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Abstract: Simple sequence repeats (SSRs) or microsatellite markers derived from expressed sequence
tags (ESTs) are routinely used for molecular assisted-selection breeding, comparative genomic
analysis, and genetic diversity studies. In this study, we investigated 54,546 ESTs for the identification
and development of SSR markers in Pogostemon cablin (Patchouli). In total, 1219 SSRs were identified
from 1144 SSR-containing ESTs. Trinucleotides (80.8%) were the most abundant SSRs, followed by
di- (10.8%), mono- (7.1%), and hexa-nucleotides (1.3%). The top six motifs were CCG/CGG (15.3%),
AAG/CTT (15.0%), ACC/GGT (13.5%), AGG/CCT (12.4%), ATC/ATG (9.9%), and AG/CT (9.8%).
On the basis of these SSR-containing ESTs, a total of 192 primer pairs were randomly designed and
used for polymorphism analysis in 38 accessions collected from different geographical regions of
Guangdong, China. Of the SSR markers, 45 were polymorphic and had allele variations from two to
four. Furthermore, a transferability analysis of these primer pairs revealed a 10–40% cross-species
transferability in 10 related species. This report is the first comprehensive study on the development
and analysis of a large set of SSR markers in P. cablin. These markers have the potential to be used
in quantitative trait loci mapping, genetic diversity studies, and the fingerprinting of cultivars of
P. cablin.

Keywords: Pogostemon cablin; expressed sequence tag (EST); simple sequence repeat (SSR);
polymorphism; transferability

1. Introduction

Pogostemon cablin (Blanco) Benth., Laminaceae (Patchouli) is a hardy, perennial, and aromatic herb
that adapts to hot and humid climatic surroundings. It is widely distributed in the wilds of Indonesia,
Philippines, Malaysia, and other countries of Southeast Asia, and is extensively cultivated in South
China [1]. Patchouli essential oil is one of the most important materials used in the perfume industry [2].
In China, P. cablin is also used as a medicine for the treatment of the common cold, headache, fever,
vomiting, indigestion, and diarrhea [3,4]. Patchouli oil is also known for its protection against gastric
ulcers [5] and its antiseptic, anti-inflammatory, and antifungal properties [6,7]. Nowadays, growing
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interest in its fragrance and medicinal applications has promoted patchouli’s cultivation in South
China. Nevertheless, the therapeutic properties of P. cablin are directly correlated with the qualitative
and quantitative composition of its components, such as patchouli oil, which are obviously different
depending on the cultivar region of origin [8].

In this genomic era, deciphering the genomes of medicinal plants will enable insights into the
biochemistry of the genes responsible for secondary metabolism biosynthetic pathways, and then
improve the contents of the active ingredients. Recent advances in genome sequencing technologies
and assembly methods have resulted in the generation of genome sequences for a wide range of plant
species. However, despite the prominent roles of P. cablin in both traditional Chinese medicine and the
perfume industry, very few studies have examined the genomes of P. cablin. He et al. [9] reported the
first de novo assembled 1.15-Gb draft genome sequence for P. cablin from next-generation sequencing
technology in 2016, which is also the first draft of the genome of Lamiaceae.

In modern phylogenetic studies and genetic breeding studies of plant cultivars, molecular markers
have become important and efficient tools for genetic diversity assessment, quantitative trait loci
(QTL) analysis, and gene mapping. The genetic improvement strategy mainly relies on access to
genetic variation in the gene pool [10]. Diverse genetic materials need to be assessed for genetic
diversity among the accessions collected from widely separated geographical locations. Molecular
phylogenetic studies have clarified many relationships within Lamiaceae, inferred from cpDNA
sequences, nuclear DNA, and plastid DNA [11–17], but the genus Pogostemon has received relatively
scant attention. Some efforts have been made to assess the genetic variability in P. cablin; however,
only a few molecular marker-based studies have been carried out to achieve this goal, employing,
for instance, the random amplification of polymorphic DNA (RAPD) [18,19], inter-simple sequence
repeat (ISSR), and sequence-related amplified polymorphism (SRAP) [20]. These studies showed
different levels of polymorphism in P. cablin, suggesting the necessity to develop a large number of
markers that can be utilized for germplasm characterization and QTL analysis for P. cablin.

Simple sequence repeats (SSRs) or microsatellites consist of short tandem repeated motifs of 1 to
6 bp units, and occur in both the coding and noncoding regions of the genome [21,22]. SSR markers
are a good choice for a broad application in basic and applied plant biology, because of their high level
of polymorphism, high abundance, co-dominance, reproducibility, and high rates of transferability
across species and genera [21,23,24]. Expressed sequence tag-simple sequence repeats (EST-SSRs) are
markers mined from EST sequence collections. As markers, they differ from traditional genomic SSR
(gSSR) markers, as they are more likely embedded in functional gene sequences, less costly to identify,
and may provide more abundant information. EST-SSR markers are present in more conserved regions
in comparison to markers that are generated from genomic sequences, therefore, they show more
transferability between species [24,25]. In this study, we examined 54,546 EST sequences obtained
from the transcriptome sequencing of P. cablin in order to (1) develop EST-derived SSRs for P. cablin;
(2) analyze the frequency and distribution of EST-SSRs in the expressed portion of the genome;
(3) construct a functional annotation and prediction of amino acids from SSR loci; and (4) evaluate the
polymorphism and cross-species and genera transferability of EST-SSR markers.

2. Results

2.1. Characterization of EST-SSRs

A total of 54,546 patchouli EST sequences were screened for SSRs. The SSR screening resulted in
the identification of 1114 sequences containing 1219 SSRs (Table 1). A total of 1047 sequences contained
single SSRs of different motif types, and 67 sequences contained more than two SSRs.

Of the total 1219 SSRs, 1182 (97.0%) were simple repeat motifs and 37 (3.0%) were in compound
formation. The highest proportion of repeats (80.8%) was represented by trinucleotide repeats, followed
by dinucleotide (10.8%) and mononucleotide (7.1%) repeats, and only 1.3% hexanucleotide SSRs were
found (Figure 1a). The trinucleotide and dinucleotide repeats thus represented the majority of EST-SSRs
in P. cablin. The number of repeats of the different SSR motifs varied from 5 to 24, with a maximum
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frequency for five repeats, followed by six and seven repeats. The frequency of the trinucleotide
motifs with five repeats was more common (55.1%), followed by six-repeat trinucleotides (19.2%)
and six-repeat dinucleotides (7.6%). The frequency of different SSR motifs for each repeat number is
presented in Figure 1b. The length of the SSR region (motif length × repeat numbers) varied from 10
to 57 bases, with a maximum frequency for 15 bases (55.1%), followed by 18 bases (19.2%) and 12 bases
(7.6%) (Figure 1c).

Table 1. Summary of the in silico search for simple sequence repeats (SSRs) in Pogostemon cablin.

Parameters Used in Screening Data Generated by MISA

Total number of sequences examined 54,546
Total number of identified SSRs 1219

Number of SSR-containing sequences 1144
Number of sequences containing more than 1 SSR 67
Number of SSRs present in compound formation 37

Total size of examined sequences (bp) 36,417,906

Figure 1. Frequency distribution of the putative expressed sequence tag-simple sequence repeats
(EST-SSRs) from patchouli expressed sequence tags (ESTs) based on (a) the distribution of EST-SSRs
types, (b) the EST-SSRs repeat number, and (c) the EST-SSRs’ repeat lengths (bp).
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Among the dinucleotide repeats, AG/CT was the most common (90.9%) motif, followed by
AC/GT (8.3%) and AT/AT (0.8%). Among the trinucleotide repeats, CCG/CGG was the most
common, accounting for 18.9% of the total trinucleotide repeats, followed by the AAG/CTT (18.6%)
and ACC/GGT (16.8%) motifs (Table 2).

Table 2. The number of non-redundant SSRs in a set of 1219 patchouli expressed sequence tags (ESTs).

SSR Motif
Number of Repeats

Total
5 6 7 8 9 10 11 12 13 14 15 >15

A/T - - - - - 47 14 6 2 5 1 2 77
C/G - - - - - 5 2 1 1 9

AC/GT - 10 1 11
AG/CT - 83 24 10 1 2 120
AT/AT - 1 1

AAC/GTT 20 6 5 31
AAG/CTT 116 58 9 183
AAT/ATT 7 4 11
ACC/GGT 114 35 14 1 1 165
ACG/CGT 17 6 2 25
ACT/AGT 5 2 7
AGC/CTG 66 20 16 3 105
AGG/CCT 105 36 10 151
ATC/ATG 95 21 5 121
CCG/CGG 127 46 12 1 186

AAAGAT/ATCTTT 2 2
AAAGGC/CCTTTG 2 2
AACAGC/CTGTTG 2 2
AACCCT/AGGGTT 1 1
AATCCC/ATTGGG 1 1 2
AATCTG/AGATTC 1 1
AATGGT/ACCATT 1 1
ACAGCC/CTGTGG 2 2
ACCTCC/AGGTGG 1 1
ACTCCG/AGTCGG 1 1
AGCCCT/AGGGCT 1 1

Total 1219

2.2. Categories and Annotations of Unigenes

Based on a Basic Local Alignment Search Tool X (BLASTX) analysis, the EST-SSR-containing
unigenes were divided into three classifications according to their functions, namely (a) a biological
process; (b) a cellular component; and (c) a molecular function. The unigenes classified as being
involved in a biological process were shown to have a putative function in the metabolic process,
primary metabolism process, response to stimuli, biological regulation, cellular process, biosynthetic
process, and so on (Figure 2a). The unigenes classified as cellular components are shown in Figure 2b.
In the cellular component category, the greatest numbers of genes were found in the terms cellular
component, cell, and cell part. The unigenes classified in the molecular function category were shown
to have a putative function in binding, catalytic activity, DNA binding transcription factor activity,
transporter activity, nucleic acid binding transcription factor activity, and so on (Figure 2c).

Among the patchouli active components, the sesquiterpenoids and flavonoids are the most
abundant. However, although some of the genes involved in the terpenoid and flavonoid biosynthesis
have been isolated and functionally characterized, the global terpenoid and flavonoid biosynthesis
pathways in P. cablin remain yet to be fully characterized. The gene ontology (GO) analysis showed
that the functions of the identified genes are involved various biological processes. A large number
of catalysts and transferases were annotated, which suggests that our study may allow for the
identification of novel genes involved in the sesquiterpenoids and flavonoids synthesis pathways.
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Figure 2. Distribution of EST-SSR-encoded unigenes in P. cablin classified according to their biological
function, namely, (a) biological process, (b) cellular component, and (c) molecular function.
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2.3. Polymorphism and Cross-Species Transferability

In order to validate the EST-SSRs and test their transferability across related species of P. cablin,
192 primer pairs were designed randomly and 48 accessions were selected, including 10 from related
species that are widely used in traditional Chinese medicine and 38 P. cablin accessions. Out of these
192 primer pairs, 45 SSR markers were polymorphic (23.4%) and with allele variations from two to
four. Furthermore, only 12 SSR markers were found to be interspecifically amplifiable, and 10–40%
cross-species transferability in 10 related species were revealed. The characteristics of 45 EST-derived
SSRs for P. cablin are given in the Supplementary Materials.

3. Discussion

In this study, EST sequences were obtained and used for the development of a novel set of
functional markers. Among all of the EST-SSRs developed, the trinucleotide motifs were predominant,
corresponding to 80.8% of the EST-SSRs, which was 7.5 times higher than the amount of the second
abundant motif (dinucleotide, 10.8%). This may simply be reflecting the fact that trinucleotide SSRs do
not cause frame shifts when present in ESTs, because they are multiples of three (i.e., of the number
of nucleotides in a codon). This is not the case for di-, tetra-, and penta-nucleotide motifs. The most
common SSR lengths were 12, 15, 18 and 21, which were all multiples of three, supporting the idea
that there is a positive selection pressure for the in-frame SSRs in genic sequences [26].

EST-SSRs are derived from the expressed portion of the genome, therefore, they can be assayed
as gene-based functional markers for diversity assessment, gene mapping, and marker assisted
selection. The gene ontology (GO) classifies genes according to their function in three categories
(i.e., molecular function, biological process, and cellular component) [27]. In our study, most of the
identified unigenes matched unique known proteins that are present in the public databases, implying
that the transcriptome sequencing yielded a great number of unique genes in P. cablin. A large number
of unigenes were assigned to a wide range of GO functions, which indicated that the transcriptome
data represented a broad diversity of transcripts in P. cablin. Similar results were also reported in other
species [28–32]. The unigenes related to a biological process, such as the response to a stimulus and
a secondary metabolic process, should be paid more attention when studying the medicinal plants
whose activities rely on the content of secondary functional components generated by the response
against a stressor. By employing transcriptome sequencing and gene annotation, such a large number
of transcriptome sequences will provide an excellent resource for gene isolation and gene expression
profile analysis in P. cablin.

In China, cultivars of P. cablin in different regions have different morphological characters and
essential oil constituents. It was reported that P. cablin in China could be classified into two chemotypes,
the pogostone type and patchoulol type, whose essential oils contain extremely high amounts of
pogostone and patchoulol, respectively [8,33]. The pogostone type patchouli plant is mainly cultivated
in the areas of Guangzhou and Zhaoqing in Guangdong Province, and is called ‘Paixiang’ and
‘Zhaoxiang’, respectively, in Chinese, whereas the patchoulol type P. cablin is cultivated in the areas
of Zhanjiang in Guangdong Province and Wanning in Hainan Province, and is called ‘Zhanxiang’
and ‘Nanxiang’, respectively. Traditionally, Paixiang is considered an authentic herb, according to the
traditional Chinese medicine theory. Additionally, the patchoulol type is mainly used in the perfume
industry because of its higher yield of essential oil compared with the pogostone type P. cablin [33].
Unfortunately, Paixiang, which is considered a genuine herbal material, is becoming rare, because
its cultivation has been greatly decreased as a consequence of the expansion of the urban area of
Guangzhou city. In order to explore the genetic features of the authentic cultivar and to accelerate
the development of genetically improved cultivars, it is desirable to understand the inheritance
pattern of complex quantitative traits like yield and adaptability. This can be facilitated by developing
DNA-based markers, such as SSRs, and applying them to estimate the level of genetic diversity and to
construct a framework linkage map and QTL mapping for tagging the target traits [24,34,35]. Molecular
markers are widely distributed in various regions of the genome. By comparing the polymorphism
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of molecular markers randomly-distributed in the genome, the diversity of plants can be evaluated
and used to cluster the species, and to understand their phylogeny and phylogenetic relationships.
In this study, the cross-species transferability of EST-SSRs could help understand the evolution of
microsatellites in a phylogenetic context, and EST-SSRs on a genic loci might play an important role in
speciation or gene functionality diversification during the evolutionary process. The development
of patchouli EST-SSR markers provides a powerful tool for the study of phylogenetic Pogostemon
genus and Labiatae family. More importantly, the EST-SSR markers developed in this study are a
good resource for molecular marker-assisted breeding. Consequently, these EST-SSR markers are
useful tools to map the genes related to bioactive components. This study, for the first time, reports
the development of high-throughput EST-SSR markers in P. cablin, and assesses their transferability
across a wide spectrum of related species and genera. The patchouli EST-SSR markers that have been
developed are valuable genetic resources for investigating species relationships and for comparative
mapping in the Labiatae family.

4. Materials and Methods

4.1. Plant Materials and DNA Isolation

A total of 38 patchouli accessions and one accession each of 10 related plants (Mesona chinensis
Benth., Prunella vulgaris L, Salvia bowleyana Dunn, Stachys geobombycis C. Y. Wu, Teucrium viscidum,
Dysophylla aurl Cularia [L.] Blume, Mentha haplocalyx Briq., Mentha spicata Linn., Leonurus artemisia
[Laur.] S. Y. Hu F, and Salvia plebeia R. Br.) were used for the examination of polymorphism and for the
transferability of patchouli EST-derived SSR-markers (Table 3).

Genomic DNA was isolated from fresh, young leaf tissues of patchouli accessions using the
Cetyltrimethylammonium bromide (CTAB) method [36]. The genomic DNA was purified using the
GenElute genomic DNA miniprep kit (SIGMA Aldrich, St. Louis, MO, USA). The DNA quality and
final concentration were estimated by agarose gel electrophoresis, using a known concentration of
uncut λDNA as a standard.
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Table 3. List of 38 patchouli accessions used in the analysis of genetic diversity.

Resource No. of Accessions Sampled Origin Latitude (N) Longitude (E)

Pogostemon cablin (Blanco) Benth cv. Hainangensis 3 Longdong, Guangzhou city 23◦12′20′ ′ 113◦22′36′ ′

Pogostemon cablin (Blanco) Benth cv. Shipaiensis 3 Longdong, Guangzhou city 23◦12′20′ ′ 113◦22′36′ ′

Pogostemon cablin (Blanco) Benth 3 Longdong, Guangzhou city 23◦12′20′ ′ 113◦22′36′ ′

Pogostemon cablin (Blanco) Benth cv. Hainangensis 6 Didou Town, Zhaoqing City 23◦33′58′ ′ 112◦43′03′ ′

Pogostemon cablin (Blanco) Benth cv. Hainangensis 4 Liantang Town, Zhaoqing City 22◦57′04′ ′ 112◦27′54′ ′

Pogostemon cablin (Blanco) Benth cv. Gaoyaoensis 4 Liantang Town, Zhaoqing City 22◦57′04′ ′ 112◦27′54′ ′

Pogostemon cablin (Blanco) Benth cv. Hainangensis 5 Yingli Town, Zhanjiang City 20◦29′51′ ′ 109◦58′10′ ′

Pogostemon cablin (Blanco) Benth cv. Hainangensis 5 Yingli Town, Zhanjiang City 20◦33′51′ ′ 110◦04′03′ ′

Pogostemon cablin (Blanco) Benth cv. Hainangensis 5 Tanshui Town, Yangjiang City 22◦04′25′ ′ 111◦30′19′ ′
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4.2. Transcriptome Sequencing of P. cablin

For the transcriptome sequencing, the young leaf tissues of three patchouli cultivars were collected
and used to build up RNA libraries. The samples were immersed in liquid nitrogen immediately after
collection and then stored at −80 ◦C. The total RNA was isolated using the Trizol reagent (Invitrogen,
Carlsbad, CA, USA), according to the manufacturer’s instructions. The quality of the total RNA
was checked on a spectrophotometer, the NanoDrop 2000c (Thermo Scientific, Waltham, MA, USA),
and a 2100 Bioanalyzer (Agilent, Santa Clara, CA, USA). The RNA samples were stored at −80 ◦C
until further use. Poly(A) mRNA was isolated with oligo(dT) beads. The first-strand cDNA was
synthesized using a random hexamer-primer and reverse transcriptase (Invitrogen, Carlsbad, CA,
USA). The second-strand cDNA was synthesized using RNase H (Invitrogen, Carlsbad, CA, USA)
and DNA polymerase I (New England BioLabs, Ipswich, MA, USA). Then, the cDNA libraries were
prepared according to Illumina’s protocols (San Diego, CA, USA), and were subjected to the Illumina
Genome Analyzer’s proprietary sequencing-by-synthesis method. The sequencing was carried out at
the Beijing Genomics Institute (BGI, Shenzhen, China). In total, three single-end cDNA libraries were
constructed for each patchouli cultivar. The raw sequencing dataset for the P. cablin was submitted to
the NCBI/SRA database under accession number SRP150583.

4.3. De Novo Assembly and Mining for EST-SSRs

The raw sequencing reads were first filtered by removing the invalid reads, and then including
the reads with an adaptor contamination, with ambiguous ‘N’ bases at a ratio greater than 5% and
reads with a more than 50% base with a quality lower than 20 in one sequence. The short clean reads
were assembled using Trinity software to construct contigs. These contigs were used for the further
process of sequence clustering, with the software TGICL (TIGR Gene Indices clustering tools) to form
unigenes [37]. The 54,546 ESTs were searched for microsatellites using MIcroSAtellite (MISA) scripts
(http://pgrc.ipk-gatersleben.de/misa/). The criteria for the SSR search by the MISA were repeat
stretches having a minimum of six repeat units for dinucleotide SSRs, and five repeat units in case of
tri-, tetra-, penta-, and hexa-nucleotide SSRs. The identified EST-SSR sequences were deposited in the
Genebank so as to obtain the accession numbers. The putative function of the developed functional
markers-encoding unigenes was found using the BLASTX tool of NCBI, assuming an e-value < 1 ×
10−10 as a significant homology.

4.4. Designing EST-SSR Primers

The primer sets were designed using Primer3 [38] and the Primer3 interface modules scripts by
the MISA developers at http://pgrc.ipk-gatersleben.de/misa/primer3.html. The parameters used
for primer design were (1) a primer length of 18–24 bp, with an optimum of 20 bp; (2) an annealing
temperature of 50–60 ◦C, with an optimum of 55 ◦C; (3) a percentage GC in the range of 40–50; and (4)
a product size in the range of 100–400 bp.

4.5. Polymerase Chain Reaction (PCR) Amplification and Polymorphism Validation

A total of 38 wild patchouli accessions and one accession each of 10 related species were used for
the examination of the polymorphism and transferability of the patchouli EST-derived SSR-markers.
The PCR amplifications of the genomic DNA were performed in a 10 µL solution containing the
following components: 1× PCR buffer (10 mM Tris-HCl, 50 mM KCl, 1.5 mM MgCl2), 0.2 mM
of each dNTP, 0.2 µM of each locus-specific primer, 0.075 µM M13 (−21) primer labelled at the
5′ end with 6-carboxy-fluorescine (FAM) and hexachloro-6-carboxy-fluorescine (HEX), 0.25 U of
Taq polymerase (Fermentas, Vilnius, Lithuania), and 20 ng of genomic DNA. The amplification
was performed in PE9700 (Applied Biosystems, Waltham, MA, USA) or T-gradient (Biometra, Jena
Germany) thermalcyclers, using a two-step PCR protocol, with an initial touchdown cycle of 94 ◦C
for 5 min, followed by five cycles of 30 s at 94 ◦C, 30 s at 60 ◦C (which was lowered by 1 ◦C for each

http://pgrc.ipk-gatersleben.de/misa/
http://pgrc.ipk-gatersleben.de/misa/primer3.html
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cycle), and 30 cycles at 55 ◦C, and ending with a 20 min extension step at 72 ◦C. The PCR products
were detected by gel electrophoresis in a 2% agarose–1 × Tris-borate-EDTA (TBE) buffer. The sequence
analysis was performed on an ABI 3730 DNA Sequence Analyzer.

5. Conclusions

Currently, the development of functional molecular markers such as EST-SSRs is becoming a
valuable objective with regards to plants, especially in marker-assisted breeding programs. In this
research article, a set of novel EST-SSRs developed from cDNA libraries were identified and
characterized. A total of 45 polymorphic EST-SSR markers were ultimately screened and confirmed
across 38 patchouli populations and, interestingly, showed a 10–40% cross-transferability, in 10 related
species of Lamiaceae. There is no doubt that these novel EST-SSRs will be helpful for future research
on genetic diversity, population structure, evolutionary processes, linkage map construction, and QTL
mapping for P. cablin. In addition, as a codominant marker, EST-SSRs are abundant in the genome,
and can be used as an ideal tool for maker-assisted breeding, constructing genetic maps, and for the
cloning of key genes for P. cablin.
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