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Abstract: Ten novel N-heterocyclic carbene gold(I) complexes derived from lepidiline A
(1,3-dibenzyl-4,5-dimethylimidazolium chloride) are reported here with full characterisation and
biological testing. (1,3-Dibenzyl-4,5-diphenylimidazol-2-ylidene)gold(I) chloride (NHC*-AuCl) (1)
was modified by substituting the chloride for the following: cyanide (2), dithiocarbamates (3–5),
p-mercaptobenzoate derivatives (12–14) and N-acetyl-L-cysteine derivatives (15–17). All complexes
were synthesised in good yields of 57–78%. Complexes 2, 12, 13, and 14 were further characterised
by X-ray crystallography. Initial evaluation of the biological activity was conducted on all ten
complexes against the multidrug resistant MCF-7topo breast cancer, HCT-116wt, and p53 knockout
mutant HCT-116−/− colon carcinoma cell lines. Across the three cell lines tested, mainly single-digit
micromolar IC50 values were observed. Nanomolar activity was exhibited on the MCF-7topo cell line
with 3 displaying an IC50 of 0.28 µM ± 0.03 µM. Complexes incorporating a Au–S bond resulted in
higher cytotoxic activity when compared to complexes 1 and 2. Theoretical calculations, carried out
at the MN15/6–311++G(2df,p) computational level, show that NHC* is the more favourable ligand
for Au(I)-Cl when compared to PPh3.

Keywords: lepidiline A; N-heterocyclic carbene; gold anticancer drug; TrxR inhibition; MTT
cytotoxicity assay; DFT calculations

1. Introduction

Metal-based drugs are an important tool in the development of new therapeutic drugs.
Auranofin, the successful gold(I)-based drug, exhibits both high potency antiarthritic and antitumour
properties [1,2]. Auranofin analogues have since been investigated for their interesting coordination
to both a phosphine and a thioglucoside. In many cases, N-heterocyclic carbenes (NHCs) have been
utilized as an alternative to the phosphine ligand [3–5]. NHCs have proved to be suitable ligands for
stabilizing the highly active gold(I) species, due to their good electron donating ability and their highly
stable carbene from π-backbonding [6,7]. As a result, several metal NHC complexes have reported
strong anticancer activity [8–10].

Lepidiline A (Figure 1), a naturally occurring imidazolium compound extracted from the root of
Lepidium meyenii, has presented many biological properties, including cytotoxicity [11]. Lepidiline A
exhibits activity against the human ovarian cancer cell line FDIGROV, with an ED50 of 7.39 µg/mL [11].
Furthermore, this biologically active imidazolium compound acts as a promising structural motif for
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NHC derivatives [12], and more effective applications of lepidiline A may lie in the development of
metal-based complexes with lepidiline A as the coordinating ligand.

Gold(I) complexes are an important class of anticancer drugs, due to their unique mechanism of
action. It has been shown that gold(I) complexes can elicit tumour cell death through targeting members of
the intracellular redox-homeostasis system, such as the mitochondria associated thioredoxin reductase
(TrxR), whose inhibition leads to reactive oxygen species formation [13–15]. A selenocysteine–cysteine
bridge at the C-terminal of the TrxR enzyme acts as the target for gold(I) [9,16]. Gold(I) has a high affinity
for thiols, due to their soft nature, resulting in strong Au–S bonds. However, gold(I) also binds strongly
to blood thiols such as serum albumin or glutathione, reducing the amount of drug arriving at cancer
cells [17]. Therefore, there is a desire to design a gold(I)-NHC complex that has a suitably strong Au–S
bond incorporated to lessen the chance of blood thiol conjugation.

The effectiveness of these gold(I)-NHC complexes are still restricted by cell selectivity. Introducing
targeting biomolecules to the complex could ensure the drug is delivered directly to the cancer cells,
thus minimizing the death of normal cells and increasing the drug’s efficacy [18]. Modifying the
coordinating ligand of the NHC-gold(I) complex to include a carboxylic acid would allow increased
functionality, such as esters or amides.
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Figure 1. Structure of lepidiline A (1,3-dibenzyl-4,5-dimethylimidazolum chloride) (a) and
NHC*-Au(I)-Cl (1) (b).

Herein we present a structural assessment of NHC-Au(I) complexes, based on
(1,3-dibenzyl-4,5-diphenylimidazol-2-ylidene)gold(I) chloride (NHC*-AuCl), (1) Figure 1.
The synthesis, characterisation, and biological testing of ten new NHC*-gold(I) complexes is
reported. The effect of altering the coordinating ligands of the NHC*-gold(I) on the cytotoxicity is
investigated via MTT-based proliferation assays. The cytotoxicity studies of these novel compounds
have been conducted in vitro against three different tumour cell lines: MCF-7topo (multidrug-resistant
breast cancer), HCT-116wt, and the p53 knockout mutant HCT-116−/− (colon cancer). These
cytotoxicity studies, compared to that of 1, can provide information on the ideal structures of future
gold(I) chemotherapeutic complexes. Additionally, a computational study of 1 can highlight the
advantages of employing an NHC ligand, as opposed to a phosphine.

2. Results and Discussion

2.1. Synthesis and Characterisation

The synthetic route for the ten NHC*-gold(I) complexes described in this paper are shown in
Schemes 1–4. NHC*-Au(I)-Cl (1) was synthesised according to a procedure previously published [3].
The preparation of 1, p-mercaptobenzoate derivatives 7 and 8, and N-acetyl-L-cysteine (NAC) derivatives
10 and 11 (Scheme 3), were confirmed with 1H and 13C-NMR spectra. Novel complexes 2–5 and 12–17 were
characterised with elemental analysis, high resolution mass spectrometry, IR spectroscopy, and melting
point. See Supplementary Material for 1H and 13C spectra of complexes 2–5 and 12–17.
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Complex 2 was formed in a 66% yield from the anion exchange of chloride to cyanide (Scheme 1).
The precursor 1 was reacted with potassium cyanide in dry dichloromethane at reflux for 48 h to
produce complex 2. The reaction does not form the desired product when conducted in a biphasic
solvent system with ethyl acetate and water. Upon reaction in the presence of water, the carbene
is protonated to form the corresponding imidazolium dicyanoaurate(I), confirmed by a signal at
δ = 8.66 ppm, representing the protonated carbene.
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Scheme 1. General reaction scheme for the synthesis of NHC*-Au-CN (2).

The 1H-NMR spectrum of 2 shows a slight shift of the CH2 protons of the benzyl groups, from
δ = 5.44 ppm to 5.37 ppm, when compared to the 1H-NMR of 1. The quaternary carbon of the cyanide
ligand appears in the 13C-NMR spectra at δ = 152.6 ppm. An absorption band at 2144 cm−1 in the IR
spectra of 2 represents the C≡N stretch.

Complexes 3–5 were prepared by reacting complex 1 with the corresponding sodium carbamate
salt (Scheme 2). This was performed under biphasic conditions by stirring at room temperature in
ethyl acetate and water for 48 h, with relatively good yields of 61–69%. Complexes 3–5 were also
synthesised in dichloromethane at reflux for 24 h, this, however, gave lower yields.
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Scheme 2. General reaction scheme for the synthesis of NHC*-Au(I) dithiocarbamate complexes 3–5.

Similar to 2, the CH2 signal in the 1H-NMR of complexes 3–5 is shifted to δ = 5.57–5.55 ppm
upon coordination to the dithiocarbamates. The addition of a new 1H-NMR singlet at δ = 3.51 ppm
corresponding to the two methyl groups of the dimethyldithiocarbamate moiety (3) confirms its
coordination to the NHC*-Au(I). Similarly, the CH2 and CH3 peaks of the diethyldithiocarbamate
complex 4 appear at δ = 3.96 ppm and 1.31 ppm, respectively. The pyrrolidine CH2 peaks of 5 appear
at δ = 3.85 and 1.97 ppm, with a triplet and pentet distinguishing these two peaks.

Previous metal-dialkyldithiocarbamate complexes reported the IR stretch of the carbon sulphur
bond from 820–1050 cm−1 [19,20]. The IR spectra of 3, 4 and 5 show a medium band at 971, 910,
and 949 cm−1, respectively, corresponding to the C=S stretch. A nickel(II) dimethyldithiocarbamate
complex exhibited a carbon–sulphur bond stretch at 975 cm−1 [19,21], which correlates well with the
dimethyldithiocarbamate complex 3. IR spectra of 3, 4, and 5 show bands at 1447, 1411, and 1406 cm−1,
respectively, which correspond to the carbon–nitrogen stretching of the carbamate. Interestingly,
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these IR values account for an intermediate bond in the 1450–1550 cm−1 range [20]. This indicates
a resonance structure is present where the carbon–nitrogen bond exhibits more double bond character
than the carbon–sulphur bonds. Furthermore, the presence of only one band for the C=S bond implies
the molecule is symmetrical, and therefore, in the resonant structure shown in Figure 2 [19].
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Figure 2. The dominant resonance form of a dithiocarbamate complex.

The synthetic route to ester formation is highlighted below in Scheme 3. The esters 7, 8, 10, and 11
were made with Fischer esterification, by refluxing 4-mercaptobenzoic acid (6) and N-acetyl-L-cysteine
(NAC) (9) (both commercially available) in methanol and ethanol with a catalytic amount of sulphuric acid,
to make their corresponding methyl and ethyl esters. Compounds 6–11 were conjugated with complex 1,
under basic conditions, to obtain complexes 12–17, in relatively good yields of 57–78% (Scheme 4).

Molecules 2018, 23, x FOR PEER REVIEW  4 of 17 

 

than the carbon–sulphur bonds. Furthermore, the presence of only one band for the C=S bond implies 
the molecule is symmetrical, and therefore, in the resonant structure shown in Figure 2 [19]. 

 
Figure 2. The dominant resonance form of a dithiocarbamate complex. 

The synthetic route to ester formation is highlighted below in Scheme 3. The esters 7, 8, 10, and 
11 were made with Fischer esterification, by refluxing 4-mercaptobenzoic acid (6) and N-acetyl-L-
cysteine (NAC) (9) (both commercially available) in methanol and ethanol with a catalytic amount of 
sulphuric acid, to make their corresponding methyl and ethyl esters. Compounds 6–11 were 
conjugated with complex 1, under basic conditions, to obtain complexes 12–17, in relatively good 
yields of 57–78% (Scheme 4). 

 

 

Scheme 3. General reaction scheme for the synthesis of esters 7, 8, 10, and 11. 

Compounds 6 and 9 were initially conjugated to 1 to make the corresponding NHC*-Au-S-linker 
molecules 12 and 15. Esterification of the acid ends of 12 and 15 was unsucessful. Attempts were 
made to synthesise complexes 13, 14, 16, 17 by reacting 12 and 15 with methanol or ethanol; however, 
this also proved to be unsucessful. Due to the lack of success via the linear synthesis, we moved to 
convergent synthesis, which was successful. 

The most diagnostic feature in the 1H-NMR spectra of complexes 12–17 is the disappearance of 
the SH signal of the thiols once coordinated to the gold. This appears in the δ = 3.64–2.48 ppm range 
for the p-mercaptobenzoate compounds (12–14) ,and δ = 1.33–1.31 ppm range for the NAC 
compounds (15–17). In the NAC series, the acetyl protons on the nitrogen atom of compounds 10 and 
11 are observed at δ = 2.07 and 2.09 ppm, respectively. However, once linked to the NHC*-Au(I) 
centre, there is an observed upfield chemical shift of the acetyl protons to δ = 1.95 and 1.94 ppm in 
compounds 16 and 17, respectively. For complexes 13 and 16 there is a slight upfield shift of the CH3 
singlet of the methyl compounds upon coordination to the gold; however, in the ethyl compounds, a 
downfield shift is noted. 

Scheme 3. General reaction scheme for the synthesis of esters 7, 8, 10, and 11.

Compounds 6 and 9 were initially conjugated to 1 to make the corresponding NHC*-Au-S-linker
molecules 12 and 15. Esterification of the acid ends of 12 and 15 was unsucessful. Attempts were
made to synthesise complexes 13, 14, 16, 17 by reacting 12 and 15 with methanol or ethanol; however,
this also proved to be unsucessful. Due to the lack of success via the linear synthesis, we moved to
convergent synthesis, which was successful.

The most diagnostic feature in the 1H-NMR spectra of complexes 12–17 is the disappearance
of the SH signal of the thiols once coordinated to the gold. This appears in the δ = 3.64–2.48 ppm
range for the p-mercaptobenzoate compounds (12–14) ,and δ = 1.33–1.31 ppm range for the NAC
compounds (15–17). In the NAC series, the acetyl protons on the nitrogen atom of compounds 10
and 11 are observed at δ = 2.07 and 2.09 ppm, respectively. However, once linked to the NHC*-Au(I)
centre, there is an observed upfield chemical shift of the acetyl protons to δ = 1.95 and 1.94 ppm in
compounds 16 and 17, respectively. For complexes 13 and 16 there is a slight upfield shift of the CH3

singlet of the methyl compounds upon coordination to the gold; however, in the ethyl compounds,
a downfield shift is noted.
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Scheme 4. General reaction scheme for the synthesis of NHC*-Au-S-linker (12–17).

2.2. Structural Discussion

X-ray crystallography data was obtained for four of the complexes synthesised. The crystal of
complex 2 was developed from the slow diffusion of pentane into a saturated dichloromethane solution
at −18 ◦C. Complex 2 crystallised in the monoclinic space group P21/m (#11) (Figure 3). The crystals of
12 and 13 were formed in a saturated solution of ethyl acetate with the slow infusion of pentane (Figures 4
and 5). Both crystallised in the triclinic space group P1 (#2), in the absence of any solvent molecules.
Crystal 14 was formed in a saturated solution of dichloromethane with slow infusion of diethyl ether
(Figure 6). Complex 14 crystallized in the monoclinic space group C2/c (#15), also in the absence of any
solvent molecules. The X-ray crystal data and structure refinement of complexes 2, 12, 13, and 14 are
found in Table 1, with the selected bond lengths and bond angles compiled in Tables 2 and 3.
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probability level.
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Figure 4. X-ray diffraction structure of 12; thermal ellipsoids are drawn on the 50% probability level.

The Au–C(8) bond lengths of 2.031(8) Å for 2, 2.012(3) Å for 12, 2.008(2) Å for 13 and 2.008(3)
Å for 14 suggest that the gold is strongly bound to the carbene in all four complexes. Additionally,
the Au–S bond distance of 2.2856(7) Å in 12, 2.2851(6) Å in 13 and 2.3012(8) Å in 14 is within the
range of reported Au–S bond lengths [22,23]. The C(30)–N(3) bond of 2 of 1.113 Å is indicative of the
triple bond of the cyanide ligand [24]. The X-ray structures of all four compounds show an almost
linear bond angle of 179.6(4)◦ for 2, 177.48(8)◦ for 12, 175.20(6)◦ for 13, and 173.45(9)◦ for 14 for the
C(8)–Au–C(30) and C(8)–Au–S angles, respectively. Bond angles of 108.40(10)◦ for 12, 109.44(8)◦ for 13,
and 108.83(12)◦ for 14 are observed for the Au–S–C(30) angle. These values are in good agreement
with similar compounds reported earlier by the Tacke group [25,26].
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Figure 5. X-ray diffraction structure of 13; thermal ellipsoids are drawn on the 50% level,
disorder neglected.



Molecules 2018, 23, 2031 7 of 17

Molecules 2018, 23, x FOR PEER REVIEW  7 of 17 

 

 
Figure 6. X-ray diffraction structure of 14; thermal ellipsoids are drawn on the 50% probability level. 

Table 1. Crystal data and structure refinement for complexes 2, 12, 13, and 14. 

 2 12 13 14 

Empirical Formula C30H24AuN3 C36H29N2O2SAu C37H31N2O2SAu C38H33N2O2SAu 

Formula Weight (g·mol−1) 623.49 750.54 764.66 778.69 

Temperature (K) 100(2) 100(2) 100(2) 100(2) 

Crystal system Monoclinic Triclinic Triclinic Monoclinic 

Space group P21/m (#11) P1 (#2) P1 (#2) C2/c (#15) 

Unit cell dimensions     

a (Å) 12.8150(7) 9.3234(3) 8.89830(6) 26.1234(3) 

b (Å) 6.4797(3) 10.4210(3) 12.12378(8) 10.2154(1) 

c (Å) 15.6802(8) 16.0388(5) 15.5000(1) 23.9038(3) 

α (°) 90 75.663(3) 103.1637(6) 90 

β (°) 112.268(6) 85.553(2) 105.3420(6) 100.387(1) 

γ (°) 90 83.264(3) 98.8340(6) 90 

Volume (Å3) 1204.94(12) 1497.46(8) 1528.942(19) 6274.45(12) 

Z 2 2 2 8 

Density (calcd) (mg/m3) 1.718 1.665 1.661 1.649 

Absorption coefficient (mm−1) 11.641 5.018 9.964 9.723 

F (000) 608 740 756 3088 

Crystal size (mm3) 0.255 × 0.034 × 0.026 0.194 × 0.121 × 0.082 0.248 × 0.193 × 0.120 0.113 × 0.035 × 0.010 

θ (°) 3.727 to 77.196 2.90 to 29.59 3.845 to 76.876 3.44 to 76.91 

Index ranges –16 ≤ h ≤ 15 –12 ≤ h ≤ 12 –11 ≤ h ≤ 11 –32 ≤ h ≤ 32 

 –8 ≤ k ≤ 8 –13 ≤ k ≤ 13 –15 ≤ k ≤ 15 –12 ≤ k ≤ 12 

 –19 ≤ l ≤ 19 –21 ≤ l ≤ 21 –19 ≤ l ≤ 19 –30 ≤ l ≤ 28 

Reflections collected 24,420 20,276 34,268 39,269 

Independent reflections Rint 2760 (0.1335) 7306 (0.0341) 6409 (0.0268) 6584 (0.0339) 

Completeness to θmax (%) 99.8 99.2 100.0 99.4 

C14

C13

C15

C37

C12

C38

C10

O2

C11

C7
C5

C9

C22C21

C6

C36

N1

C4

O1

C32

C16

C27

C17

C33

C26

C1

C8

C3

C28

C20

C31

C25

N2

C2

C29

C34

C24

C18

Au

C19

C30

C23

C35

S

Figure 6. X-ray diffraction structure of 14; thermal ellipsoids are drawn on the 50% probability level.

Table 1. Crystal data and structure refinement for complexes 2, 12, 13, and 14.

2 12 13 14

Empirical Formula C30H24AuN3 C36H29N2O2SAu C37H31N2O2SAu C38H33N2O2SAu
Formula Weight (g·mol−1) 623.49 750.54 764.66 778.69

Temperature (K) 100(2) 100(2) 100(2) 100(2)
Crystal system Monoclinic Triclinic Triclinic Monoclinic

Space group P21/m (#11) P1 (#2) P1 (#2) C2/c (#15)
Unit cell dimensions

a (Å) 12.8150(7) 9.3234(3) 8.89830(6) 26.1234(3)
b (Å) 6.4797(3) 10.4210(3) 12.12378(8) 10.2154(1)
c (Å) 15.6802(8) 16.0388(5) 15.5000(1) 23.9038(3)
α (◦) 90 75.663(3) 103.1637(6) 90
β (◦) 112.268(6) 85.553(2) 105.3420(6) 100.387(1)
γ (◦) 90 83.264(3) 98.8340(6) 90

Volume (Å3) 1204.94(12) 1497.46(8) 1528.942(19) 6274.45(12)
Z 2 2 2 8

Density (calcd) (mg/m3) 1.718 1.665 1.661 1.649
Absorption coefficient (mm−1) 11.641 5.018 9.964 9.723

F (000) 608 740 756 3088
Crystal size (mm3) 0.255 × 0.034 × 0.026 0.194 × 0.121 × 0.082 0.248 × 0.193 × 0.120 0.113 × 0.035 × 0.010

θ (◦) 3.727 to 77.196 2.90 to 29.59 3.845 to 76.876 3.44 to 76.91
Index ranges −16 ≤ h ≤ 15 −12 ≤ h ≤ 12 −11 ≤ h ≤ 11 −32 ≤ h ≤ 32

−8 ≤ k ≤ 8 −13 ≤ k ≤ 13 −15 ≤ k ≤ 15 −12 ≤ k ≤ 12
−19 ≤ l ≤ 19 −21 ≤ l ≤ 21 −19 ≤ l ≤ 19 −30 ≤ l ≤ 28

Reflections collected 24,420 20,276 34,268 39,269
Independent reflections Rint 2760(0.1335) 7306(0.0341) 6409(0.0268) 6584(0.0339)
Completeness to θmax (%) 99.8 99.2 100.0 99.4

Absorption correction Gaussian Gaussian Gaussian Gaussian
Max and min transmission 0.788 and 0.291 0.714 and 0.472 0.455 and 0.227 0.913 and 0.516

Refinement method Full-matrix
Least-squares on F2

Full-matrix
Least-squares on F2

Full-matrix
Least-squares on F2

Full-matrix
Least-squares on F2

Data/restraints/parameters 2760/0/147 7306/0/380 6409/0/389 6584/0/398
Goodness-of-fit on F2 1.139 1.046 1.085 1.041

Final R indices [I > 2σ(I)] R1 = 0.0442,
wR2 = 0.0983

R1 = 0.0255,
wR2 = 0.0437

R1 = 0.0178,
wR2 = 0.0439

R1 = 0.0266,
wR2 = 0.0674

R indices (all data) R1 = 0.0464,
wR2 = 0.0998

R1 = 0.0324,
wR2 = 0.0465

R1 = 0.0187,
wR2 = 0.0442

R1 = 0.0305,
wR2 = 0.0701

Largest diff. peak and hole 1.982 and −1.411 1.009 and −0.762 0.639 and −0.859 1.508 and −1.500
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Table 2. Selected bond angles for 2, 12, 13, and 14.

2 12 13 14

Au–C(8) 2.031(8) 2.012(3) 2.008(2) 2.008(3)
Au–C(30) 2.026(9)

C(30)–N(3) 1.113(12)
Au–S(1) 2.2856(7) 2.2851(6) 2.3012(8)

S(1)–C(30) 1.751(3) 1.755(2) 1.735(3)
C(36)–O(1) 1.249(3) 1.211(3) 1.215(5)
C(36)–O(2) 1.304(3) 1.349(3) 1.337(5)
O(2)–C(37) 1.442(3) 1.450(5)

Bond lengths (Å).

Table 3. Selected bond angles for 2, 12, 13, and 14.

2 12 13 14

C(8)–Au–S 177.48(8) 175.20(6) 173.45(9)
C(8)–Au–C(30) 179.6(4)

Au–S–C(30) 108.40(10) 109.44(8) 108.83(12)
Au–C(30)–N(3) 177.0(8)
S(1)–C(30)–S(2)
O(1)–C(36)–O(2) 122.8(3) 122.9(2) 123.4(3)
O(1)–C(36)–C(33) 120.8(3) 125.2(2) 124.2(4)
O(2)–C(36)–C(33) 116.4(3) 111.9(2) 112.4(3)
C(36)–O(2)–C(37) 115.4(2) 117.0(3)

Bond angle (◦).

2.3. Biological Evaluation

The in vitro anticancer activity of 2–5 and 12–17 was tested via MTT-based proliferation assays
against the human colon carcinoma cell line HCT-116wt, the p53 knockout mutant HCT-116−/−,
and the multidrug-resistant (mdr) human breast cancer cell line MCF-7topo (Table 4). Bar 2 and 13,
all complexes reached low single-digit micromolar IC50 values against the tested cell lines after 72
h of treatment. These two complexes exhibit only moderate toxicities with IC50 values up to 20 µM.
While the IC50 values of the dithiocarbamate complexes 3–5 and the p-mercaptobenzoate complexes
12–14 vary depending on the nitrogen substitution, and the respective esterification, the complexes
carrying NAC, 15–17, show single-digit IC50 values in the low micromolar range for all tested cell
lines, with almost similar cytotoxic activities throughout. Esterification of NAC with methanol or
ethanol slightly increased the antitumor activity against all three cell lines. Amongst the three types
of thiolated complexes, the dithiocarbamate complexes 3–5 showed the highest activity against the
mdr MCF-7topo breast cancer cells, with complex 3 being the most active complex in total, with IC50

values of 1.5 ± 0.1 µM against the HCT-116wt or 0.28 ± 0.03 µM against the MCF-7topo cells. To test
the complexes for their dependency on fully functional p53, one activator of the apoptotic cascade, the
complexes were tested for their toxicity against a HCT-116 p53 knockout mutant. Surprisingly, only
a few of the tested complexes showed similar or higher IC50 values against the knockout mutant than
against the wildtype cells. Complexes 4, 5, 12, and 13 exert a higher toxicity against the HCT-116−/−

than against the wildtype HCT-116wt. Overall, the herein presented complexes exhibit high to moderate
antitumoral activity against colon carcinoma cells and a mdr breast cancer cell line. Dithiocarbamate
complex 3 shows the overall highest activity in all tested cell lines.
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Table 4. IC50 values (µM) of compounds 2, 3, and 12–17 against MCF-7topo, HCT-116wt, and HCT-116
p53−/− cells after 72 h of incubation.

HCT-116wt HCT-116 p53−/− MCF-7topo

2 14.8 ± 1.9 - 10.8 ± 0.9
3 1.5 ± 0.1 - 0.28 ± 0.03
4 8.0 ± 0.1 3.8 ± 0.4 0.36 ± 0.03
5 6.2 ± 0.3 2.0 ± 0.6 1.5 ± 0.3

12 5.5 ± 0.1 2.7 ± 0.2 5.4 ± 0.5
13 18.1 ± 6.5 9.5 ± 0.6 21.3 ± 3.4
14 6.8 ± 0.2 7.9 ± 0.2 13.2 ± 3.7
15 4.5 ± 1.2 6.6 ± 0.3 7.1 ± 0.3
16 2.8 ± 0.1 4.5 ± 0.6 6.3 ± 0.5
17 2.9 ± 0.1 3.7 ± 0.2 5.4 ± 0.5

2.4. Computational Results

The enthalpy of formation has been obtained at the MN15/6-311++G(2df,p)/LANL2TZ(f) level
for both NHC*-AuCl and Ph3P-AuCl compounds (Figure 7). The results show that NHC*-AuCl
presents a more negative enthalpy (−315.0 kJ/mol) than Ph3P-AuCl (−274.3 kJ/mol), which indicates
that the formation of NHC*-AuCl is more favourable. Natural bond orbital (NBO) analysis shows
that the AuCl unit in NHC*-AuCl is slightly less negative (−0.32e−) than in Ph3P-AuCl (−0.35e−),
and displays slightly shorter Au–Cl distances in NHC*-AuCl (2.291 Å) than in Ph3P-AuCl (2.299 Å).
This is indicative of a stronger bond between the gold and the carbene due to the higher σ-donating
effect of the nucleophilic NHC* ligand.
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Ph3P-AuCl respectively.

Also, for NHC*-AuCl, two backbonding donations from the gold into the π* C–N antibonding
orbitals are observed, E(2) = 15.9 and 16.1 kJ/mol; while in Ph3P-AuCl, three backbonding donations
are observed from the Au atom into the π* P–C antibonding orbitals with E(2) = 16.2, 16.0, and 14.9
kJ/mol. The additional backbonding in the Ph3P-AuCl molecule reduces its bond strength, resulting
in a weaker donating ligand. Conclusively, these results give credence to NHCs being the more
favourable ligand than phosphines.
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3. Materials and Methods

3.1. General Conditions

All chemicals were purchased and used as received, unless otherwise stated. Solvents were
dried according to the standard procedures, when necessary. 1H and 13C spectra were recorded on
either a 300 or 400 MHz Varian spectrometer at room temperature (rt). Both chloroform (CDCl3)
and dimethyl sulfoxide (DMSO) were used as deuterated solvents. The residual solvent peak or
tetramethylsilane (TMS) were used as the internal standard. All chemical shifts are reported as δ

values in parts per million (ppm). Infrared spectra were recorded on a Bruker ALPHA PLATINUM
ATR spectrometer (Millerica, MA, USA). High resolution accurate mass data were obtained on
a Waters/Micromass LCT TOF spectrometer (Milford, MA, USA). under electrospray ionisation
technique. Melting points were measured on a Stuart™ (Stone, UK). melting point apparatus SMP10.
Elemental analysis was conducted on an Exeter Analytical CE-440 elemental analyser (Coventry, UK).
X-ray crystallography data was collected on a Rigaku Oxford Diffraction (Chalgrove, UK) SuperNova
A diffractometer. Absorbance measurements were done with a TECAN (Männedorf, Switzerland)
Infinite F200 plate reader.

3.2. Synthesis

3.2.1. (1,3-Dibenzyl-4,5-diphenylimidazol-2-ylidene)gold(I) Chloride (1)

Prepared according to literature method [3]. 1H-NMR (300 MHz, CDCl3, δ ppm): 7.30 (t, J = 7.4 Hz,
2H, CHbenzyl), 7.25–7.16 (m, 10H, CHbenzyl + CHphenyl), 7.06–6.92 (m, 8H, CHphenyl), 5.44 (s, 4H, CH2).
13C-NMR (101 MHz, CDCl3, δ ppm): 171.6 (NCN), 135.8, 132.2, 130.9, 129.5, 128.8, 128.7, 128.2, 127.6,
127.4 (CHimidazol + CHphenyl + CHbenzyl), 53.2 (CH2).

3.2.2. (1,3-Dibenzyl-4,5-diphenyl-2-ylidene)gold(I) Cyanide (2)

(1,3-Dibenzyl-4,5-diphenylimidazol-2-ylidene)gold(I) chloride (65 mg, 0.10 mmol) and potassium
cyanide (7.5 mg, 0.12 mmol) were stirred in dichloromethane (15 mL) under reflux for 48 h. The reaction
was washed with deionised water (2 × 10 mL). The organic solution was extracted and dried over
anhydrous MgSO4. This was filtered, and the excess solvent reduced under pressure to 3 mL. Pentane
(40 mL) was added to precipitate a white solid. The product was filtered, washed with pentane (15 mL),
and dried in vacuo. Yield: 40.8 mg, 66%. 1H-NMR (400 MHz, CDCl3, δ ppm): 7.32 (t, J = 7.4 Hz, 2H,
CHbenzyl), 7.25–7.20 (m, 10H, CHbenzyl + CHphenyl), 6.99 (t, J = 5.9 Hz, 8H, CHphenyl), 5.37 (s, 4H, CH2).
13C-NMR (101 MHz, CDCl3, δ ppm): 182.9 (NCN), 152.6 (CN), 135.7, 132.6, 130.9, 129.7, 128.9, 128.8,
128.4, 127.6, 127.2 (Cimidazol + Cphenyl + Cbenzyl), 53.0 (CH2). IR (ATR): 3058 (w), 3030 (w), 2143 (w),
1594 (w), 1488 (m), 1447 (m), 1348 (m), 1026 (m), 758 (m), 696 (s). MS (ESI+) m/z: 624.2 [M + H]+.
Melting point range: 264–268 ◦C. Anal. calcd for C30H24AuN3 (623.51): C, 57.79; H, 3.88; N, 6.74.
Found: C, 61.08; H, 4.04; N, 6.90. Although these elemental results are outside the acceptable range to
establish purity, they demonstrate the best results yet obtained.

3.2.3. General Procedure for NHC-Au(I) Complexes 3–5

(1,3-Dibenzyl-4,5-diphenylimidazol-2-ylidene)gold(I) chloride (65 mg, 0.10 mmol) and the
corresponding sodium carbamate salt (0.12 mmol) were stirred in a biphasic solution of ethyl acetate
(7 mL) and deionised water (6 mL) at rt for 48 h. The reaction mixture was washed with deionised water
(2 × 10 mL) and an aqueous saturated solution of NaCl (10 mL). The combined organic phase was
dried over anhydrous MgSO4, filtered, and reduced to approximately 3 mL under reduced pressure.
Pentane (40 mL) was added to precipitate a solid. The product was filtered, washed with pentane
(15 mL), and dried in vacuo.
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(1,3-Dibenzyl-4,5-diphenylimidazol-2-ylidene)gold(I) Dimethyldithiocarbamate (3)

A white solid was formed. Yield: 50.4 mg, 69%. 1H-NMR (300 MHz, CDCl3, δ ppm): 7.32–7.27 (m,
2H, CH), 7.24–7.16 (m, 10H, CH), 7.10–7.04 (m, 4H, CH), 6.95 (d, J = 7.1 Hz, 4H, CH), 5.55 (s, 4H, CH2),
3.51 (s, 6H, CH3). 13C-NMR (101 MHz, CDCl3, δ ppm): 136.9, 132.4, 131.2, 131.1, 129.6, 129.1, 128.9,
128.3, 127.1 (Cimidazol + Cphenyl + Cbenzyl), 53.0 (CH2), 45.4 (CH3). MS (ESI+) m/z: 718.2 [M + H]+. IR
(ATR): 3025 (w), 2910 (w), 1603 (w), 1496 (m), 1447 (m), 1248 (m), 1140 (m), 971 (m), 726 (m), 695 (s).
Melting point range: 186–187 ◦C. Anal. calcd for C32H30N3S2Au (717.71): C, 53.55; H, 4.21; N, 5.85; S,
8.94. Found: C, 53.50; H, 4.17; N, 5.77; S, 8.64.

(1,3-Dibenzyl-4,5-diphenylimidazol-2-ylidene)gold(I) Diethyldithiocarbamate (4)

A white solid was formed. Yield: 49.5 mg, 65%. 1H-NMR (300 MHz, CDCl3, δ ppm): 7.27 (t,
J = 7.3 Hz, 2H, CH), 7.25–7.14 (m, 15H, CH), 7.08–7.04 (m, 3H, CH), 6.93 (d, J = 7.2 Hz, 3H, CH), 5.57
(s, 4H, CH2-Bz), 3.96 (q, J = 7.1 Hz, 4H, CH2-ethyl), 1.31 (t, J = 7.0 Hz, 6H, CH3). 13C-NMR (101 MHz,
CDCl3, δ ppm): 205.8 (SCS), 180.1 (NCN), 136.3, 132.1, 130.9, 129.2, 128.6, 128.5, 127.9, 127.8 (CHimidazol
+ CHphenyl + CHbenzyl), 53.1 (CH2-benzyl), 49.3 (CH2-ethyl), 12.4 (CH3). MS (ESI+) m/z: 746.2 [M + H]+.
IR (ATR): 3025 (w), 2925 (w), 1603 (w), 1495 (w), 1411 (m), 1260 (m), 1133 (m), 981 (m), 910 (m), 733 (s),
694 (s). Melting point range: 187–188 ◦C. Anal. calcd for C34H34N3S2Au (745.75): C, 54.76; H, 4.60; N,
5.63; S, 8.60. Found: C, 54.58; H, 4.52; N, 5.53; S, 8.72.

(1,3-Dibenzyl-4,5-diphenylimidazol-2-ylidene)gold(I) Pyrrolidinedithiocarbamate (5)

A white solid was formed. Yield: 46.6 mg, 61%. 1H-NMR (300 MHz, CDCl3, δ ppm): 7.29 (d,
J = 7.5 Hz, 1H, CH), 7.24–7.14 (m, 10H, CH), 7.12–7.03 (m, 4H, CH), 6.95 (d, J = 7.0 Hz, 4H, CH),
5.56 (s, 4H, CH2-Bz), 3.85 (t, 4H, CH2), 1.97 (p, 4H, CH2). 13C-NMR (101 MHz, CDCl3, δ ppm): 202.8
(SCS), 180.2 (NCN), 136.3, 132.1, 130.9, 129.3, 128.6, 128.5, 128.0, 127.9, 127.8 (CHimidazol + CHphenyl
+ CHbenzyl), 54.43 (CH2), 53.08 (CH2-benzyl), 26.30 (CH2). MS (ESI+) m/z: 744.2 [M + H]+. IR (ATR):
3027 (w), 2961 (w), 1602 (w), 1494 (w), 1406 (m), 1165 (m), 949 (m), 733 (m), 695 (s). Melting point
range: 188–189 ◦C. Anal. calcd for C34H32N3S2Au (743.73): C, 54.91; H, 4.34; N, 5.65; S, 8.63. Found: C,
54.48; H, 4.26; N, 5.52; S, 8.85.

3.2.4. General Procedure for 7–8, 10–11

Esters 7–8 and 10–11 were prepared according to modified literature methods [27,28].
The carboxylic acid (6 or 9) was dissolved in either methanol (30 mL) or ethanol (30 mL), with 2 drops
of concentrated sulfuric acid added to the solution before refluxing at 90 ◦C for 24 h. The reaction
progress was monitored by TLC (cyclohexane-ethyl acetate; 1:1). The reaction was concentrated under
reduced pressure to yield a white solid.

Methyl-p-mercaptobenzoate (7)

The residue was purified with column chromatography (cyclohexane-ethyl acetate; 3:1) to produce
a white solid. Yield: 319 mg, 95%. The NMR data were in agreement with those reported in
literature [27,28]. 1H-NMR (400 MHz, CDCl3, δ ppm): 7.88 (d, J = 8.6 Hz, 2H, CH), 7.27 (d, J = 8.6 Hz,
2H, CH), 3.89 (s, 3H, CH3), 3.60 (s, 1H, SH). 13C-NMR (101 MHz, CDCl3, δ ppm): 166.9 (C=O), 138.3
(CH), 130.2 (CH), 128.1 (CH), 127.1 (CH), 52.0 (CH3).

Ethyl-p-mercaptobenzoate (8)

The residue was purified with column chromatography (cyclohexane-ethyl acetate; 3:1) to produce
a white solid. Yield: 319 mg, 95%. The NMR data were in agreement with those reported in
literature [29]. 1H-NMR (400 MHz, DMSO-d6, δ ppm): 7.77 (d, J = 8.5 Hz, 2H, CH), 7.40 (d, J = 8.5 Hz,
2H, CH), 4.26 (q, J = 7.1 Hz, 2H, CH2), 2.48 (s, 2H, SH), 1.28 (t, J = 7.1 Hz, 3H, CH3). 13C-NMR (101 MHz,
DMSO-d6, δ ppm): 165.4 (C=O), 141.7 (CH), 130.5 (CH), 129.1 (CH), 126.5 (CH), 61.2 (CH2), 14.5 (CH3).
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N-Acetyl-L-cysteine Methyl Ester (10)

The crude product was used without further purification as a white solid. Yield: 618 mg, 88%.
The NMR data were in agreement with those reported in literature [30]. 1H-NMR (400 MHz, CDCl3,
δ ppm): 4.89 (dt, J = 7.8, 4.1 Hz, 1H, CH), 3.79 (s, 3H, OCH3), 3.01 (ddd, J = 9.0, 4.1, 2.7 Hz, 2H, CH2),
2.07 (s, 3H, CH3), 1.33 (t, J = 9.0 Hz, 1H, SH). 13C-NMR (101 MHz, CDCl3, δ ppm): 170.5 (C=O), 170.0
(C=O), 53.5 (CH), 52.8 (OCH3), 26.8 (CH2), 23.1 (CH3).

N-acetyl-L-cysteine Ethyl Ester (11)

The crude product used without further purification as a white solid. Yield: 650 mg, 85%.
The NMR data were in agreement with those reported in literature [31]. 1H-NMR (400 MHz, DMSO-d6,
δ ppm): 4.91–4.82 (m, 2H, CH2), 4.32–4.19 (m, 2H, OCH2), 3.15–2.94 (m, 3H, CH3), 2.09 (s, 3H, CH3),
1.31 (t, J = 7.1 Hz, 1H, SH). 13C-NMR (101 MHz, DMSO-d6, δ ppm): 172.1 (C=O), 169.8 (C=O), 61.9
(OCH2), 54.7 (CH), 51.7 (CH3), 26.0 (CH2), 22.8 (CH3).

3.2.5. (1,3-Dibenzyl-4,5-diphenylimidazol-2-ylidene)gold(I) p-Mercaptobenzoic Acid (12)

(1,3-Dibenzyl-4,5-diphenylimidazol-2-ylidene)gold(I) chloride (63 mg, 0.10 mmol) and
p-mercaptobenzoic acid (31 mg, 0.20 mmol) were dissolved in ethyl acetate (5 mL), and K2CO3

(27 mg, 0.20 mmol) was dissolved in water (5 mL). Both solutions were mixed and stirred vigorously
at rt for 24 h. The two phases were separated, and the aqueous phase was re-extracted twice with ethyl
acetate (10 mL). The combined organic phase was washed with 8% HCl (2 × 10 mL), before drying
over MgSO4 and filtered. The filtrate was concentrated to approximately 3 mL before the addition of
pentane (40 mL). The solution was cooled down to −26 ◦C to allow the product to precipitate out of
the solution before filtering and drying in vacuo. An off-white product was isolated. Yield: 55 mg,
70%. 1H-NMR (400 MHz, CDCl3, δ ppm): 7.63 (d, J = 8.4 Hz, 2H, Hb), 7.47 (d, J = 8.4 Hz, 2H, Ha),
7.34–7.18 (m, 12H, CH), 7.09–6.96 (m, 8H, CH), 5.45 (s, 4H, CH2-benzyl). 13C-NMR (101 MHz, CDCl3,
δ ppm): 182.3 (NCN), 171.7 (C=O), 153.7, 135.8, 132.0, 131.8, 130.6, 129.4, 129.3, 128.6, 128.6, 128.1, 127.3,
127.2, 123.1 (CHimidazol + CHphenyl + CHbenzyl), 52.6 (CH2). MS (QMS-MS/MS) m/z: 773.15 [M + Na]+.
IR (ATR): 3056 (w), 1668 (w), 1580 (w), 1487 (m), 1446 (w), 1025 (m), 764 (m), 729 (s), 694 (s), 628(w),
518 (w). Melting point range: 177–179 ◦C. Anal. calcd for C36H29N2O2SAu (750.70): C, 57.59; H, 3.90;
N, 3.73; S, 4.27; Found: C, 57.33; H, 3.72; N, 3.60; S, 4.59.

3.2.6. (1,3-Dibenzyl-4,5-diphenylimidazol-2-ylidene)gold(I)-methyl-p-mercaptobenzoate (13)

(1,3-Dibenzyl-4,5-diphenylimidazol-2-ylidene)gold(I) chloride (253 mg, 0.40 mmol) and
methyl-p-mercaptobenzoate (218 mg, 1.60 mmol) were dissolved in ethyl acetate (20 mL),
and potassium carbonate (222 mg, 1.60 mmol) was dissolved in water (20 mL). Both solutions were
mixed and stirred vigorously at rt for 24 h. The two phases were separated, and the aqueous phase
was washed with ethyl acetate (2 × 20 mL). The organic phases were combined and washed with 8%
HCl (20 mL), an aqueous saturated solution of NaHCO3 (20 mL) and an aqueous saturated solution of
NaCl (20 mL). The organic phase was dried over MgSO4, filtered, and concentrated to approximately
5 mL before the addition of pentane (40 mL). The solution was cooled down to −20 ◦C to allow the
product to precipitate out of the solution before filtering and drying in vacuo. An off-white product
was isolated. Yield: 202 mg, 65%. 1H-NMR (400 MHz, CDCl3, δ ppm): 7.62–7.57 (m, 2H, Hb), 7.51–7.46
(m, 2H, Ha), 7.34–7.28 (m, 2H, CH), 7.27–7.21 (m, 10H, CH), 7.08–7.04 (m, 4H, CH), 7.03–6.98 (m,
4H, CH), 5.46 (s, 4H, CH2), 3.84 (s, 3H, OCH3). 13C-NMR (101 MHz, CDCl3, δ ppm): 182.3 (NCN),
167.9 (C=O), 135.8, 132.0, 131.8, 130.6, 129.3, 128.8, 128.6, 128.6, 128.1, 127.3, 127.2, 124.1 (CHimidazol +
CHphenyl + CHbenzyl), 52.6 (CH2), 51.6 (OCH3). MS (QMS-MS/MS) m/z: 765.18 [M + H]+. IR (ATR):
3057 (w), 1705 (s), 1584 (s), 1432 (m), 1279 (s), 1270 (s), 1172 (w), 1107 (m), 1085 (m), 1021 (w), 760 (s),
696 (s), 526 (w). Melting point range: 149–152 ◦C. Anal. calcd for C37H31N2O2AuS (764.73): C, 58.11;
H, 4.09; N, 3.66; S, 4.19. Found: C, 58.28; H, 4.02; N, 3.41; S, 4.20.
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3.2.7. (1,3-Dibenzyl-4,5-diphenylimidazol-2-ylidene)gold(I)-ethyl-p-mercaptobenzoate (14)

(1,3-Dibenzyl-4,5-diphenylimidazol-2-ylidene)gold(I) chloride (254 mg, 0.40 mmol) and
ethyl-p-mercaptobenzoate (291 mg, 1.60 mmol) were dissolved in ethyl acetate (20 mL), and potassium
carbonate (221 mg, 1.60 mmol) was dissolved in water (20 mL). Both solutions were mixed and stirred
vigorously at rt for 24 h. The two phases were separated, and the aqueous phase was re-extracted twice
with ethyl acetate (20 mL). The organic phases were combined and washed with 8% HCl (20 mL), an
aqueous saturated solution of NaHCO3 (20 mL), and an aqueous saturated solution of NaCl (20 mL).
The organic phase was dried over MgSO4, filtered, and concentrated to approximately 5 mL before
the addition of pentane (40 mL). The solution was cooled down to −20 ◦C to allow the product to
precipitate out of the solution before filtering and drying in vacuo. An off-white product was isolated.
Yield: 178 mg, 57%. 1H-NMR (300 MHz, CDCl3, δ ppm): 7.61 (d, J = 8.4 Hz, 2H, Hb), 7.48 (d, J = 8.4,
2H, Ha), 7.35–7.27 (m, 2H, CH), 7.25–7.17 (m, 10H, CH), 7.09–6.93 (m, 8H, CH), 5.44 (s, 4H, CH2-benzyl),
4.30 (q, J = 7.1 Hz, 2H, CH2-ethyl), 1.35 (t, J = 7.1 Hz, 3H, CH3). 13C-NMR (101 MHz, CDCl3), δ ppm):
166.9 (C=O), 135.6, 132.0, 131.8, 130.6, 129.3, 128.8, 128.5, 128.0, 127.4, 127.2 (CHimidazol + CHphenyl +
CHbenzyl), 60.3 (CH2-ethyl), 52.7 (CH2-benzyl), 14.3 (CH3). MS (QMS-MS/MS) m/z: 779.20 [M + H]+. IR
(ATR): 3056 (w), 1698 (m), 1585 (m), 1445 (m), 1277 (m), 1267 (m), 1105 (m), 1092 (m), 763 (m), 729 (s),
694 (s), 527 (m). Melting point range: 163–166 ◦C. Anal. calcd for C38H33N2O2AuS (778.76): C, 58.60;
H, 4.28; N, 3.60; S, 4.11. Found: C, 58.45; H, 4.01; N, 3.74; S, 4.32.

3.2.8. (1,3-Dibenzyl-4,5-diphenylimidazol-2-ylidene)gold(I)-N-acetyl-L-cysteine (15)

(1,3-Dibenzyl-4,5-diphenylimidazol-2-ylidene)gold(I) chloride (63 mg, 0.10 mmol) and
N-acetyl-L-cysteine (18 mg, 0.11 mmol) were dissolved in ethyl acetate (5 mL), and potassium carbonate
(15 mg, 0.11 mmol) was dissolved in water (5 mL). Both solutions were mixed and stirred vigorously
at rt for 24 h. The two phases were separated, and the aqueous phase was washed with ethyl acetate
(2 × 10 mL). The combined organic phase was washed with 8% HCl (2 × 10 mL), then dried over
MgSO4 and filtered. The filtrate was concentrated to approximately 3 mL before the addition of
pentane (40 mL). The solution was cooled down to −20 ◦C to allow the product to precipitate out of
the solution before filtering and drying in vacuo. An off-white product was isolated. Yield: 45 mg,
60%. 1H-NMR (300 MHz, CDCl3, δ ppm): 7.35–7.08 (m, 12H, CH), 7.04–6.88 (m, 8H, CH), 5.44–5.28
(m, 4H, CH2-benzyl), 4.51 (q, J = 4.1 Hz, 1H, CH), 3.91 (s, 2H, CH2-NAC), 1.88 (s, 3H, CH3). 13C-NMR
(101 MHz, CDCl3, δ ppm): 178.0 (NCN), 172.1 (C=O), 169.6 (C=O), 136.2, 132.0, 130.6, 129.2, 128.5,
128.4, 127.8, 127.5, 127.2 (CHimidazol + CHphenyl + CHbenzyl), 56.8 (CH2-NAC), 52.5 (CH2-benzyl), 23.6
(CH3). MS (QMS-MS/MS) m/z: 760.59 [M + H]+. IR (ATR): 3057 (w), 3030 (w), 1665 (m), 1495 (m),
1447 (w), 1075 (w), 1022 (), 764 (m), 730 (m), 696 (s), 518 (w). Melting point range: 102–105 ◦C. Anal.
calcd for C34H32N3O3AuS (759.72): C, 53.75; H, 4.25; N, 5.53; S, 4.22. Found: C, 53.42; H, 4.34; N, 5.13;
S, 3.94.

3.2.9. (1,3-Dibenzyl-4,5-diphenylimidazol-2-ylidene)gold(I)-N-acetyl-L-cysteine Methyl Ester (16)

(1,3-Dibenzyl-4,5-diphenylimidazol-2-ylidene)gold(I) chloride (253 mg, 0.40 mmol) and
N-acetyl-L-cysteine methyl ester (285 mg, 1.60 mmol) were dissolved in ethyl acetate (20 mL),
and potassium carbonate (223 mg, 1.60 mmol) was dissolved in water (20 mL). Both solutions were
mixed and stirred vigorously at rt for 24 h. The two phases were separated, and the aqueous phase
was washed with ethyl acetate (2 × 20 mL). The organic phases were combined and washed with 8%
HCl (20 mL), an aqueous saturated solution of NaHCO3 (20 mL), and an aqueous saturated solution of
NaCl (20 mL). The organic phase was dried over MgSO4, filtered, and concentrated to approximately
5 mL before the addition of pentane (40 mL). The solution was cooled down to −20 ◦C to allow the
product to precipitate out of the solution before filtering and drying in vacuo. An off-white product
was isolated. Yield: 242 mg, 78%. 1H-NMR (300 MHz, CDCl3, δ ppm): 7.34–7.26 (m, 2H, CH), 7.25–7.18
(m, 10H, CH), 7.06–6.93 (m, 8H, CH), 5.43 (s, 4H, CH2-benzyl), 4.73 (dt, J = 7.5, 4.7 Hz, 1H, CH), 3.65
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(s, 3H, OCH3), 3.36 (dd, J = 13.1, 5.5 Hz, 1H, CH2), 3.23 (dd, J = 13.1, 4.7 Hz, 1H, CH2), 1.95 (s, 3H,
CH3-NAC). 13C-NMR (101 MHz, CDCl3, δ ppm): 171.8 (C=O), 169.9 (C=O), 135.9, 131.9, 130.6, 129.2,
128.7, 128.5, 128.0, 127.4, 127.3, 126.5 (CHimidazol + CHphenyl + CHbenzyl), 55.0 (CH), 52.6 (CH2-benzyl),
52.1 (CH3), 30.0 (CH2-NAC), 23.1 (CH3-NAC). MS (QMS-MS/MS) m/z: 774.20 [M + H]+. IR (ATR): 3058
(w), 1740 (m), 1670 (m), 1496 (m), 1447 (m), 1207 (w), 1022 (w), 764 (m), 733 (m), 698 (s), 518 (w).
Melting point range: 77–78 ◦C. Anal. calcd for C35H34N3O3AuS (773.75): C, 54.33; H, 4.44; N, 5.43; S,
4.14. Found: C, 54.61; H, 4.26; N, 5.21; S, 4.44.

3.2.10. (1,3-Dibenzyl-4,5-diphenylimidazol-2-ylidene)gold(I)-N-acetyl-L-cysteine Ethyl Ester (17)

(1,3-Dibenzyl-4,5-diphenylimidazol-2-ylidene)gold(I) chloride (254 mg, 0.40 mmol) and
N-acetyl-L-cysteine ethyl ester (306 mg, 1.60 mmol) were dissolved in ethyl acetate (20 mL),
and potassium carbonate (221 mg, 1.60 mmol) was dissolved in water (20 mL). Both solutions were
mixed and stirred vigorously at rt for 24 h. The two phases were separated, and the aqueous phase was
washed with ethyl acetate (2 × 20 mL). The organic phases were combined and washed with 8% HCl
(20 mL), an aqueous saturated solution of NaHCO3 (20 mL), and an aqueous saturated solution of NaCl
(20 mL). The organic phase was dried over MgSO4, filtered, and concentrated to approximately 5 mL
before the addition of pentane (40 mL). The solution was cooled down to −20 ◦C to allow the product
to precipitate out of the solution before filtering and drying in vacuo. An off-white product was
isolated. Yield: 245 mg, 78%. 1H-NMR (400 MHz, CDCl3, δ ppm): 7.32–7.26 (m, 2H, CH), 7.24–7.18 (m,
10H, CH), 7.05–6.94 (m, 8H, CH), 5.43 (s, 4H, CH2-benzyl), 4.69 (dd, J = 8.4, 4.0 Hz, 1H, CH), 4.18–4.07 (m,
2H, CH2), 3.29–3.19 (m, 2H, CH2), 1.94 (s, 3H, CH3-NAC), 1.21 (t, J = 7.1 Hz, 3H, CH3-methyl). 13C-NMR
(101 MHz, CDCl3, δ ppm): 171.3 (NCN), 170.3 (C=O), 169.9 (C=O), 135.9, 131.9, 130.6, 129.2, 128.7,
128.5, 128.5, 127.9, 127.4, 127.4 (CHimidazol + CHphenyl + CHbenzyl), 61.0 (CH2-ethyl), 55.1 (CH), 52.9
(CH2-benzyl), 40.9 (CH2-NAC), 23.1 (CH3-NAC), 14.2 (CH3-ethyl). MS (QMS-MS/MS) m/z: 788.21 [M + H]+.
IR (ATR): 3030 (w), 1743 (m), 1660 (m), 1496 (m), 1446 (m), 1202 (m), 1178 (m), 1022 (m), 764 (m),
732 (m), 697 (s), 517 (m). Melting point range: 65–68 ◦C. Anal. calcd for C36H36N3O3AuS (787.78): C,
54.88; H, 4.62; N, 5.33; S, 4.07. Found: C, 54.83; H, 4.61; N, 5.27; S, 4.15.

3.3. Structure Determination

X-ray crystallography data was collected on a Rigaku Oxford Diffraction SuperNova A
diffractometer. Complex 12 was measured with Mo-Kα (0.71073 Å), while complexes 2, 13, and 14
were measured with Cu-Kα (1.54184 Å). A complete dataset was collected, assuming that the Friedel
pairs are not equivalent. An analytical absorption correction based on the shape of the crystal was
performed [32]. The structures were solved by direct methods using SHELXS [33] and refined by full
matrix least-squares on F2 for all data using SHELXL [33]. Hydrogen atoms were added at calculated
positions and refined using a riding model. Their isotropic temperature factors were fixed to 1.2 times
(1.5 times for methyl and OH groups) the equivalent isotropic displacement parameters of the parent
atom. Anisotropic thermal displacement parameters were used for all non-hydrogen atoms. CCDC
1854008 (2), CCDC 1850909 (12), CCDC 1850910 (13), CCDC 1850908 (14) contain the supplementary
crystallographic data for this paper, available free of charge from the Cambridge Crystallographic Data
Centre via www.ccdc.cam.ac.uk/structures.

3.4. MTT-Based Proliferation Assay

The cytotoxic activity of al gold complexes was determined via MTT-based proliferation
assays for the colon carcinoma cell line HCT-116wt, its p53 knockout mutant HCT-116−/−, and the
multidrug-resistant MCF-7topo breast cancer cell line. The cells, kept in Dulbecco’s Modified Eagle
Medium (1% anti-anti, 10% FBS), were seeded into the wells of a clear 96 well plate (5 × 104 cells/well)
and incubated for 24 h at standard cell culture conditions (37 ◦C, 5% CO2, 95% humidity). Appropriate
pre-dilutions of freshly made stock solutions (10 mM in DMSO) of 2–5, 12–15, and DMSO as negative
control, were added into the wells of the pre-incubated cells. After 72 h, the medium was exchanged
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for a MTT solution (0.05% in PBS) and the cells were further incubated for 2 h. Thereupon, the MTT
solution was again discarded, and the cells and violet formazan were dissolved in an SDS/DMSO
solution (1% SDS, 0.6% AcOH). After another incubation time of 1 h at 37 ◦C, the absorbance of
formazan at 570 nm, and the background at 630 nm, were measured. Means and SDs are calculated
from four independent measurements.

3.5. Computational Details

All compounds have been optimized at the MN15 [34] computational level with the
6–311++G(2df,p) basis set [35] applied to the lighter elements inclusive chlorine. The LANL2TZ(f) basis
set [36] is used throughout for the gold atoms. Frequency calculations have been performed at the same
level in order to confirm that the structures obtained correspond to energetic minima. The effect of
water solvation was then accounted for using the SMD approach implemented in the Gaussian16 [37]
package including dispersing, repulsing, and cavitation energy terms of the solvent in the optimisation.
Orbitals have been calculates using NBO 6.0 [38] and plotted using Jmol software [39].

4. Conclusions

In summary, a novel NHC*-Au(I)-cyanide complex (2), three NHC*-Au(I)-dithiocarbamates (3–5),
three NHC*-Au(I)-p-mercaptobenzoates (12–14), and three NHC*-Au(I)-NAC (15–17) complexes, were
synthesised and characterised.

Complexes 2–5 and 12–17 were based on the NHC* ligand system, as NHCs have
been shown to be stronger σ-donors than phosphines. DFT calculations, carried out at the
MN15/6-311++G(2df,p)/LANL2TZ(f) level, show the formation of NHC*-AuCl is more desired
than the phosphine alternative, Ph3P-AuCl. A more negative ∆H and concurrent NBO analysis favours
the NHC* ligand. Furthermore, calculated Au–Cl bond distances reveal the bond is shorter in the
NHC*-AuCl compound, and therefore, stronger than in the phosphine compound.

Cytotoxicity studies conducted against the human colon carcinoma cell lines HCT-116wt, its
p53 knockout mutant HCT-116−/−, and the mdr human breast cancer cell line MCF-7topo, show low
micromolar and even nanomolar activity. Complex 3 exhibited the best activity with IC50 values of
1.5 ± 0.1 µM and 0.28 ± 0.03 µM, against HCT-116wt and MCF-7topo cell lines, respectively. Overall,
the NHC*-Au(I)-thiolates proved to be more biologically active than complex 1 or 2, which lack the
influential Au–S bond.

Furthermore, the series of complexes with the NAC derivative (15–17) were the most successful
series of compounds tested. Complexes 15–17 displayed consistently high cytotoxic activity when
compared to the other sets, strongly suggesting the benefit of conjugating the NHC*-Au(I) to
a biological vector. These encouraging results may be valuable in the development of new anticancer
drugs that incorporate amino acid derivatives.

Supplementary Materials: See attached for 1H and 13C-NMR spectra of all novel compounds.
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