shortened intermediate fragments of 5′-32P-labeled 15 nt
oligonucleotide of substrate Exo-aPu1/T indicated as products Pn, where n is the length of the fragment
in nucleotides. Comparison of kinetic data obtained by fluorescence (Figure 3) and PAGE (Figure 4)
analyses for substrates Exo-aPuj/T revealed that the phase of the increase in aPu fluorescence intensity
coincided with the removal of the aPu nucleotide from the jth position of the 15 nt oligonucleotide.

Molecules 2018, 23, x 4 of 14 

 

oligonucleotide of substrate Exo-aPu1/T indicated as products Pn, where n is the length of the 
fragment in nucleotides. Comparison of kinetic data obtained by fluorescence (Figure 3) and PAGE 
(Figure 4) analyses for substrates Exo-aPuj/T revealed that the phase of the increase in aPu 
fluorescence intensity coincided with the removal of the aPu nucleotide from the jth position of the 
15 nt oligonucleotide. 

 
(a) 

 
(b) 

(c) (d) 

Figure 3. Changes in aPu fluorescence intensity during the interaction of APE1 with one of the 
substrates: (a) Exo-aPu1/T, (b) Exo-aPu2/T, (c) Exo-aPu4/T, or (d) Exo-aPu6/T. Concentrations of the 
enzyme and DNA are indicated in the panels. Kinetic traces for different APE1 concentrations are 
shown in different colors. 

The kinetic parameters of the 3′-5′ exonuclease reaction—resulting in the removal of the 3′ aPu 
nucleotide from substrates Exo-aPuj/T—were calculated using Equation (3). Kinetic traces in Figure 
2a characterizing the interaction of APE1 with substrate Exo-aPu1/T were best fitted by a two-
exponent function (Equation (3), i = 2). The observed rate constant k11 of the fast increase phase of aPu 
fluorescence intensity depends on the concentration of APE1 in a hyperbolic manner (Figure 5а). 
Hyperbolic dependence of k11 indicates that the first phase includes a two-step kinetic mechanism. It 
is reasonable to suggest that the first step reflects a process of initial complex formation between the 
enzyme and substrate. Its conversion to catalytically active conformation includes the placement of 
a 3′ nucleotide in the enzyme’s active site. The second step in this mechanism could characterize the 
catalytic reaction of hydrolysis of the phosphodiester bond with the 3′-aPu nucleotide. Using 
Equation (1), the equilibrium constant of the binding of APE1 to substrate Exo-aPu1/T (Kbind = (1.4 ± 
0.2) × 106 М−1) as well as the rate constant of the catalytic reaction (kdetachaPu = 0.096 ± 0.004 s−1) were 
calculated. 

k11 = Kbind × [APE1] × kdetachaPu/(Kbind × [APE1] + 1) (1)

Since the 3′-5′ exonuclease reaction proceeds with multiple turnover up to full substrate 
hydrolysis, it was likely that, after detachment of the aPu nucleotide from the 3′ end of the DNA chain 

Figure 3. Changes in aPu fluorescence intensity during the interaction of APE1 with one of the
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enzyme and DNA are indicated in the panels. Kinetic traces for different APE1 concentrations are
shown in different colors.

The kinetic parameters of the 3′-5′ exonuclease reaction—resulting in the removal of the 3′

aPu nucleotide from substrates Exo-aPuj/T—were calculated using Equation (3). Kinetic traces in
Figure 2a characterizing the interaction of APE1 with substrate Exo-aPu1/T were best fitted by a
two-exponent function (Equation (3), i = 2). The observed rate constant k1

1 of the fast increase
phase of aPu fluorescence intensity depends on the concentration of APE1 in a hyperbolic manner
(Figure 5a). Hyperbolic dependence of k1

1 indicates that the first phase includes a two-step kinetic
mechanism. It is reasonable to suggest that the first step reflects a process of initial complex formation
between the enzyme and substrate. Its conversion to catalytically active conformation includes the
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placement of a 3′ nucleotide in the enzyme’s active site. The second step in this mechanism could
characterize the catalytic reaction of hydrolysis of the phosphodiester bond with the 3′-aPu nucleotide.
Using Equation (1), the equilibrium constant of the binding of APE1 to substrate Exo-aPu1/T
(Kbind = (1.4 ± 0.2) × 106 M−1) as well as the rate constant of the catalytic reaction (kdetach

aPu = 0.096
± 0.004 s−1) were calculated.

k1
1 = Kbind × [APE1] × kdetach

aPu/(Kbind × [APE1] + 1) (1)

Since the 3′-5′ exonuclease reaction proceeds with multiple turnover up to full substrate hydrolysis,
it was likely that, after detachment of the aPu nucleotide from the 3′ end of the DNA chain by hydrolytic
cleavage of the 3′-5′ phosphodiester bond, there was a step of removal of the detached nucleotides from
the active site of the enzyme. The rate of the release of a detached aPu nucleotide could be associated
with the network of contacts of this nucleotide with amino acid residues of the active site and most likely
should not depend on the concentration of APE1. Calculated values of observed rate constants k2

1 do
not reveal their significant dependence on APE1 concentration (Figure 5b). Therefore, we hypothesized
that the second phase of the growth of aPu fluorescence intensity represents the release of the detached
aPu nucleotide from the active site of the enzyme. The linear approximation of this data allows us to
calculate the average observed rate constant of aPu release k2

1 = krelease
aPu = 0.0038 ± 0.0002 s−1.
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Figure 4. Kinetics of the accumulation of DNA products during an interaction with APE1 as
detected by PAGE. (a) Accumulation of the total reaction products at various concentrations of
substrate Exo-aPu1/T, (b) sequential formation of reaction products, and (c) the accumulation and
consumption of intermediate truncated reaction products Pn during sequential exonuclease removal of
3′-end nucleotides.
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Data presented in (a) and (b) were fitted to a hyperbolic equation (Equation (1)) or to a linear
function, respectively.

Thus, the total kinetic mechanism of removal of 3′-aPu during the 3′-5′ exonuclease process
is described in Scheme 2. The complex E·S in Scheme 2 corresponds to the catalytic complex of
APE1 with a DNA substrate. The 3′-aPu detachment rate constants calculated by hyperbolic fitting
were approximately 25-fold higher than the rate constant of the aPu nucleotide release from the
active site of the enzyme, which indicates strong inhibition of APE1 by the first detached nucleotide.
Recently published pre-steady-state quench-flow analysis of product accumulation in the course of
3′-5′ exonuclease reaction revealed a burst phase with a subsequent steady-state linear phase [23],
which supports the notion that the rate-limiting step of enzyme turnover is the release of a detached
nucleotide from the active site.
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Scheme 2. The kinetic mechanism of removal of 3′-aPu nucleotide. E is the enzyme, S is a DNA
substrate, E·S is a complex of the enzyme with the substrate, P is a product of substrate conversion,
E·P is a complex of the enzyme with the product, Kbind denotes the equilibrium constant of binding of
APE1 to the substrate, kdetach

aPu is a rate constant of the hydrolysis of the 3′-5′ phosphodiester bond,
and krelease

aPu represents the rate constant of the release of a detached aPu nucleotide from the active
site of the enzyme.

2.2. Determination of the Mean Rate of Removal of a 3′-End Nucleotide

In the course of interaction of APE1 with substrates Exo-aPuj/T (Figure 6a), initially the complex
of the enzyme with the 3′-end nucleotide of the substrate is formed. Then the detachment and a
subsequent release of the 3′-end nucleotide takes place and, afterward, the enzyme is shifted along the
shortened DNA fragment to the second nucleotide and so far the j-th aPu residue would be detached.
It could be proposed that the binding of the enzyme to a substrate—before the catalytic action and
enzyme dislocation along DNA after catalysis—proceed faster than the catalytic reaction. Therefore, for
substrates Exo-aPu2/T, Exo-aPu4/T, and Exo-aPu6/T, the time required for removal of a aPu nucleotide
placed in the middle of the sequence is equal to the sum of the catalytic reaction periods required
for the detachment of the 3′-end nucleotides and duration of the release of a detached nucleotide
from the active site. Due to the disorder of the enzymatic process in the course of this repetitive
multiple turnover process of the enzyme, the kinetic curves recorded for Exo-aPu2/T, Exo-aPu4/T,
and Exo-aPu6/T were described with a multi-exponential function (Equation (3), i > 3). Therefore, we
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analyzed only the first exponential term in this equation, which contained the observed rate constant
k1

j. It is worth noting that the values of rate constants k1
1 and k1

2 (characterizing the removal of the
first and the second nucleotide) differed approximately 35-fold. On the basis of the kinetic law for the
rate of the sequential reactions [38], the following Equation (2) is true.

1/k1
j = j/kdetach + (j − 1)/krelease = j × (1/kdetach + 1/krelease) − 1/krelease (2)

where j is the position of aPu from the 3′ end, k1
j is the observed rate constant of the first phase, kdetach

is the mean rate constant of the catalytic reaction of hydrolysis of a 3′-5′ phosphodiester bond of any
nucleotide at the 3′ end of the short oligonucleotide in DNA substrate, and krelease is the mean rate
constant of a release of any detached nucleotide from the active site of APE1.

Based on Figure 6b, the reverse value of k1
j linearly depends on j, which allows us to calculate

the values of kdetach = 0.08 ± 0.02 s−1 and krelease = 0.0035 ± 0.0001 s−1 using Equation (2). Thus,
these results reveal that the hydrolysis of a phosphodiester bond of any 3′-end nucleotide proceeds at
least 10-fold faster than the release of this detached nucleotide from the active site of APE1. The rate
constants of detachment and release of any nucleotide are in good agreement with the constants
obtained for the aPu nucleotide by analysis involving a set of concentrations of substrate Exo-aPu1/T
(kdetach

aPu = 0.096 ± 0.004 s−1 and krelease
aPu = 0.0038 ± 0.0002 s−1).
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substrates Exo-aPuj/T. (a) Exponential analysis (red line) of the initial part of the kinetic curves (j is the
position of the nucleotide relative to the 3′ end of the short oligonucleotide). [Exo-aPuj/T] = 1.0 µM,
[APE1] = 2.0 µM. (b) Dependence of k1

j on j, which is described by Equation (2).

2.3. The Rate of the 3′-5′ Exonuclease Reaction Depends on Stability of the 3′-End Base Pair

It has been shown earlier [32,39] that the efficiency of a 3′-5′ exonuclease reaction depends on the
thermal stability of DNA duplexes. In this paper, we studied the effect of the terminal 3′-base pair
on the removal of the first 3′-end aPu nucleotide. For this purpose, duplexes Exo-aPu1/N containing
bases cytosine, thymine, adenine, and guanine opposite aPu (N = C, T, A, and G) were used. The
kinetic traces (Figure 7a) obtained for the interactions of APE1 (1.0 µM) with duplexes Exo-aPu1/N
(1.0 µM) revealed that the rate of aPu removal depends on the opposite base.

The kinetic traces presented in Figure 7a were estimated using Equation (3) where i = 2 and
the values of the observed rate constants of the first and the second phases k1

1 and k2
1, respectively,

were calculated. Following from the preceding discussion, the rate constant k1
1 characterizes DNA

binding and detachment of the 3′-aPu nucleotide while k2
1 reflects the release of an aPu nucleotide.

As presented in Table 1 and Figure 7b, only the rate constant of 3′-end aPu detachment k1
1 depends

on the opposite base and increases in the order of T < C < A < G. It was shown in Reference [40]
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that the stability of an aPu pair with one of the natural DNA bases decreases in the same order.
In fact, 2-aminopurine forms two hydrogen bonds with thymine or one hydrogen bond with cytosine,
but it does not form hydrogen bonds with purine bases. Therefore, our data are consistent with
the conclusion that the formation of a catalytically active complex of APE1 proceeds faster with the
substrates containing a mismatched purine base opposite of 2-aminopurine, i.e., aPu/G and aPu/A
due to the absence of any complementary interactions and destabilization of the 3′ end. The obtained
data are in agreement with recent structural data [23] suggesting that APE1 likely removes a matching
base through the same mechanism as a mismatched base only at lower efficiency owing to the relative
lack of flexibility at the 3′ end. It was shown in this study that the stable C/G base pairing prevents
the phosphate backbone from entering the proper registry for cleavage by the APE1 active site.
A comparison of structures of the APE1 complex with matching C/G and mismatched C/T substrates
reveals that the matched C is shifted 7.5 Å downstream and away from the key catalytic residues.

The observed rate constants of the second phase k2
1 expectedly do not depend on the nature of

the opposite nucleotide because this phase reflects the aPu nucleotide release from the active site of the
enzyme. The calculated value of k2

1 for all substrates Exo-aPu1/N was equal to 0.0034 ± 0.0002 s−1

and was very close to the same value determined for an aPu release by analysis involving a set of
concentrations of substrate Exo-aPu1/T (krelease

aPu = 0.0038 ± 0.0002 s−1, Figure 5b) and the mean rate
constant of a release of any 3′-end nucleotide (krelease = 0.0035 ± 0.0001 s−1, Figure 6b).
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Exo-aPu1/N. (b) The values of the observed rate constants ki

1 ([APE1] = 1.0 µM, [Exo-aPu1/N] = 1.0 µM).

Table 1. The rate constants of the interaction of APE1 with substrates Exo-aPu1/N.

DNA DNA Binding and aPu Detaching, k1
1, s−1 aPu Releasing, k2

1, s−1

Exo-aPu1/G 0.13 ± 0.02 0.0035 ± 0.0002
Exo-aPu1/A 0.075 ± 0.001 0.0035 ± 0.0002
Exo-aPu1/C 0.050 ± 0.001 0.0031 ± 0.0002
Exo-aPu1/T 0.040 ± 0.001 0.0034 ± 0.0002

2.4. The Rate of the 3′-End Nucleotide Removal Depends on Its Structure

For the assay of the impact of the 3′-end nucleotide structure on the rate of its removal, duplexes
Exo-aPu2-X/N were used as DNA substrates. These duplexes contained an aPu nucleotide at the
second position from the 3′ end, but the first position was occupied by nucleotide X and contained
either an undamaged base (adenine (A), guanine (G), cytosine (C), or thymine (T)) or a modified base:
8-oxoguanine (oxoG), uracil (U), 5-methylcytosine (5mC), α-anomer of adenosine (αA), or representing
the 2-oxymethyl-3-oxy-tetrahydrofurane residue (F) or phosphate (p).
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The aPu fluorescence kinetic curves obtained for the case of interaction of APE1 with substrates
Exo-aPu2-X/N are presented in Figure 8a,b. The initial exponential increase of the aPu fluorescence
was fitted to Equation (3) to calculate the observed rate constant k1

2 (Figure 8c and Table 2). It is
evident from these data that k1

2 changes in a rather narrow range (0.5–4.6) × 10−3 s−1.
According to previous analysis, k1

2 may characterize a combination of processes of DNA binding,
detachment and release of the 3′-X nucleotide, and subsequent detachment of the aPu nucleotide.
In the approximation where the binding of different Exo-aPu2-X/N substrates can be considered the
same, the difference in the rate constant k1

2 is due to the difference in the rates of the X nucleotide
detachment and release from the active site. Moreover, because the nucleotide detachment rate is at
least 20-fold higher than the rate of the nucleotide release, it could be concluded that the release of the
nucleotide from the active site determines the differences in the observed constants k1

2.
The rates of removal of the aPu nucleotide are higher when it is located after the

G/C and C/G pairs in comparison with the A/T and T/A pairs. In the case when aPu
is located after a damaged X/N pair, the values of k1

2 decrease in the following order:
F/G ≥ αA/T > oxoG/C = U/G > meC/G ≥ p/C, which indicates the maximal release rate for the
abasic nucleotide. For duplexes containing base pairs oxoG/C, U/G, or C/G, the values of k1

2 are
very close and are in the range (1.7–2.1) × 10−3 s−1. Otherwise, for the duplex with a G/C base pair,
the observed rate constant k1

2 is sufficiently higher and equal to 2.9 × 10−3 s−1. The minimal value of
k1

2 (5.3 × 10−4 s−1) was detected for the removal of a 3′-phosphate group in the case of Exo-aPu2-p/C,
which indicates that the 3′-phosphatase activity of APE1 is weaker than its 3′-5′ exonuclease activity.
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Table 2. The rate constants k1
2 of the interaction of APE1 with substrates Exo-aPu2-X/N.

X/N Nature k1
2, s−1

F/G (4.6 ± 0.05) × 10−3

oxoG/C (1.7 ± 0.07) × 10−3

p/C (5.3 ± 0.6) × 10−4

5mC/G (8.9 ± 0.5) × 10−4

U/G (1.9 ± 0.06) × 10−3

αA/T (3.3 ± 0.04) × 10−3

A/T (9.9 ± 0.6) × 10−4

T/A (9.2 ± 0.5) × 10−4

C/G (2.1 ± 0.07) × 10−3

G/C (2.9 ± 0.05) × 10−3

3. Materials and Methods

3.1. Protein Expression and Purification

To purify APE1 expressed as a recombinant protein, 1 L of culture (in Luria-Bertani (LB)
broth) of the Escherichia coli strain Rosetta II(DE3) (Merck KGaA, Darmstadt, Germany) carrying
the pET11a-APE1 construct was grown with 50 µg/mL ampicillin at 37 ◦C until absorbance
at 600 nm (A600) reached 0.6 to 0.7. APE1 expression was induced overnight with 0.2 mM
isopropyl-β-D-thiogalactopyranoside. The method for isolation of wild-type APE1 has been described
previously (for more details, see Supplementary Materials: Figure S1) [41]. The protein concentration
was measured by the Bradford method [42]. The stock solution was stored at −20 ◦C.

3.2. Oligodeoxyribonucleotides

The sequences of oligodeoxyribonucleotides used in this work are listed in Table 3.
The oligodeoxyribonucleotides were synthesized by the standard phosphoramidite method on an
ASM-700 synthesizer (BIOSSET, Novosibirsk, Russia) from phosphoramidites purchased from Glen
Research (Sterling, VA, USA). α-2′-Deoxyadenosine phosphoramidite was bought from ChemGenes
Corp. (Wilmington, MA, USA). Synthetic oligonucleotides were unloaded from the solid support
with ammonium hydroxide, according to manufacturer protocols. Deprotected oligonucleotides were
purified by HPLC. Concentrations of oligonucleotides were calculated from their absorbance at 260 nm.
Oligodeoxyribonucleotide duplexes were prepared by annealing modified and complementary strands
at a 1:1 molar ratio. Shorthands of DNA duplexes denote the number of position for aPu residue from
the 3′ end in the short oligonucleotide and letter “N”, which correspond to the T, A, G, or C nucleotide
placed opposite to the 3′ end of the short oligonucleotide in the 5′ dangling oligonucleotide.

Table 3. DNA duplexes used as substrates and ligands of APE1.

Shorthand Sequence

Exo-aPu1/N
N = A, G, C, T

5′-CAGCTCTGTACGTG(aPu)-3′

3′-GTCGAGACATGCAC N CGTCACCACTGTG-5′

Exo-aPu2/T
5′-CAGCTCTGTACGT(aPu)A-3′

3′-GTCGAGACATGCA C TCGTCACCACTGTG-5′

Exo-aPu4/T
5′-CAGCTCTGTAC(aPu)TGA-3′

3′-GTCGAGACATG C ACTCGTCACCACTGTG-5′

Exo-aPu6/T
5′-CAGCTCTGT(aPu)CGTGA-3′

3′-GTCGAGACA T GCACTCGTCACCACTGTG-5′

Exo-aPu2-X/N
N = A, G, C, T

X = F, G, C, T, oxoG, U, 5mC, p, αA

5′-CAGCTCTGTACGT(aPu)X-3′

3′-GTCGAGACATGCA C NCGTCACCACTGTG-5′
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3.3. Stopped-Flow Experiments

These experiments were conducted essentially as described previously [43–45]. An SX.18MV
stopped-flow spectrometer (Applied Photophysics, Leatherhead, UK) fitted with a 150 W Xe arc lamp
and a 2 mm path length optical cell was employed. The dead time of the instrument was 1.4 ms.
The excitation wavelength was 310 nm for the aPu fluorescent dye. The emission was monitored
using a long-pass wavelength filter (Corion, Franklin, MA, USA) at 370 nm. APE1 was placed in one
of the instrument′s syringes and rapidly mixed with the substrate in another syringe. The reported
concentrations of reactants are those in the reaction chamber after mixing. Typically, each trace shown
in the figures is the average of four or more fluorescence traces recorded in individual experiments.
In the figures, if necessary for better presentation, the curves were manually moved apart. All the
experiments were carried out in a buffer consisting of 50 mM Tris-HCl pH 7.5, 50 mM KCl, 5 mM
MgCl2, 1 mM EDTA, 1 mM DTT, and 7% glycerol (v/v) at 37 ◦C.

3.4. Product Analysis

To analyze the products formed by APE1, the substrates were 5′-32P-labeled with phage T4
polynucleotide kinase and γ-32P-ATP. The reaction was carried out under the conditions described
above. Cleavage of the substrate was initiated by the addition of APE1. Aliquots (2 µL) of the reaction
mixture were taken at certain time intervals, immediately quenched with 3 µL of a gel-loading dye
containing 7 M urea and 50 mM EDTA, and loaded on a 20% (w/v) polyacrylamide gel containing 7 M
urea. Disappearance of the substrate and formation of the products were analyzed by autoradiography
and quantified by scanning densitometry in the Gel-Pro Analyzer software, v.4.0 (Media Cybernetics,
Rockville, MD, USA).

3.5. Kinetic Data Analysis

Stopped-flow kinetic traces were fitted to Equation (3) by a nonlinear regression procedure in the
Origin software (OriginLab Corp., Northampton, MA, USA).

Fc = Fb +
N

∑
i=0

Ai × exp (−ki × t) (3)

where Fc is the observed fluorescence intensity of aPu, Fb indicates background fluorescence, Ai denotes
fluorescence parameters, ki is the observed rate constant, and t is the reaction time.

4. Conclusions

In general, our findings revealed that in a 3′-5′ exonuclease reaction, removal of the first 3′-terminal
nucleotide proceeds significantly faster (approximately 35-fold) than the removal of subsequent
nucleotides located at the next positions from the 3′ end. This finding indicates that catalysis during
the first enzymatic turnover is more rapid than in the subsequent enzymatic cycles, which supports
the appearance of the rate-limiting step after catalytic hydrolysis of the phosphodiester bond. It is
reasonable to conclude that the deceleration of the removal rate for the subsequent nucleotides in
comparison with the first one is caused by a slow release of the detached nucleotide from the active
site of the enzyme. It was shown that the rate of aPu removal from the 3′ end depends inversely
on the stability of the aPu pair with undamaged DNA bases. The obtained kinetic data show that
the effect of pair stability is relatively moderate and a difference in the observed rate constant does
not exceed five-fold, which suggests that formation of the catalytic complex with any pairs at the
3′ end proceeds rapidly and efficiently. A comparison of various undamaged and damaged 3′-end
nucleotides revealed that the rate of the release of the detached nucleotide from the active site of the
enzyme varies ≤10-fold with maximum and minimum values corresponding to an abasic nucleotide
and phosphate group, respectively. Most likely this variation is associated with differences in the
nucleotide structure. Taken together, our results are suggestive of a kinetic mechanism of the 3′-5′
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exonuclease reaction and indicate that the release of a detached nucleotide from the active site of APE1
is the rate-limiting step of APE1 3′-5′ exonuclease activity.

Supplementary Materials: The following are available online: Figure S1.
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