New 2-oxoindolin phosphonates As Novel Agents to Treat Cancer: A Green Synthesis and Molecular Modeling.

Shailee V. Tiwari ¹, Nawaz S. Sharif ¹, Rekha I. Gajare ¹, Julio A. Seijas Vazquez², Jaiprakash N. Sangshetti¹, Manoj D. Damale¹, Anna Pratima G.Nikalje¹*

¹Y. B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Rauza Baug, Aurangabad 431001, Maharashtra, India; <u>shailee2010@gmail.com</u>, <u>nawajsharifsk@gmail.com</u>

² Departamento de Química Orgánica, Facultad de Ciencias, Universidad of Santiago De Compostela, Alfonso X el Sabio, Lugo 27002, Spain; julioa.seijas@usc.es, pilar.vazquez.tato@usc.es

*Corresponding author Email: annapratimanikalje@gmail.com; contact: +91 9168929111

2. Results

2.1. Chemistry

The mechanism of synthesis is as shown in Figure S1

Figure S1. The proposed mechanism for the synthesis of 4(a-n) derivatives.

In Vitro Anticancer evaluation

In vitro anticancer activity images which were captured under the Eclipse Ti-S Inverted Research Microscope-Nikon and the images were processed using NIS-Elements software. The images of the *in vitro* anticancer activity of all the synthesized compounds **4(a-n)** on the MCF-7, IMR-32, SK-MEL-2, MG-63, HT-29 and Hep-G2 cancer cell lines are as shown in Figure S2, Figure S3, Figure S4, Figure S5, Figure S6 and Figure S7, respectively.

Figure S2. Images for *in-vitro* anticancer activity against MCF-7 cell line of the synthesized compounds **4** (**a-n**), control and positive control.

Figure S3. Images for *in-vitro* anticancer activity against IMR-32 cell line of the synthesized compounds **4(a-n)**, control and positive control.

Figure S4. Images for *in-vitro* anticancer activity against SK-MEL-2 cell line of the synthesized compounds **4(a-n)**, control and positive control.

Figure S5. Images for *in-vitro* anticancer activity against MG-63 cell line of the synthesized compounds **4** (**a-n**), control and positive control.

4d

4e

4f

4h

4k 41

Control positive control Figure S6. Images for *in-vitro* anticancer activity against HT-29 cell line of the synthesized compounds 4(a-n), control and positive control.

4j 4g 4m

4k **41** (i)

Controlpositive controlFigure S7. Images for *in-vitro* anticancer activity against Hep-G2 cell line of the synthesized
compounds 4(a-n), control and positive control.

¹HNMR spectrum of compound 4b

¹³ CNMR spectrum of compound 4b

Mass spectra of compound 4b

Molecular Weight: 421.81, Molecular ion peak: 422.33

³¹P NMR spectrum of compound 4b

¹H NMR spectrum of 4d

Mass spectra of 4d

Molecular Weight: 417.40, Molecular ion peak: 418.42.

IR spectra of 4g

Elemental analysis of compound 4g

Component Name	Retention Time (min)	Area (.l*uV*sec)	Element %
Nitrogen	0.658	1048085	9.758
Carbon	0.975	6991914	55.490
Hydrogen	3.942	1499294	5.512
		9539293	70.760