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Abstract: In this study, quaternary-ammonium-functionalized metal–organic frameworks (MOFs)
Et-N-Cu(BDC-NH2)(DMF), were prepared, characterized, and applied for the highly effective removal
of metal cyanide complexes, including Pd(CN)4

2−, Co(CN)6
3−, and Fe(CN)6

3−. Batch studies were
carried out, and the maximum adsorption capacities of Pd(II), Co(III), and Fe(III) reached 172.9,
101.0, and 102.6, respectively. Adsorption was rapid, and equilibrium was established within 30 min.
Et-N-Cu(BDC-NH2)(DMF) exhibited high thermal and chemical stability. Furthermore, absorbed
Pd(CN)4

2− was selectively recovered by two-step elution. First, Co(CN)6
3− and Fe(CN)6

3− were
eluted with a 1.5 mol L−1 KCl solution. Elution rates of Co(CN)6

3− and Fe(CN)6
3− were greater than

98.0%, whereas the elution percentage of Pd(CN)4
2− was less than 2.0%. Second, >97.0% Pd(CN)4

2−

on the loaded MOFs was eluted using a 2.0 mol L−1 KI solution. The recovery rate of Pd(CN)4
2− was

greater than 91.0% after five testing cycles. Adsorption isotherms, kinetics models, and adsorption
thermodynamics of Pd(CN)4

2− on Et-N-Cu(BDC-NH2) (DMF) were also systematically investigated.
The Et-N-Cu(BDC-NH2) (DMF) absorbent exhibited a rapid, excellent ability for the adsorption of
metal cyanide complexes.

Keywords: metal cyanide complexes; removal; palladium cyanide recovery; metal-organic framework

1. Introduction

Cyanide is a highly toxic substance, and long-term exposure to low doses of cyanide can cause
a significant increase in risk for skin cancer in humans, dyspnea, tachycardia, and unconsciousness.
The United States, Germany, and Switzerland have proposed that the concentration of cyanide
discharged into the environment should be limited to less than or equal to 0.2 mg L−1 [1].
Heap cyanidation has been extensively used in hydrometallurgy industries. For example,
cyanide-contaminated water containing Pd(CN)4

2−, Co(CN)6
3−, and Fe(CN)6

3− in tailing storage
facilities in the western Yunnan Province in China requires treatment [2]. Cyanide effluents from
metallurgy industries have been a serious threat to the environment and public health. To protect
ecological systems and human health, cyanide-containing wastewater must be treated before it is
discharged into the environment. Typically, cyanides are classified as free cyanide (HCN, CN−) and
metal cyanide complexes. Almost all the metal cyanide complexes are highly toxic to a majority of life
forms. Noteworthily, biological degradation has been proven to be an environmentally benign and
economically viable process for the treatment of free cyanide [3]. However, metal cyanide complexes
exhibit a wide range of chemical and biological stabilities compared to free cyanide ions; therefore,
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they cannot be treated by biological degradation. On 30 January 2000, a dam containing toxic waste
material, near Danube River in Romania, collapsed and released waste water heavily contaminated
with cyanide. Moreover, metal cyanide complexes still have been reportedly observed at 2000 km
away in the mouth of the Danube River [4].

In general, metal cyanide complexes are removed from aqueous solutions by chemical oxidation
methods [5], thermal decomposition [6,7], and adsorption [8]. Slow reaction rates are observed for
alkaline chlorination–oxidation, as well as cause secondary pollution to the environment. Thermal
hydrolysis incurs high cost because of high pressure and high temperature requirements. Among these
processes, adsorption is typically found to be the most effective approach for removing metal cyanide
complexes because of its cost-effectiveness, convenience, and ecological security. Conventional
adsorbents used for the removal of metal cyanide complexes include activated carbon and polymer
resin [9,10]. On account of their low adsorption capacity (activated carbon), slow sorption kinetics,
and relatively low thermal and chemical stability (polymer resins), their further applications on
the industrial scale are limited. Thus far, the removal of metal cyanides using activated carbon or
polymer resin is still at the laboratory stage [11,12]. Therefore, design and development of new sorbent
materials is imperative for the highly effective adsorption and removal of metal cyanide complexes
from wastewater.

In the last few years, metal–organic frameworks (MOFs) have attracted significant attention for
the removal of contaminants because of their high porosity, large surface area, thermal or chemical
stability, hydrophilic–lipophilic matrix, low value, and facile modification [13,14]. Specific functional
groups can be introduced into the MOF matrix during synthesis to alter their sorption properties
because of the combination of a highly ordered porous structure and various binding groups. Modified
MOFs exhibit an excellent ability to remove various hazardous contaminants present in water, such as
metal ions [15–21], phosphates [22,23], arsenic [24], and organic pollutants [25,26]. MOF materials
have been considered as the next-generation adsorbents for the effective treatment of wastewater [27].

Furthermore, quaternary ammonium groups have been known to enhance the uptake of metal
cyanide complexes [28–30]. As a result, the advantages of quaternary ammonium functional groups
and the MOF matrix were well integrated herein. Therefore, quaternary-ammonium-functionalized
MOFs can be expected to exhibit excellent adsorption properties for metal cyanide complexes. To the
best of our knowledge, the use of quaternary ammonium functional groups grafted onto an MOF
matrix to remove metal cyanide complexes from aqueous solutions has never been reported so far.

Among several MOFs, carboxylate multidentate ligand frameworks have been previously
reported to exhibit high thermal and chemical stability [31–36]. In this study, Cu(BDC-NH2)(DMF)
(BDC = terephthalate, DMF = N,N-dimethylformamide) was selected as the matrix for modification.
The amine group on copper-based MOFs provided a platform for the introduction of hydrophobic
quaternary ammonium groups into the framework of the copper-based MOFs. Quaternary ammonium
was grafted onto copper-based MOFs for constructing a new adsorbent for the highly effective removal
of metal cyanide complexes from aqueous solutions. Physicochemical properties of adsorbents
were investigated by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis
(TGA), scanning electron microscopy (SEM), X-ray diffraction (XRD), and N2 adsorption–desorption
experiments. The sorption performance of activated carbon and polymer resin for metal cyanide
was compared. Furthermore, the selective elution of palladium cyanide from the loaded adsorbent
was also examined, which was based on a two-step elution process, and palladium cyanide was
selectively recovered using a mixed solution of Co(CN)6

3−, Pd(CN)4
2−, and Fe(CN)6

3−. Based on the
experimental results and economic and environmental benefits, a novel process for the highly effective
removal of metal cyanide complexes from cyanide-contaminated water was proposed. Moreover,
thermodynamic parameters, adsorption isotherms, and kinetic models for palladium cyanide were
also investigated. In addition, the selective recovery of palladium as a valuable by-product from
cyanide wastewater was also expected.
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2. Results and Discussion

2.1. Characterization

2.1.1. FTIR Spectra

Figure 1 shows the FTIR spectra of Cu(BDC-NH2)(DMF), Et-N-Cu(BDC-NH2) (DMF), and
Et-N-Cu(BDC-NH2)(DMF)-Pd(CN)4

2−. Double peaks are observed at 3476 and 3364 cm−1,
corresponding to the -NH2 stretching vibration (Figure 1a) [37]. A sharp peak at 1665 cm−1 is
ascribed to the C=O vibration of DMF [38]. The peak observed at 1613 cm−1 corresponds to the
N-H bending vibration [39]. A sharp peak at 1584 cm−1 is attributed to the C=O bonding in the
carboxylates [23], while those observed at 1337 and 1259 cm−1 correspond to the C-N stretching of
aromatic amines [37]. Compared to those observed for pristine Cu(BDC-NH2)(DMF), the double
peaks observed at 3476 and 3364 cm−1 became weak, while a small peak at 1337 cm−1 disappeared
(Figure 1b). Furthermore, a new peak at 2970 cm−1 and a small peak at 2931 cm−1 are attributed to C-H
stretching and bending of alkyl chain groups [40], indicating successful introduction of the CH3CH2-
group into the Cu(BDC-NH2)(DMF) framework, and aromatic amines are successfully converted into
quaternary ammonium group [41]. Quaternary ammonium groups provided large amount of active
sites, which were favorable for the removal of metal cyanide complexes. Compared to those observed
for Et-N-Cu(BDC-NH2)(DMF) (Figure 1b), characteristic peaks observed for the adsorbed species
of Et-N-Cu(BDC-NH2)(DMF)-Pd(CN)4

2− do not exhibit remarkable shifts (Figure 1c), while new
absorption peaks corresponding to the C≡N stretching vibration of metal cyanide complexes are
observed at 2196 cm−1 [42]. The FTIR results also confirm the successful adsorption of metal cyanide
complexes on Et-N-Cu(BDC-NH2)(DMF).
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Figure 1. FT-IR spectra of (a) Cu(BDC-NH2)(DMF), (b) Et-N-Cu(BDC-NH2) (DMF) and (c)
Et-N-Cu(BDC-NH2)(DMF)-Pd(CN)4

2−.

2.1.2. XRD spectra

The XRD patterns of as-synthesized Cu(BDC)(DMF), Cu(BDC-NH2)(DMF), and Et-N-Cu(BDC-NH2)
(DMF) are illustrated in Figure 2. The main characteristic diffraction peaks of the as-synthesized
Cu(BDC)(DMF) crystals appeared at 2θ = 10.14◦, 12.04◦, 16.84◦,17.14◦, 20.38◦, 20.67◦ and
24.80◦, which is in good agreement with those simulated from the single crystal structure of
Cu(BDC)(DMF) [43]. The XRD pattern of Cu(BDC)(DMF) revealed well defined double peak at
2θ = 16.84◦ and 17.14◦. In contrast to the XRD patterns of Cu(BDC)(DMF), Cu(BDC-NH2)(DMF)
and Et-N-Cu(BDC-NH2)(DMF) exhibited the appearance of only one peak at 2θ = 16.84◦ and
16.82◦, respectively. Another double peak of Cu(BDC)(DMF) was observed at 2θ = 20.38◦ and
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20.67◦, while one peak at 2θ = 20.70◦ and 20.68◦ was observed for Cu(BDC-NH2)(DMF) and
Et-N-Cu(BDC-NH2)(DMF), respectively. Furthermore, the main characteristic diffraction peaks
of Cu(BDC-NH2)(DMF) crystals appeared at 2θ = 10.30◦, 11.86◦, 16.84◦, 20.70◦, and 24.76◦

(Figure 2b), which exhibited slight differences from those of Cu(BDC)(DMF). Compared to that
of Cu(BDC-NH2)(DMF), 2θ of Et-N-Cu(BDC-NH2)(DMF) moved slightly toward small diffraction
angles (Figure 2c), thus confirming that ligand functionalization does not change the original crystal
structure of Cu(BDC-NH2)(DMF) [44,45]. Figure 2 demonstrates that both Cu(BDC-NH2)(DMF) and
Et-N-Cu(BDC-NH2)(DMF) have very similar XRD patterns to that of the reported Cu(BDC)(DMF),
confirming that the pillared three-dimensional structure is retained upon ligand functionalization [46].
Slight difference in the diffractogram was detected probably due to the variation of ligand,
the flexible behavior in Cu(BDC)(DMF) structure, and the non-isotropy during sample preparation [44].
Similar quaternization reaction of the MOFs has also been reported by Wang and co-worker s [47].
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Figure 2. XRD patterns of (a) Cu(BDC)(DMF), (b) Cu(BDC-NH2)(DMF) and (c) Et-N-Cu(BDC-NH2)(DMF).

2.1.3. SEM Analysis

To observe the surface morphology of synthesized Cu(BDC-NH2)(DMF) and Et-N-Cu(BDC-NH2)
(DMF), SEM images were recorded. Figure 3a,b show the SEM images of Cu(BDC-NH2)(DMF)
and Et-N-Cu(BDC-NH2)(DMF), respectively. The Cu(BDC-NH2)(DMF) particles exhibit gyro
geometry with a regular morphology and an average particle size of ~3 µm. Compared to that
observed for pristine Cu(BDC-NH2)(DMF), after the functionalization with quaternary ammonium
group, the morphology of Et-N-Cu(BDC-NH2)(DMF) remained virtually unchanged indicating that
Cu-based MOFs were successfully grafted with quaternary ammonium group without collapsing the
structure [48].
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Figure 3. The SEM images of Cu(BDC-NH2)(DMF) (a1,a2) and Et-N-Cu(BDC-NH2) (DMF) (b1,b2).

2.1.4. TGA

The thermal gravimetric analysis (TGA) spectra of Cu(BDC-NH2)(DMF) and Et-N-Cu(BDC-NH2)
(DMF) are presented in Figure 4. The materials were heated from 8 to 800 ◦C at a heating
rate of 10 ◦C min−1. Based on TG curves, very little difference can be observed between
the behavior of Cu(BDC-NH2)(DMF) and Et-N-Cu(BDC-NH2)(DMF). However, the derivative
thermogravimetric (DTG) results of the two samples exhibit clearly distinct profiles. The DTG
curve of Cu(BDC-NH2)(DMF) shows two well-separated heat signals at 285 (sharp) and 325 ◦C
(broad), corresponding to the decomposition of DMF and the framework of Cu(BDC-NH2)(DMF),
respectively [38,45]. In contrast, decomposition of the Et-N-Cu(BDC-NH2)(DMF) is signified by three
well-separated heat signals at 281, 312, and 348 ◦C. The two broad peaks at 312 and 348◦C extending
temperature range of the crystal structure collapse of Et-N-Cu(BDC-NH2)(DMF), indicating that the
interaction between the quaternary ammonium molecules and the carrier could enhance the thermal
stability of the Cu-MOFs to some extent [48,49]. TGA confirmed that Et-N-Cu(BDC-NH2)(DMF)
possessed good thermal stability.
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Figure 4. TG-DTG curves of Et-N-Cu(BDC-NH2)(DMF)(red) and Cu(BDC-NH2)(DMF)(black).

2.1.5. N2 Adsorption–Desorption Isotherms

Figure 5a shows the N2 adsorption–desorption isotherms of Et-N-Cu(BDC-NH2) (DMF) and
Cu(BDC-NH2)(DMF). The isotherms of both Cu(BDC-NH2)(DMF) and Et-N-Cu(BDC-NH2)(DMF)
are similar to type IV isotherm. The corresponding pore-size distributions are shown in Figure 5b.
As seen in Figure 5b, both meso- and micropores were clearly observed in the Cu(BDC-NH2)(DMF)



Molecules 2018, 23, 2086 6 of 19

and Et-N-Cu(BDC-NH2)(DMF) samples, respectively. Similar micro-/mesopore coexistence in
Cu(BDC-NH2) MOFs had been reported by Morsali and co-workers [45]. Morsali et al. found that
replacing BDC with BDC-NH2, the rate of self-assembly of Cu-MOFs was significantly interfered by
amino groups, which led to the coexistence of micro-/mesopores in the as-synthesized samples. Table 1
summarizes the comparison of surface areas and total pore volume of Et-N-Cu(BDC-NH2)(DMF)
and Cu(BDC-NH2)(DMF) with other Cu-MOFs reported in literature studies. Compared to
Cu(BDC-NH2)(DMF), Et-N-Cu(BDC-NH2)(DMF) exhibited a decrease in both the surface area and
total pore volume. The surface area dropped from 210.6 to 108.24 m2 g−1, while the total pore volume
decreased from 0.37 to 0.30 cm3 g-1. The main reason for this phenomenon was that the pores of the
carrier were partially occupied by the quaternary ammonium groups after modification, inferring that
the quaternary ammonium functional groups existed inside the channels of the framework rather than
outside the surfaces [48]. This result indicated that the quaternary ammonium group was successfully
immobilized onto Cu(BDC-NH2)(DMF) through the quaternization reaction. Similar results have
also been reported by Wang and co-workers [47]. Wang et al. found that quaternization reaction of
the MOFs could significantly decrease their surface areas. Table 1 presents that the surface areas of
the Cu-MOFs using terephthalate (BDC) or BDC-NH2 as ligand is lower than that of the benzene
tricarboxylic acid (BTC) [48,50–53]. The values of the surface area of both Cu(BDC-NH2)(DMF) and
Et-N-Cu(BDC-NH2)(DMF) are in an expected range [52,53]. The difference in the surface areas and pore
size distribution of the Cu-MOFs with different ligands may be attributed to the variation in ligand,
difference of the activated temperature, and the non-isotropy during sample preparation [16,44,45].
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Figure 5. (a) Nitrogen adsorption–desorption isotherm of the prepared Cu(BDC-NH2)(DMF) and
Et-N-Cu(BDC-NH2) (DMF) samples. (b) Pore size distributions derived from NLDFT calculations.

Table 1. Comparison of surface areas and total pore volums of Et-N-Cu(BDC-NH2)(DMF) and
Cu(BDC-NH2)(DMF) with other Cu-MOFs reported in literature studies.

Sample Surface Area of BET (m2 g−1) Total Pore Volume (cm3 g−1) Ref.

Cu-BTC 692–2211 ~0.81 [48,50–52]
Cu(BDC)(DMF) 241–903 ~0.30 [52]

Cu(BDC-NH2)(4,4’-Bipy)0.5 124 - [53]
Cu(BDC-NH2)(DMF) 210.6 0.37 present work

Et-N-Cu(BDC-NH2)(DMF) 108.24 0.30 present work

Remarkably, the specific surface areas of the samples were greater than those of a majority of
the previously reported polymer resins [12,27]. The Et-N-Cu(BDC-NH2)(DMF) provided satisfactory
support for the adsorption of metal cyanide complexes.

2.2. Effects of pH

The equilibrium loadings of Pd(CN)4
2−, Co(CN)6

3−, and Fe(CN)6
3− were examined at various

pH values ranging from 7.0 to 9.0. Experiments were carried out as follows: a volume of Pd(CN)4
2−,
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Co(CN)6
3−, and Fe(CN)6

3− at a concentration of 100 mgL−1 (20 mL) was placed in three conical flasks.
Then, a constant amount of Et-N-Cu(BDC-NH2)(DMF), i.e., 10 mg, was used at a temperature of 25 ◦C,
with an adsorption time of 30 min. With the increase in the pH from 7.0 to 8.0, the equilibrium
adsorption capacities (qe) of Pd(CN)4

2−, Co(CN)6
3−, and Fe(CN)6

3− remained almost constant,
and with further increase in the solution pH, the qe values of Pd(II), Co(III), and Fe(III) significantly
decreased. The capacity for the adsorption of metal cyanide complexes at different pH values possibly
revealed that metal cyanide complexes are adsorbed on MOFs via anion exchange [20]. In this study,
adsorption was controlled at a pH of 7.0.

2.3. Maximum Adsorption Capacities

Tests were carried out using solutions containing only Pd(CN)4
2−, Co(CN)6

3−, or Fe(CN)6
3−

at 25 ◦C. According to a previously reported method [54] the maximum adsorption capacities
of Et-N-Cu(BDC-NH2)(DMF)(6d), Cu(BDC-NH2)(DMF), and granular activated carbon (GAC) for
the metal cyanide complexes were measured. Based on the experimental data shown in Table 2,
Et-N-Cu(BDC-NH2)(DMF) exhibited excellent adsorption performance toward the metal cyanide
complexes compared to GAC and Cu(BDC-NH2)(DMF), possibly corresponding to the strong
interaction between the quaternary ammonium group and the metal cyanide complexes. Quaternary
ammonium grafted on Cu(BDC-NH2)(DMF) provided a larger amount of active sites, and adsorption
was possibly explained as follows:

nM− R3N+I−(S) + Me(CN)m
n−(aq) = (M− R3N)n

+Me(CN)m
n−(s) + nl−(aq) (1)

where M, S, and aq denote the MOF matrix, the Et-N-Cu(BDC-NH2)(DMF) solid surface, and the
aqueous solution, respectively. From Equation (1), the main mechanism for the adsorption of metal
cyanide complexes from aqueous solutions followed an ion-exchange mechanism. In addition,
Van der Waals forces and electrostatic interactions played an important role in the sorption of
metal ions on adsorbents [40]. In contrast, the adsorption of metal cyanide complexes by GAC
and Cu(BDC-NH2)(DMF) mainly depended on Van der Waals forces and electrostatic interactions,
respectively [27,55]. Therefore, compared to GAC and pristine Cu(BDC-NH2)(DMF), higher adsorption
capacities for the metal cyanide complexes were achieved using Et-N-Cu(BDC-NH2) (DMF) as
the adsorbent.

Table 2. The maximum adsorption capacities for the metal cyanide complexes.

Metal Cyanide Complexes qmax, Et-N-Cu(BDC-NH2) (DMF) qmax, Cu(BDC-NH2) (DMF) qmax, GAC

Pd(II) 172.9 37.8 18.2
Co(III) 101.0 13.9 18.1
Fe(III) 102.6 20.6 20.7

2.4. Adsorption Kinetics

Adsorption kinetics of Pd(CN)4
2− on Et-N-Cu(BDC-NH2)(DMF)(6d) were further investigated.

Experiments were carried out using single component solutions at 25 ◦C. Adsorption was rapid,
and equilibrium was established within 30 min. Pseudo-first order, pseudo-second order,
and intra-particle diffusion models were linearized as shown in Equations (2), (3), and (4), respectively,
and fitted to experimental data for the adsorption of Pd(CN)4

2− on Et-N-Cu(BDC-NH2)(DMF).
Table 3 summarizes the model data for Pd(CN)4

2−:

lg
(
qe − qt

)
= lgqe −

k1t
2.303

(2)

t
qt

=
1

k2qe
2 +

t
qe

(3)
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qt = kpt1/2 + C (4)

where, qe and qt represent the loading of Pd(II) at equilibrium and at time t, respectively; k1 is the
pseudo-first-order constant; k2 is the pseudo-second-order constant; kp is the intraparticle diffusion
rate constant; and C (mg g−1) is the boundary layer thickness.

Table 3. Kinetic parameters of Pd(II) adsorption onto the Et-N-Cu(BDC-NH2)(DMF) adsorbents.

Pseudo-First-Order Model Pseudo-Second-Order Model Intra-Particle Diffusion Model

qe, exp. (mg g−1) 124.4 qe, exp. (mg g−1) 124.4 Kp (mg g−1 min−0.5) 6.628
qe, cal. (mg g−1) 38.58 qe, cal. (mg g−1) 128.4 C 91.72

k1 (min−1) 0.17 k2 (g mg−1 min−1) 0.008 R2 0.7705
R2 0.9647 R2 0.9991

The adsorption kinetics for Pd(II) fitted well the pseudo-second-order kinetic model. On the
other hand, poor correlation coefficients were obtained for the pseudo-first-order and intraparticle
diffusion models (Figure 6). Adsorption kinetics revealed that chemical sorption is likely the
rate-limiting step for the adsorption of Pd(II) on the Et-N-Cu(BDC-NH2)(DMF) adsorbent. Previously,
the adsorption of Pd(CN)4

2− on the polymer resin or activated carbon was quite slow, taking more
than 8 and 2 h to reach adsorption equilibria, respectively [9,12,56]. Compared with the adsorption
equilibria using the polymer resin and activated carbon, the adsorption equilibrium of Pd(II) using
Et-N-Cu(BDC-NH2)(DMF) was more rapid. On account of the unique mesoporous structure and
larger quantity of polar groups of Et-N-Cu(BDC-NH2)(DMF), a high affinity was observed between
metal cyanide complexes and the MOFs. Hence, Pd(CN)4

2− rapidly spreads into the MOF matrix.
A rapid adsorption equilibrium for Pd(CN)4

2− was expected. In contrast, a hydrophobic structure
for polystyrene–divinylbenzene matrices lead to a lower affinity between polymer resins and metal
cyanide complexes. Transport rates of Pd(CN)4

2− on polystyrene–divinylbenzene matrices were
less than that on Et-N-Cu(BDC-NH2)(DMF). An extremely long time was taken to attain adsorption
equilibrium on activated carbon, corresponding to the slow diffusion of Pd(CN)4

2− from the internal
pores during transportation to the adsorbent surfaces [57].
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2.5. Sorption Isotherms

Sorption isotherms of Pd(CN)4
2− on Et-N-Cu(BDC-NH2)(DMF) (6d) were also further

investigated using single component solutions at 25 ◦C. A fixed amount of Et-N-Cu(BDC-NH2)(DMF)
(10 mg) was added to a series of 150-mL conical flasks with Pd(CN)4

2− solutions (20 mL, 20–200 mg L−1,
pH = 7.0). Then, the conical flasks were placed on a shaker at 130 rpm, and the temperature was
maintained at 25 ◦C for 30 min. Experimental data were fitted with the Langmuir and Freundlich
equilibrium models as follows:

ce

qe
=

1
qmb

+
ce

qm
(5)

lgqe = lgkF +
1
n

lgCe (6)

where, qm is the maximum adsorption capacity; b is the Langmuir adsorption equilibrium constant;
KF is the Freundlich constant; and 1/n is the adsorption intensity. Table 4 and Figure 7 show the
results obtained.

Table 4. Langmuir and Freundlich isotherm parameters of Et-N-Cu(BDC-NH2)(DMF).

Metal qm
a (mg g−1)

Langmuir Isotherm Freundlich Isotherm

qm
b (mg g−1) B (L mg−1) R2 Kf (L g−1) n R2

Pd 172.9 180.5 0.213 0.9995 44.98 3.16 0.9496
a Experimental data. b Calculated value according to Langmuir isotherm model.

Experimental data revealed that the adsorption Pd(CN)4
2− on Et-N-Cu(BDC-NH2) (DMF)

well conforms to the Langmuir equation. The qm value for the adsorption of Pd(CN)4
2− on the

Et-N-Cu(BDC-NH2) (DMF) adsorbent was calculated to be 180.5 mg g−1 from the Langmuir isotherm
model at 25 ◦C. This value is in good agreement with that obtained from experimental data (Table 4).
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2.6. Thermodynamic Parameters

The thermodynamic equilibrium constant Kc for adsorption was calculated according to the
following equation:

Kc =
(C o −Ce)V

MCe
(7)

Here, Co, Ce, V and M represent the initial concentration; the equilibrium concentration;
Pd(CN)4

2− solution volume; and Et-N-Cu(BDC-NH2)(DMF) mass(6d), respectively. Enthalpy changes
(4H) and entropy changes (4S) were obtained from the vant Hoff equation:

lnKC = −4H
RT

+
4S
R

(8)
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Figure 8. Van’t Hoff plot for the investigated adsorbents.

Figure 8 plots lnKc versus 1/T.4H and4S values were calculated from the slope and intercept
of the vant Hoff plot, respectively; furthermore, the Gibbs free-energy changes (4G) were calculated
using the following equation:

4G = 4H− T4 S (9)

Table 5 shows the results. 4G values were −4.48, −3.29, −2.09, and −0.89 kJ mol−1 at 293.15,
298.15, 303.15, and 308.15 K, respectively, indicating that the degree of a spontaneous reaction decreases
with increasing temperature. Hence, adsorption is considerably favorable at a low temperature.
A negative4H (−74.66 kJ mol−1) value confirmed that the reaction is exothermic, while a negative
4S values implies the decrease in randomness at the interface between Et-N-Cu(BDC-NH2)(DMF)
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and the solution during the adsorption of Pd(CN)4
2− on Et-N-Cu(BDC-NH2)(DMF). A mixed

physicochemical process is the most widely accepted mechanism for the adsorption of metal ions
on various materials [40]. Under normal conditions, the 4H value for chemisorption was greater
than 40 kJ mol−1 [58]. Based on the experimental data in Table 3, chemisorption is possibly the
rate-controlling step for the adsorption of Pd(CN)4

2− on Et-N-Cu(BDC-NH2)(DMF).

Table 5. Thermodynamic parameters for the absorption of Pd(CN)4
2−.

Temperature (K) 4G (kJ mol−1) 4S (J mol−1 K−1) 4H (kJ mol−1)

293.15 −4.48

−239.4 −74.7
298.15 −3.29
303.15 −2.09
308.15 −0.89

2.7. Removal of Metal Cyanide Complexes and Recovery of Pd(II)

Et-N-Cu(BDC-NH2)(DMF) (6d) was applied for the removal of metal cyanide complexes from a
mixed solution. Typically, 50 mg of the adsorbent was added to the mixed solutions of Pd(CN)4

2−,
Co(CN)6

3−, and Fe(CN)6
3−. The total volume of the mixed solutions was 100 mL, and the

concentrations of Pd(II), Co(II), and Fe(III) in mixed solutions were 50.1, 25.3, and 25.4 mg L−1,
respectively. Batch adsorption experiments were carried out by the same sorption procedure as that
described above. Table 6 shows the experiment results. From Table 6, 99.1% of Pd(II), 98.7% of Co(II),
and 98.3% Fe(III) were adsorbed on Et-N-Cu(BDC-NH2)(DMF). Then, two-step elution was designed
to elute the metal cyanide complexes loaded on Et-N-Cu(BDC-NH2)(DMF). First, Co(CN)6

3− and
Fe(CN)6

3− were eluted using a 1.5 mol L−1 KCl solution, followed by the elution of Pd(CN)4
2−from

Et-N-Cu(BDC-NH2)(DMF) using 2.0 mol L−1 KI solutions. Batch elution experiments were carried out.
Based on the experimental data in Table 6, in the first step, when KCl solutions were used as the eluent,
the elution ratios of Co(CN)6

3− and Fe(CN)6
3− was greater than 98.2%, whereas that of Pd(CN)4

2−

was less than 2.0%. In the second step, the elution percentage of Pd(II) reached 97.2% using the KI
solution. The recovery rate of Pd(CN)4

2− was greater than 96.0%. The study results demonstrated that
Et-N-Cu(BDC-NH2)(DMF) can be used for the highly effective removal of metal cyanide complexes
from aqueous solutions. Furthermore, Pd(CN)4

2− loaded on Et-N-Cu(BDC-NH2)(DMF) can be
selectively separated during the elution in two steps using different eluting agents.

Table 6. Adsorption and separation of metal cyanide complexes from mixed solution.

Metal Cyanide Complexes Pd(CN)4
2− Co(CN)6

3− Fe(CN)6
3−

Initial concentration (mg L−1) 50.1 25.3 25.4
Adsorption rate (%) 99.1 98.7 98.3

The first elution rate (%) 1.9 98.2 98.8
The second elution rate (%) 97.2

Recovery rate (%) 96.3

Based on the principle of the minimum charge density, the charge density of Pd(CN)4
2− is less

than those of Co(CN)6
3− and Fe(CN)6

3−. Fewer water molecules are required to stabilize Pd(CN)4
2−

compared to multivalent anions in the aqueous solution [59,60]. Pd(CN)4
2− possibly exhibited

higher affinity for hydrophobic quaternary ammonium compared to Co(CN)6
3− or Fe(CN)6

3−.
Therefore, Co(CN)6

3− and Fe(CN)6
3− adsorbed on Et-N-Cu(BDC-NH2)(DMF) can be eluted more

easily compared to Pd(CN)4
2−. The size of I− is well known to be greater than that of Cl−, leading to

the lower charge density of I− compared to Cl−. Therefore, the interaction of I− with M− R3N+ is
considerably greater than that of Cl−, which was completely in conformity with the “perchlorate
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effect” [29]. Experimental results revealed that Pd(CN)4
2− adsorbed on Et-N-Cu(BDC-NH2)(DMF)

can be completely eluted with KI. The elution reaction for the halide ion might occur as follows:

(M− R3N))n
+Me(CN)m

n−(s) + nX−(aq) = nM− R3N+X−(S) + Me(CN)m
n−(aq) (10)

where, M, S, X, and aq denote the MOF matrix, the Et-N-Cu(BDC-NH2) (DMF) solid surface, halide
(Cl or I), and the aqueous solution, respectively. From Equation (10), the stronger the interaction
between (M− R3N))n

+ and the halide anion, the higher the elution rate. The elution of metal cyanide
complexes from Et-N-Cu(BDC-NH2)(DMF) followed an ion-exchange mechanism.

2.8. Chemical Stability and Regeneration Experiment

To investigate the chemical stability of the material, Et-N-Cu(BDC-NH2)(DMF) was first
suspended in aqueous solutions at different pH, which was followed by characterization by XRD
patterns to monitor the changes of the crystallinity of the MOFs. Figure 9a demonstrates that the
crystallinity of Et-N-Cu(BDC-NH2)(DMF) (6d) does not show significant lose at various pH values
ranging from 7.0 to 8.0 (room temperature). After five adsorption-desorption cycles at pH = 7.0,
the crystallinity of the sample was only partially decomposed. With further increase in the pH
of the solution, the MOF was partially decomposed. The original crystallinities of the structures
were completely destroyed, and the sample underwent complete amorphization in NaOH solutions
(1.0 mol L−1). It was found that the prepared Et-N-Cu(BDC-NH2)(DMF) was unstable under strongly
basic conditions and dissolved gradually.

Various independent factors play a critical role in the water stability of MOFs, for example,
metal-type, metal ligand coordination environment, steric factors, topology, and porosity [61].
Some functionalized Cu(BDC) MOFs materials have been used as adsorbent or catalyst in aqueous
solutions. For example, Rahmani et al. reported that Cu(BDC)(DMF) could be used as a
stable catalyst for the reduction of methyl orange with sodium borohydride (NaBH4) in aqueous
solutions [62]. Gong and group found that Cu(BDC-NH2) (4,4’-Bipy) could be used as adsorbent
to adsorb methyl violet in basic water (pH = 9) [53]. In this study, quaternary ammonium
salt-functionalized Cu(BDC-NH2)(DMF) MOFs showed high water stability in the neutral and weakly
basic aqueous solutions.
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Figure 9. (a) The XRD patterns of Et-N-Cu(BDC-NH2)(DMF) (6d) at different pH values, compared 

with the prepared one (Room temperature). pH = 7.0 (24 h), pH = 7.5 (24 h), pH = 8.0 (24 h), pH = 9.0 

(2 h), pH = 9.5 (1 h), 5 cycles (pH = 7.0), 1 mol L−1 NaOH (1 h). (b) The photographs show adsorption 

and releasing metal cyanide complexes using Et-N-Cu(BDC-NH2)(DMF) adsorbent. 

Figure 9. (a) The XRD patterns of Et-N-Cu(BDC-NH2)(DMF) (6d) at different pH values, compared
with the prepared one (Room temperature). pH = 7.0 (24 h), pH = 7.5 (24 h), pH = 8.0 (24 h), pH = 9.0
(2 h), pH = 9.5 (1 h), 5 cycles (pH = 7.0), 1 mol L−1 NaOH (1 h). (b) The photographs show adsorption
and releasing metal cyanide complexes using Et-N-Cu(BDC-NH2)(DMF) adsorbent.

To evaluate the regeneration ability of Et-N-Cu(BDC-NH2)(DMF), the maximum adsorption
capacities of five adsorption–desorption cycles in single Pd(CN)4

2− solutions were estimated. The loss
of the maximum adsorption capacities was less than 5% after five cycles. The separation of Pd(CN)4

2−
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from a mixed solution containing Co(CN)6
3− and Fe(CN)6

3− was also carried out. The corresponding
recovery rates of Pd(CN)4

2− for all five cycles were greater than 91.0% (Figure 10). According to
the experimental results, the Et-N-Cu(BDC-NH2)(DMF) adsorbent exhibited efficient removal and
separation of metal cyanide complexes from the neutral and weak base aqueous solutions, as well as
good stability and reusability.

Molecules 2018, 23, 86 13 of 18 

 

To evaluate the regeneration ability of Et-N-Cu(BDC-NH2)(DMF), the maximum adsorption 

capacities of five adsorption–desorption cycles in single Pd(CN)42− solutions were estimated. The loss 

of the maximum adsorption capacities was less than 5% after five cycles. The separation of Pd(CN)42− 

from a mixed solution containing Co(CN)63− and Fe(CN)63− was also carried out. The corresponding 

recovery rates of Pd(CN)42− for all five cycles were greater than 91.0% (Figure 10). According to the 

experimental results, the Et-N-Cu(BDC-NH2)(DMF) adsorbent exhibited efficient removal and 

separation of metal cyanide complexes from the neutral and weak base aqueous solutions, as well as 

good stability and reusability. 

 

Figure 10. The recovery rates for Pd(CN)42− in the mixed solution for five cycles. 

In comparison with activated carbon and polymer resin, Et-N-Cu(BDC-NH2)(DMF) exhibit 

many advantages, for example, quick sorption kinetics, high adsorption capacity, and high selectivity 

(Table 7). 

Table 7. Comparison of the maximum adsorption capacity, adsorption time, and adsorption 

selectivity for Pd(CN)42- with polymer resins and activated carbon. 

Adsorbent 
Capacity 

(mg g−1) 

Adsorption 

Time (h) 

Optimum 

pH 
Adsorption Selectivity Refs. 

Polymer resins <80 8–48 h 9–11 

Pd(CN)42− coexisting 

with other metal 

cyanide 

[10–12,27] 

Activated 

carbon 
8–25 2–12 h 9–11 

Pd(CN)42− coexisting 

with other metal 

cyanide 

[3–5,9,55,63] 

Et-N-Cu(BDC-

NH2) (DMF) 
>100 <0.5 7–8 

Pd(CN)42− can eluted 

separation from other 

metal cyanide 

Present work 

3. Conclusions 

In this study, quaternary-ammonium-functionalized MOFs were synthesized for removal of 

metal cyanide complexes from the neutral and weakly basic aqueous solutions in batch-type 

experiments. Et-N-Cu(BDC-NH2)(DMF) was easily synthesized from Cu(BDC-NH2)(DMF) using 

commercially available reagents. The prepared Et-N-Cu(BDC-NH2)(DMF) absorbent was well 

characterized by FTIR, TGA, SEM, XRD, and N2 adsorption–desorption studies. The unique matrix 

structure and abundant active adsorption sites led to high removal efficiencies for Pd(CN)42−, 

Co(CN)63−, and Fe(CN)63− from aqueous solutions. The sorption kinetics for the sorption of Pd(CN)42− 

on Et-N-Cu(BDC-NH2)(DMF) were well fitted by a pseudo-second-order model, while the Langmuir 

model well described the sorption isotherms. The thermodynamics parameter values for ΔH, ΔS, and 

ΔG were also estimated. Furthermore, adsorbed Pd(CN)42− was selective recycled by two-step elution. 

0 1 2 3 4 5 6
70

75

80

85

90

95

100

T
h
e 

re
co

v
er

y
 r

at
e 

o
f 

P
d
(C

N
) 4

2
- 

(%
)

Cycles

Figure 10. The recovery rates for Pd(CN)4
2− in the mixed solution for five cycles.

In comparison with activated carbon and polymer resin, Et-N-Cu(BDC-NH2)(DMF) exhibit
many advantages, for example, quick sorption kinetics, high adsorption capacity, and high selectivity
(Table 7).

Table 7. Comparison of the maximum adsorption capacity, adsorption time, and adsorption selectivity
for Pd(CN)4

2− with polymer resins and activated carbon.

Adsorbent Capacity (mg g−1) Adsorption Time (h) Optimum pH Adsorption Selectivity Refs.

Polymer resins <80 8–48 h 9–11 Pd(CN)4
2− coexisting

with other metal cyanide
[10–12,27]

Activated
carbon 8–25 2–12 h 9–11 Pd(CN)4

2− coexisting
with other metal cyanide

[3–5,9,55,63]

Et-N-Cu(BDC-NH2)
(DMF) >100 <0.5 7–8

Pd(CN)4
2− can eluted

separation from other
metal cyanide

Present work

3. Conclusions

In this study, quaternary-ammonium-functionalized MOFs were synthesized for removal of metal
cyanide complexes from the neutral and weakly basic aqueous solutions in batch-type experiments.
Et-N-Cu(BDC-NH2)(DMF) was easily synthesized from Cu(BDC-NH2)(DMF) using commercially
available reagents. The prepared Et-N-Cu(BDC-NH2)(DMF) absorbent was well characterized
by FTIR, TGA, SEM, XRD, and N2 adsorption–desorption studies. The unique matrix structure
and abundant active adsorption sites led to high removal efficiencies for Pd(CN)4

2−, Co(CN)6
3−,

and Fe(CN)6
3− from aqueous solutions. The sorption kinetics for the sorption of Pd(CN)4

2− on
Et-N-Cu(BDC-NH2)(DMF) were well fitted by a pseudo-second-order model, while the Langmuir
model well described the sorption isotherms. The thermodynamics parameter values for 4H, 4S,
and4G were also estimated. Furthermore, adsorbed Pd(CN)4

2− was selective recycled by two-step
elution. The Et-N-Cu(BDC-NH2)(DMF) absorbent demonstrated immense potential for the treatment
of metal cyanide complexes from cyanide-contaminated water.
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4. Experimental

4.1. Reagents and Instruments

Scheme 1 shows the two-step preparation of the target adsorbents. First, Cu(BDC-NH2)(DMF)
was obtained by a solvothermal method [41]. In a typical synthesis, Cu(NO3)2·3H2O (0.968 g, 4 mmol)
and 2-aminoterephthalic acid (0.0905 g, 0.5 mmol) were added to a N,N-dimethylformamide (DMF)
solution (50 mL) and placed in an autoclave. The resulting mixture was heated at 100 ◦C for 20 h.
The final product was filtered and washed twice with CHCl3 and dried under vacuum at 120◦C for 10 h.
Second, Cu(BDC-NH2)(DMF) (0.03 g) was added into dry DMF (3 mL) containing three equivalents of
ethyl iodide (EtI) at room temperature for 6 days. The solid thus obtained was washed with CHCl3
and dried overnight in a vacuum oven at 130 ◦C for 24 h. The resulting powder was denoted as
Et-N-Cu(BDC-NH2)(DMF).
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Scheme 1. Synthesis of Et-N-Cu(BDC-NH2) (DMF) adsorbents.

To date, thermal activation is the most straightforward way to remove coordinated solvent
molecules. Besides, for the exchange of pore-filling solvents in MOFs, chemical activation is also
widely used in recent several years [64,65]. In this study, N,N-dimethylformamide (DMF) was selected
as a solvent for the MOF synthesis because of its high boiling point and ability to dissolve carboxylic
acids and metal salts. Bordiga et al. reported the effect of temperature on the removal of DMF
from the structure. X-ray diffraction (XRD) analysis clearly indicated that for the sample activated at
225 ◦C the characteristic peaks of Cu(BDC)(DMF) still existed [43]. Therefore, after higher temperature
activation (130 ◦C) DMF was not removed. Et-N-Cu(BDC-NH2)(DMF) was synthesized according
to Scheme 1 [41]. The color of solution burn with prolonging the reaction time of functionalization,
indicating that the conversion yield from Cu(BDC-NH2)(DMF) to Et-N-Cu(BDC-NH2)(DMF) increased
(Figure 11). In order to test the yield of quaternization reaction, Et-N-Cu(BDC-NH2)(DMF) was
digested using dilute hydrochloric acid and the iodine content of the sample was analyzed [47].
The result of the iodine content in the framework of Et-N-Cu(BDC-NH2)(DMF), indicated that
about 14, 26, and 32% of -NH2 group was converted to the group of quaternary ammonium
salt for Et-N-Cu(BDC-NH2)(DMF)-2d, Et-N-Cu(BDC-NH2)(DMF)-4d, Et-N-Cu(BDC-NH2)(DMF)-6d,
respectively(Table 8). Et-N-Cu(BDC-NH2)(DMF)-6d was used as adsorbent for removal of metal
cyanide complexes. The results are summarized in Table 8.
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Table 8. The reaction yield from Cu(BDC-NH2)(DMF) to Et-N-Cu(BDC-NH2)(DMF).

Samples Iodine Content (w%) Reaction 7ield (%)

Et-N-Cu(BDC-NH2) (DMF)-2d 3.5 ~14
Et-N-Cu(BDC-NH2) (DMF)-4d 6.3 ~26
Et-N-Cu(BDC-NH2) (DMF)-6d 7.8 ~32
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