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Abstract: The present study examined the influence of malting on the phenolic composition of
two cultivars of finger millet using an ultra-performance liquid chromatography mass spectrometer.
Total polyphenols and antioxidant activities of the grains were also evaluated using sorghum as
an external reference. Catechin, epicatechin, quercetin, taxifolin, and hesperitin were isolated
flavonoids, whereas protocatechuic acid was the phenolic acid detected in finger millet malt.
Increases in the content of catechin, epicatechin, and protocatechuic acid were observed for 72 h
and 96 h for brown finger millet and sorghum malt. Complete loss of taxifolin and hesperitin
were observed with the malting period for finger millet cultivars. A similar loss was noted in
the proanthocyanidin A1/A2 and catechin content of sorghum with malting time. The grain malt
exhibited 2,2-diphenyl-1-picrylhydrazyl,2,2′-azinobis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS)
radical scavenging and iron reducing activities. Increased ABTS and iron reducing activity with
malting time were observed for the finger millet cultivars. The study demonstrates the presence
of hesperitin in finger millet, and also shows that 72 h and 96 h of malting enhanced the catechin,
epicatechin, and protocatechuic acid content, in addition to the antioxidant activity of the grain.
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1. Introduction

Finger millet, Eleusine coracana (L.) Gaertn, has been perceived as a potential “super grain” by
the United States National Academies as one of the most nutritious among all the major cereal
grains [1–4]. It is a small seeded subsistence food crop belonging to the grass family Poaceae.
The nutrient-rich grain is mainly used for making unleavened bread, among other preparations
like cakes and puddings, as well as stiff and thin porridges. Besides its use for brewing, the malted
flour is also used in the preparation of infant and geriatric foods, and as a popular food supplement
for diabetics [1,2]. Finger millet is gluten-free, which is ideal for patients suffering from celiac
disease [5,6]. Regular consumption of finger millet has been linked with a reduced risk of diabetes
mellitus, hypercholesterolemia, prevention of the oxidation of low-density lipoproteins, and in the
improvement of gastrointestinal health [4,7,8]. These unique health beneficial properties have been
attributed to the phenolic compounds present in the grain, as well as its dietary fibre content. The plant
itself has been found to have diaphoretic, diuretic, and anthelmintic properties, and the leaf juice
has been used for health-improvement for women at childbirth [9]. It is also used as a folk remedy
for treatments including leprosy, liver disease, measles, pleurisy, pneumonia, and small pox [9].
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Finger millet, however, is underutilised due to its minimal inclusion in convenience food products,
unawareness of the public, lack of research, and novel product development processes [1,3,10].

Phenolic compounds are of great importance for food and beverages derived from plants, since
these compounds are responsible for these products’ nutraceutical and organoleptic properties.
These compounds are, therefore, closely linked with the quality of such products, and thus their
analysis is of significant interest. Sorghum (Sorghum bicolor L. Moench) is the fifth most utilised
cereal in the world and is particularly important as a food source for populations in Africa and
Asia [11,12]. Sorghum belongs to the grass family Poaceae, formally known as Gramineae. It is a rich
source of various phytochemicals including tannins, phenolic acids, anthocyanins, phytosterols, and
policosanols [13]. Sorghum malt is widely used in the preparation of a variety of food products that are
documented for their health properties [14–16]. Similar information on finger millet, however, is limited
or not available, particularly in Southern Africa. Some available studies on malted finger millet have
indicated the presence of phenolic acids, mainly the hydroxybenzoic acids along with hydroxycinnamic
acids. Chethan et al. [17] investigated the effect of finger millet malt polyphenols on starch hydrolysis.
In the study, phenolic acids were the major compounds reported, along with a flavonoid-quercetin.
In other studies performed on finger millet malt, only phenolic acids were identified; however, data on
the flavonoids of malted finger millet are very limited and inconclusive [18–20]. Flavonoids and their
metabolites are important dietary phenolic compounds which are increasingly being investigated in
many epidemiological studies for their possible role in the protection against chronic diseases [21].
In plants, flavonoids are involved in protection against UV radiation, oxidation and temperature stress,
early plant development, signaling, and protection from insect and mammalian infestation [22]. Here,
we report on the application of an ultra-performance liquid chromatography mass spectrometer as a
tool to describe the phenolic composition of two local cultivars of finger millet, namely, brown and
dark brown finger millet. Changes in the total polyphenols and antioxidant activities of the grain malts
were also monitored.

2. Results

2.1. Composition and Changes in Phenolic Compounds of Finger Millet and Sorghum Malt

Table 1 shows the retention time and mass spectra characteristics of phenolic compounds in finger
millet and sorghum malt using formic acid-methanol and HCl-methanol. The phenolic compounds
identified in the extracts of finger millet and sorghum malt were flavan-3-ols (catechin, epicatechin),
flavononol (taxifolin), flavonols (quercetin), proanthocyanidins (proanthocyanidin A1/A2), flavanones
(hesperitin), and benzoic acid derivative (protocatechuic acid). Mass spectra and UPLC chromatograms
of the phenolic compounds found in finger millet and sorghum grain malt extracts are shown in the
appended Supplementary Materials.

Changes in the phenolic compounds of finger millet and sorghum during malting are shown in
Table 2. Catechin was the predominant flavonoid found in the finger millet malt samples, followed
by epicatechin and taxifolin for the formic acid-methanol extract. Taxifolin was not detected in the
dark brown finger millet (DBFM) extract which, however, was found in the brown finger millet
(BFM) extract. Malting for 24 h decreased the taxifolin content of the BFM extract to the point of
non-detection; taxifolin, however, was detected in commensurable amounts in sorghum. Unlike the
BFM extract, an increase in the taxifolin content of the sorghum extract was noted at 24 h of malting,
but beyond this period, there was no significant change. Protocatechuic acid was the only phenolic
acid detected in the malt samples. A decrease in total individual phenolic compounds for the DBFM
extract was observed for up to 96 h of malting, particularly for protocatechuic acid (7.27 to 4.38 µg/g)
and epicatechin (16.18 to 11.34 µg/g) (Table 2). Decreases were also observed in the total individual
phenolic compounds of BFM and sorghum malt extracts at 24 and 48 h of malting; these later showed
increases at 72 and 96 h of malting for protocatechuic acid, catechin, and epicatechin.
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Table 1. Retention time and MS characteristics of phenolic compounds identified in finger millet
and sorghum.

Extraction
Solvents tR (min) [M − H]−

(m/z)
MS/MS Fragments (Intensity %) Identified

Compounds

15% Formic
acid—methanol

Benzoic acid derivatives
7.87 153 153 (100) Protocatechuic acid

Flavan-3-ols
11.17 289 289 (100), 245 (30), 203 (21), 123 (19), 109 (14) Catechin
13.32 289 289 (100), 245 (40), 203 (31), 137 (40) Epicatechin

Flavononol
17.05 303 303 (100), 285 (11), 236 (9), 191 (4), 175 (5) Taxifolin

1% HCl-methanol

Flavan-3-ols
12.22 289 289 (100), 245 (84), 209 (72), 177(61), 137(47), 109 (37) Catechin

Proanthocyanidins

10.20 575 575 (100) Proanthocyanidin
A1/A2

Flavonols
24.18 303 303 (100) Quercetin

Flavanones
21.88 301 301 (100), 269 (89) Hesperitin

tR = retention time; [M − H]− = negative ionic mode; MS = mass spectra.

Hesperitin was found in a high amount, followed by quercetin for HCl-methanol extracts of the
grain samples. A high amount of hesperitin (1636.9 µg/g) was recorded for the unmalted sorghum
compared to BFM (96.7 µg/g) and DBFM (96.3 µg/g), respectively (Table 2). A decrease in total
individual phenolic compounds was observed after 96 h of malting BFM and sorghum. There was a
decrease in the total individual phenolic compound of DBFM for up to 48 h of malting, beyond which
there was no significant change. Loss of catechin for the finger millet cultivars was observed at 24 h
of malting and at 48 h for sorghum; a similar loss was observed in hesperitin for the 24 h BFM malt
extract. A decrease and loss of hesperitin was observed at 24 h and 48 h for the DBFM malt extract, and
a decrease in quercetin for up to 48 h of malting was observed for DBFM, beyond which there was no
significant change. There was no statistical change in the quercetin content of BFM during the malting
period, while a decrease in quercetin content was observed for up to 96 h of malting for sorghum.
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Table 2. Changes in contents (µg/g) of phenolic compounds in formic acid and HCl-methanol extracts of the cereal grain samples.

Grains/Compounds

Malting Period (h)

15% Formic Acid-Methanol 1% HCl-Methanol

0 24 48 72 96 0 24 48 72 96

Dark brown finger millet
PA 7.3 ± 0.1 a 6.7 ± 0.2 b 5.9 ± 0.0 c 4.9 ± 0.2 d 4.4 ± 0.1 e Nd Nd Nd Nd Nd
CA 25.9 ± 0.4 a 24.8 ± 0.6 a 25.0 ± 0.5 a 23.2 ± 0.6 b 22.1 ± 0.0 b 10.4 ± 0.6 a Nd Nd Nd Nd

ECA 16.2 ± 0.1 a 14.7 ± 0.3 b 13.8 ± 0.3 b 11.5 ± 0.9 c 11.3 ± 0.2 c Nd Nd Nd Nd Nd
QE Nd Nd Nd Nd Nd 46.7 ± 2.9 a 41.7 ± 1.3 b 23.3 ± 1.6 c 25.1 ± 2.8 c 27.8 ± 1.9 c

Hp Nd Nd Nd Nd Nd 96.3 ± 13.8 a 9.2 ± 3.7 b Nd Nd Nd
PAC A1 Nd Nd Nd Nd Nd Nd Nd Nd Nd Nd
PAC A2 Nd Nd Nd Nd Nd Nd Nd Nd Nd Nd

Total 49.4 ± 0.6 46.2 ± 1.1 44.7 ± 0.8 39.6 ± 1.7 37.8 ± 0.3 153.4 ± 17.3 50.9 ± 5.0 23.3 ± 1.6 25.1 ± 2.8 27.8 ± 1.9

Brown finger millet
PA 14.8 ± 0.0 a 4.3 ± 0.1 b 2.8 ± 0.0 c 4.7 ± 0.1 d 4.6 ± 0.2 d Nd Nd Nd Nd Nd
CA 27.9 ± 0.3 a 20.7 ± 0.4 b 17.9 ± 0.4 c 20.9 ± 0.1 b 21.9 ± 0.0 d 1.4 ± 0.0 a Nd Nd Nd Nd

ECA 17.4 ± 0.8 a 9.8 ± 0.4 b 7.7 ± 0.1 c 10.4 ± 0.2 b 10.4 ± 0.1 b Nd Nd Nd Nd Nd
QE Nd Nd Nd Nd Nd 66.2 ± 4.4 a 54.2 ± 1.8 a 43.6 ± 4.9 a 42.1 ± 2.4 a 38.9 ± 5.7 a

TX 0.4 ± 0.3 a 0.11 ± 0.03 a Nd Nd Nd Nd Nd Nd Nd Nd
Hp Nd Nd Nd Nd Nd 96.7 ± 35.7 a Nd Nd Nd Nd

PAC A1 Nd Nd Nd Nd Nd Nd Nd Nd Nd Nd
PAC A2 Nd Nd Nd Nd Nd Nd Nd Nd Nd Nd

Total 60.5 ± 1.4 34.9 ± 0.9 28.4 ± 0.5 36.00 ± 0.40 36.9 ± 0.3 164.3 ± 40.1 54.2 ± 1.8 43.6 ± 4.9 42.1 ± 2.4 a 38.9 ± 5.7 a

Sorghum
PA 5.0 ± 0.5 a 2.1 ± 0.0 b 1.9 ± 0.0 b 3.2 ± 0.03 c 3.2 ± 0.1 c Nd Nd Nd Nd Nd
CA 0.6 ± 0.0 a 0.3 ± 0.0 b 0.3 ± 0.0 b 0.3 ± 0.01 b,c 0.4 ± 0.0 c 24.6 ± 5.8 a 9.2 ± 2.3 b Nd Nd Nd

ECA 2.9 ± 0.2 a 3.9 ± 0.0 b,d 3.8 ± 0.0 b 4.4 ± 0.08 c 4.3 ± 0.0 c,d Nd Nd Nd Nd Nd
QE Nd Nd Nd Nd Nd 84.9 ± 5.6 a 63.4 ± 1.7 b 41.9 ± 3.5 c 37.0 ± 1.9 c 23.1 ± 1.9 d

TX 3.4 ± 0.9 a 4.5 ± 1.2 b,c 4.1 ± 1.0 b 4.7 ± 0.7 b,c 4.6 ± 0.7 b,c Nd Nd Nd Nd Nd
Hp Nd Nd Nd Nd Nd 1636.9 ± 241.4 a 1210.0 ± 256.0 b 244.5 ± 87.8 c 52.50 ± 15.2 d 32.9± 8.4 e

PAC A1 Nd Nd Nd Nd Nd 22.1 ± 3.3 a 13.5 ± 8.3 a Nd Nd Nd
PAC A2 Nd Nd Nd Nd Nd 26.9 ± 4.5 a 20.5 ± 6.8 a 4.2 ± 0.0 b Nd Nd

Total 8.5 ± 0.7 6.3 ± 0.0 6.0 ± 0.0 7.9 ± 0.12 7.9 ± 0.1 1795.4 ± 260.6 1316.6 ± 275.1 290.6 ± 91.3 89.5 ± 17.1 56.0 ± 10.3

PA, protocatechuic acid; CA, (+)-catechin; ECA, (−)-epicatechin; QE, quercetin; TX, taxifolin; Hp, hesperitin; PAC A1, proanthocyanidin A1; PAC A2, proanthocyanidin A2; nd, not detected;
values given are the mean of triplicate experiments; mean values in a row with different superscripts are significantly different at p < 0.05.
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2.2. Total Phenolic and Flavonoid Content of the Finger Millet and Sorghum Grain Varieties

The total phenolic content (TPC) of the unmalted and malted finger millet and sorghum samples is
presented in Table 3. The TPC of DBFM, BFM, and sorghum samples ranged from 3.90–4.68, 4.41–7.09,
and 17.23–19.26 mg GAE/g, respectively. The sorghum had higher TPC compared to the finger millet
cultivars. A statistically insignificant (p > 0.05) increase in the TPC of sorghum was noted at 24 h of
malting, which was not significantly different for other malting periods. A similar observation was
noted for the DBFM extract; however, for the BFM extract, a significant decrease in TPC was observed
at 24 and 48 h of malting, which later increased and remained constant, up to 96 h of malting.

Table 3. Effect of malting period on total phenolic and total flavonoid content of finger millet and
sorghum extracts obtained using 1% HCl-methanol.

Total Phenolic Content (mg GAE/g)

Grain Samples 0 24 h 48 h 72 h 96 h

Dark brown finger millet 4.42 ± 0.30 a,z 4.68 ± 0.00 a,y 4.64 ± 0.14 a,y 3.90 ± 0.41 a,z 4.33 ± 0.22 a,y

Brown finger millet 7.09 ± 0.49 a,y 5.39 ± 0.05 b,y 4.41 ± 0.16 c,y 5.22 ± 0.36 b,c,y 5.02 ± 0.14 b,c,y

Sorghum 17.23 ± 1.09 a,x 18.92 ± 2.27 a,x 18.56 ± 0.47 a,x 17.54 ± 0.38 a,x 19.26 ± 0.13 a,x

Total Flavonoid Content (mg QE/g)
Dark brown finger millet 0.92 ± 0.15 a,y 0.95 ± 0.07 a,y 0.66 ± 0.07 a,b,y 0.72 ± 0.07 a,b,y 0.35 ± 0.19 b,y

Brown finger millet 5.45 ± 0.27 a,y 2.98 ± 0.33 b,y 2.01 ± 0.15 c,y 1.25 ± 0.17 d,y 2.03 ± 0.18 c,y

Sorghum 22.21 ± 3.49 a,x 22.15 ± 3.37 a,x 27.77 ± 1.56 a,x 28.37 ± 2.99 a,x 25.29 ± 2.28 a,x

a,b,c Mean within each row for each group not followed by the same superscript is significantly different (p < 0.05).
x,y,z Mean within each column for each group not followed by the same superscript is significantly different (p < 0.05).

The total flavonoid content (TFC) of the finger millet and sorghum samples is presented in Table 3,
and it ranged from 0.35–0.95 mg QE/g in DBFM, 1.25–5.45 mg QE/g in BFM, and 22.15–28.37 mg
QE/g in sorghum. Malting did not result in any significant change (p > 0.05) in the TFC of sorghum;
however, a four-fold decrease in the TFC of BFM malt was observed at 24 h up to 72 h, which later
increased at 96 h of malting. A slight increase in TFC was observed at 24 h for DBFM malt, which later
decreased and remained constant for up to 96 h of malting. Generally, the TPC and TFC were found to
concentrate at 24 h malt of the samples.

2.3. DPPH (2,2-Diphenyl-1-picrylhydrazyl) Free Radical Scavenging Activity of the Finger Millet and
Sorghum Grain Varieties

The unmalted and malted grain samples showed DPPH radical scavenging activity which ranged
from 46.79–70.16% in DBFM, 48.05–60.82% in BFM, and 54.73–65.89% in sorghum (Table 4). Malting did
not result in a significant change (p > 0.05) in DPPH radical scavenging activity of BFM and sorghum;
however, increased DPPH radical scavenging activity was observed for the 24 h DBFM malt extract.
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Table 4. Effect of malting period on antioxidant activity of finger millet and sorghum extracts obtained
using 1% HCl-methanol.

DPPH Radical Scavenging Activity (%)

Grain Samples 0 h 24 h 48 h 72 h 96 h

Dark brown finger millet 51.00 ± 3.34 a,x 70.16 ± 2.03 b,z 61.76 ± 3.48 a,c,x 46.79 ± 9.71 c,x 69.16 ± 5.98 a,c,x,z

Brown finger millet 56.60 ± 1.69 a,x 51.29 ± 1.97 a,y 48.05 ± 7.64 a,x 60.82 ± 7.64 a,x 48.49 ± 1.46 a,x,y

Sorghum 64.85 ± 8.31 a,x 61.15 ± 2.39 a,x 54.73 ± 1.53 a,x 65.89 ± 5.13 a,x 62.67 ± 6.51 a,x

ABTS (µM TE/g)
Dark brown finger millet 10.32 ± 0.07 a,y 9.92 ± 0.05 b,x 9.93 ± 0.04 b,y 9.78 ± 0.21 b,y 9.84 ± 0.08 b,y

Brown finger millet 9.76 ± 0.10 a,x 9.76 ± 0.15 a,x 10.57 ± 0.02 b,x 10.63 ± 0.11 b,x 10.30 ± 0.05 b,x

Sorghum 9.93 ± 0.11a,b,x 9.79 ± 0.15 b,x 10.23 ± 0.03 a,x 10.02 ± 0.19 ab,x 10.26 ± 0.03 a,x

Iron Reducing Activity
Dark brown finger millet 0.89 ± 0.01 a,y 0.85 ± 0.01 b,y 0.79 ± 0.01 c,z 0.96 ± 0.01 d,y 0.98 ± 0.01 d,x

Brown finger millet 0.99 ± 0.01 a,x 0.92 ± 0.01 b,y 0.94 ± 0.03 a,b,y 0.95 ± 0.02 a,b,y 0.99 ± 0.03 a,x

Sorghum 1.04 ± 0.02 a,x 1.02 ± 0.03 a,x 1.01 ± 0.02 a,x 1.02 ± 0.01 a,x 1.01 ± 0.01 a,x

a,b,c Mean within each row for each group not followed by the same superscript is significantly different (p < 0.05).
x,y,z Mean within each column for each group not followed by the same superscript is significantly different (p < 0.05).

2.4. ABTS (2′-Azinobis-3-ethylbenzthiazoline-6-sulfonic acid) Radical Scavenging Activity of the Finger Millet
and Sorghum Grain Varieties

The antioxidant capacity of finger millet and sorghum malt determined by the ABTS radical
cation ranged from 9.78–10.32 µM TE/g in DBFM, 9.76–10.63 µM TE/g in BFM, and 9.79–10.26 µM
TE/g in sorghum (Table 4). Malting for 24 h resulted in a significant (p < 0.05) decrease in the ABTS
radical quenching activity of DBFM and sorghum malt, which remained constant up to 96 h for DBFM
malt. Increased ABTS radical quenching activity was noted at 48 h in sorghum malt, which remained
constant up to 96 h of malting. No significant change in ABTS radical quenching activity was observed
for 24 h BFM malt; however, an increase was noted at 48 h BFM malt, which remained constant up to
96 h.

2.5. Ferric Reducing Antioxidant Activity of the Finger Millet and Sorghum Grain Varieties

The finger millet and sorghum malt showed iron reducing activity which ranged from
0.7975–0.9798 in DBFM, 0.9199–0.9961 in BFM, and 1.0101–1.0375 in sorghum (Table 4).
Sorghum showed a higher iron reducing activity compared to the finger millet cultivars, both for the
unmalted and malted grains. Increased iron reducing activity with malting time was observed for up
to 96 h BFM malt. A decrease in iron reducing activity was observed within 24 and 48 h of DBFM malt,
which later increased significantly at 96 h of malting.

3. Discussion

Literature on the extraction method used for finger millet polyphenols so far, has shown that most
of the studies used 1% HCl in methanol for extraction of the polyphenols with different periods
and modes of extraction [17–20,23–28]. In a study of Chethan and Malleshi [28], it was found
that the extractability of finger millet polyphenols with different polar solvents varied considerably
and acidifying the organic solvents improved the levels of the extraction. It was noted that 1%
HCl-methanol was the most suitable among the different solvents tested for the extraction of the
polyphenols. To the best of our knowledge, no other acidifying agent has been used in the extraction of
finger millet polyphenols. Formic acid was tested based on its wide application in the profiling of fruit
and wine polyphenols, which are predominantly flavonoids. The results show that the extraction of
finger millet and sorghum malt flour with formic acid affected the phenolic composition of the grains.

Studies on malted finger millet phenolics have demonstrated the presence of a variety of phenolic
acids for aqueous solvents acidified with 1% HCl using HPLC [17,19,20]. The results of this study
revealed the presence of more flavonoids than phenolic acids in finger millet malt than previously
reported. Surprisingly, hesperitin, which is an important dietary flavonoid present in fruits, was
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found in the finger millet extract obtained using 1% HCl-methanol. The finger millet extract obtained
using formic acid-methanol, however, had more flavonoids compared to the extracts obtained with
1% HCl-methanol. Ivanova et al. [29] observed that the use of a lower concentration of HCl for the
extraction of phenolic compounds has a protective effect on flavonoids. It was observed that 0.1%
HCl does not cause degradation as much as 1% HCl, which induces hydrolysis or the degradation
of flavonoids, hence it is suggested that formic acid facilitates the isolation of flavonoids of finger
millet better than hydrochloric acid. In this regard, further studies are required to investigate the
effect of different acidification and instruments of extraction in order to further describe the phenolic
composition of finger millet.

A decrease in the phenolic compounds for the finger millet and sorghum samples was observed,
particularly at 24 and 48 h of malting. A decrease and complete loss of hesperitin and taxifolin at
and after 24 h of malting was noted. The changes can be attributed to degradation or bioconversion
of the phenolic compound to other active or less active forms during malting, as well as the loss of
hydrolysed phenolic compounds through leaching during steeping and germination. The findings
agree with other studies where phenolic compounds were observed to be either destroyed or converted
to other forms during the germination of cereal grains [19,20]. Conversely, increases were noted at
72 and 96 h of malting, which varied for the finger millet and sorghum cultivars. A similar observation
was reported for finger millet malt [17,19,20]. The observed increase in phenolic compounds of the
malt samples could be due to the increased activity of induced endogenous enzymes on various bound
or conjugated phenolic compounds and/or the bioconversion of phenolic compounds to other forms.
Furthermore, varietal differences could also have affected the changes in the phenolic compounds of
finger millet and sorghum malt.

The total phenolic and flavonoid content of the finger millet is comparable to the report of
Hithamani and Srinivasan [19], who found 10.2 and 5.54 mg/g for total phenolic and total flavonoid
content in finger millet, respectively. The total phenolic and flavonoid content of the finger millet
cultivars was found to concentrate in the 24 h malt compared to the other malting periods. Changes in
total polyphenols of cereal grains are known to result from a variety of enzymatic hydrolysis,
bioconversion, and oxidative degradation during processing, such as soaking, germination, roasting,
and fermentation. The decrease in total phenolic and total flavonoid contents noted within 48 h to
96 h of malting of the finger millet cultivars could be attributed to the loss of hydrolysed phenolic
compounds during the germination periods.

The antioxidant activity of finger millet has been studied by several researchers; however,
information on the antioxidant activity of malted finger millet is scarce [19,25]. The finger millet and
sorghum malt exhibited DPPH, ABTS radical scavenging, and iron reducing activities. Malting did not
result in any significant (p < 0.05) increase in DPPH radical scavenging activity for BFM and sorghum,
except for DBFM, which was significantly (p < 0.05) higher at 24 h of malting. Similar changes were
noted in the report of Subba Rao and Muralikrishna [19]. In their study, high antioxidant activity
was noted for bound phenolic acids of 24 h malted finger millet compared to other malting periods.
A concentration-dependent DPPH radical scavenging activity was not observed, as expected, for
the sorghum, despite its higher total polyphenol content compared to the finger millet cultivars.
The malting process did not bring about any significant change in ABTS radical scavenging activity
of the malt samples beyond 48 h of malting. An increased iron reducing activity was observed for
the finger millet cultivars, which was significantly (p < 0.05) higher at 96 h of malting. A similar
finding was reported by Subba Rao and Muralikrishna [19], where high antioxidant activity for free
phenolic acids was recorded for 96 h finger millet malt. In a whole grain cereal, there are different
substances that contribute directly or indirectly to the antioxidant activities. Polyphenol content of
plant foods is well known to have a parallel effect on the antioxidant activity of plant foods, whereas
vitamin E and minerals, such as iron, zinc, manganese, selenium, and copper, act as a co-factor in
antioxidant enzymes; and sulphur-containing amino acids, methionine and cysteine, are precursors
of glutathione, an endogenous antioxidant [11,30]. The changes noted in the antioxidant activities of
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the finger millet and sorghum malt, could thus be attributed to the total phenolic content, released
minerals, and other organic compounds with an antioxidant effect. The observed changes in the iron
reducing activity of the finger millet cultivars could not be entirely attributed to the total polyphenol
content, but also to other components of the malt with antioxidant properties. The finding supports
the fact that a high total phenolic content does not necessarily translate into high antioxidant activity,
but is a result of a synergy between total phenols, released organic components, and minerals with
antioxidant properties.

4. Materials and Methods

4.1. Cereal Grain Samples

Local cultivars of finger millet (FM), brown (BFM) and dark brown (DBFM), as well as
red-coloured sorghum, were purchased from retail outlets in Thohoyandou, Limpopo Province,
South Africa. The reagents Folin-Ciocalteu’s, gallic acid and quercetin standards, 2,2-diphenyl-1-
picrylhydrazyl (DPPH), and 2′-azinobis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS) were purchased
from Rochelle Chemicals, Johannesburg, South Africa. Solvents and phenolic standards used were of
analytical ultra-performance liquid chromatography mass spectrometer (UPLC-MS) grade.

4.2. Malting of the Cereal Grain Varieties

The finger millet and sorghum cultivars were malted according to the method of Chethan et al. [17].
Two (2) varieties of finger millet, namely brown finger millet (BFM) and dark brown finger millet
(DBFM), were used in this study, while sorghum was used an as external reference. Sorghum was used
as an external reference in the present study in an attempt to prepare a comparable finger millet malt
flour that could be used in malted and fermented foods and beverages, particularly in Southern Africa.
The food grains were cleaned before use. One hundred gram (100 g) portions of the finger millet and
sorghum samples were initially soaked in water for 24 h at 25 ◦C in a growth chamber; the grains were
spread on a clean cheese cloth and kept moist by sprinkling water periodically at intervals of 24 h.
The sprouted grains were kilned for 8 h at 50 ◦C, after which a characteristic malt aroma was obtained.
The kilned grains were milled to fine flour and stored in polyethylene bags at −20 ◦C until analysis.

4.3. Preparation of Polyphenol Extracts

One gram (1 g) of the cereal samples was refluxed in an ultrasonic bath with 15 mL of methanol
containing 15% formic acid for 1 h at 40 ◦C. The extracts were centrifuged at 13,000 rpm for 6 min
and then pipetted into vials and stored at 4 ◦C before analysis. Extraction was also done using 20 mL
of methanol containing 1% HCl for 2 h at 60 ± 5 ◦C in a water bath. The mixtures were centrifuged
at 5000 rpm for 20 min and the supernatants were separated and analysed for individual phenolic
compounds. Finger millet and sorghum extracts obtained using 1% HCl-methanol were used for
evaluating the total polyphenol content and antioxidant activities.

4.4. Identification and Quantification of Phenolic Compounds of the Cereal Grain Varieties

Separation and identification of the phenolic compounds in the extracts were carried out using a
Waters Synapt G2 quadrupole time-of-flight mass spectrometer (MS). It was fitted with a Waters Ultra
performance liquid chromatograph (UPLC) and photo diode array detection. Separation was achieved
on a Waters BEH C18, 2.1 × 100 mm column with 1.7 µm particles. A gradient was applied using
0.1% formic acid (solvent A) and acetonitrile containing 0.1% formic acid (solvent B). The gradient
started at 100% solvent A for 1 min and changed to 28% B over 22 min in a linear way. It then
went to 40% B over 50 s and a wash step of 1.5 min at 100% B, followed by re-equilibration to initial
conditions for 4 min. The flow rate was 0.3 mL/min and the column was kept at 55 ◦C. The injection
volume was 2 µL. Data was acquired in MSE mode, which consisted of a low collision energy scan
(6 V) from m/z 150 to 1500 and a high collision energy scan, from m/z 40 to 1500. The high collision



Molecules 2018, 23, 2091 9 of 12

energy scan was done using a collision energy ramp of 30–60 V. The photo diode array detector was
set to scan from 220–600 nm. The mass spectrometer was optimized for the best sensitivity, with a
cone voltage of 15 V, the desolvation gas was nitrogen at 650 L/h, and a desolvation temperature of
275 ◦C was employed. The instrument was operated with an electrospray ionization probe in the
negative mode. Sodium formate was used for calibration and leucine encephalin was infused in the
background as lock mass for accurate mass determination. Individual peaks and phenolic compounds
were identified by comparing the retention time and spectra of each peak with known standards under
identical conditions.

4.5. Total Phenolic Content of the Cereal Grain Varieties

Total phenolic content of the sample extracts were determined according to the method of
Singleton et al. [31]. Briefly, 0.1 mL of the acidified methanolic extract was mixed with 5 mL distilled
water in a 50 mL volumetric flask. Folin-Ciocalteu’s reagent (1:2 dilution with water) (2.5 mL) and
7.5 mL 15% sodium carbonate solution was added, mixed thoroughly, made up to 50 mL, and allowed
to react for 30 min. The absorbance of the reaction mixture was read at 760 nm with a 96 well microplate
spectrophotometer. A calibration curve was prepared using a standard solution of gallic acid and the
result was expressed as mg of gallic acid equivalent (GAE), per g of the sample.

4.6. Total Flavonoid Content of the Cereal Grain Varieties

Total flavonoid content was determined spectrophotometrically according to Zhishen et al. [32].
The extract (0.1 mL) was mixed with 4.9 mL distilled water and 0.3 mL 5% (w/v) NaNO2 was added.
After 5 min, 0.3 mL 10% (w/v) AlCl3 and at 6 min, 2 mL 1 M NaOH, were added, and immediately, the
volume was made up to 10 mL with distilled water. The mixture was vortexed and the absorbance
was read at 510 nm. A calibration curve was prepared using quercetin as the standard. The result was
expressed as mg quercetin equivalent (QE) per g of the sample.

4.7. DPPH (2,2-Diphenyl-1-picrylhydrazyl) Free Radical Scavenging Activity of the Cereal Grain Varieties

The DPPH radical scavenging activity was determined according to the method of
De Ancos et al. [33]. An aliquot (10 µL) of the acidified methanolic extract was mixed with distilled
water (90 µL) and 3.9 mL of methanolic 0.1 mM DPPH solution. The mixture was thoroughly vortexed
and kept in the dark for 30 min, and the absorbance was read at 515 nm. The result was expressed
as percentage inhibition of the DPPH radical. The percentage of inhibition of the DPPH radical was
calculated according to the following equation:

% Inhibition of DPPH = [Abs control − Abs sample/Abs control] × 100

where Abs control is the absorbance of the DPPH solution without the extract.

4.8. ABTS (2′-Azinobis-3-ethylbenzthiazoline-6-sulfonic acid) Radical Scavenging Activity of the Finger Millet
and Sorghum Grain Varieties

The ABTS radical scavenging activity of the unmalted and malted samples was determined
according to the methods of Arnao et al. [34] and Thaipong et al. [35], with slight modification.
Equal volumes of 7.4 mM 2,2′-azinobis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS) and 2.6 mM
potassium persulfate, both prepared in distilled water, were mixed and allowed to react for 12 h,
at room temperature, in the dark, to obtain an ABTS radical cation. The solution was then diluted
by mixing 1 mL ABTS solution with 60 mL of pH 7.4 phosphate buffer containing 0.1 M NaOH to
obtain an initial absorbance of 0.098 ± 0.00 at 734 nm. Fresh extracts (150 µL) of the cereal samples
were allowed to react with 2850 µL of the ABTS•+ solution for 5 min and the absorbance was read
at 734 nm. The standard curve was prepared by dissolving Trolox in phosphate buffer (pH 7.4), and
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reacting it with 2850 µL of the ABTS•+ solution for 5 min. The results were expressed as µM Trolox
equivalent (TE)/g.

4.9. Ferric Reducing Antioxidant Power of the Cereal Grain Varieties

The reducing power assay was determined according to the method of Oyaizu [36]. Briefly, 100 µL
of the extract was placed in a test tube and the volume was adjusted to 1 mL with methanol. Phosphate
buffer (2.5 mL 0.2 M, pH 6.6) and 2.5 mL 1% potassium ferricyanide were added to the tube and
vortexed. The mixture was left for 20 min at 50 ◦C, in a water bath. After incubation, 2.5 mL 10% (w/v)
trichloroacetic acid was added and the mixture was centrifuged at 5000 rpm for 20 min. Then, 2.5 mL
of the supernatant was taken and mixed with 2.5 mL distilled water and 0.5 mL 0.1% (w/v) ferric
chloride in a test tube, and the absorbance was measured at 700 nm. A higher absorbance value
indicates a higher reducing power.

4.10. Statistical Analysis

Data obtained were subjected to a one way ANOVA by Duncan’s multiple comparison test using
SPSS version 24.0 (SPSS Inc., Chicago, IL, USA). The mean values were considered to be statistically
significant at p < 0.05.

5. Conclusions

UPLC-MS data for the acidification methods used for extraction of the finger millet polyphenols
show more flavonoids in finger millet malt than was previously reported. The presence of hesperitin in
finger millet was established in the study. Decrease and loss of hesperitin and taxifolin were observed
with malting time, whereas catechin, epicatechin, quercetin, and protocatechuic acid showed increases
at 72 and 96 h of malting, which is beyond the 48 h of malting commonly used in finger millet malt
preparation. Total polyphenol content was found to concentrate in the 24 h malt samples. The finger
millet malt exhibited antioxidant activities, which increased with malting period for the iron reducing
activity. Varietal differences were found to play important roles in how malting affects the phenolic
compounds of the cereal grains. The data presented further substantiate the health associated claims
of finger millet consumption with regards to its flavonoid components, and also on malting conditions
that could be useful in enhancing important phenolic compounds and antioxidant activity of the grain
for food, beverage, and therapeutic preparations.
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