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Abstract: Titanium dioxide nanoparticles (TiO; NPs) are widely used in industry and daily life. TiO,
NPs can penetrate into the body, translocate from the lungs into the circulation and come into contact
with cardiac cells. In this work, we evaluated the toxicity of TiO, NPs on H9¢2 rat cardiomyoblasts.
Internalization of TiO, NPs and their effect on cell proliferation, viability, oxidative stress and cell
death were assessed, as well as cell cycle alterations. Cellular uptake of TiO; NPs reduced metabolic
activity and cell proliferation and increased oxidative stress by 19-fold measured as H,DCFDA
oxidation. TiO, NPs disrupted the plasmatic membrane integrity and decreased the mitochondrial
membrane potential. These cytotoxic effects were related with changes in the distribution of cell cycle
phases resulting in necrotic death and autophagy. These findings suggest that TiO, NPs exposure
represents a potential health risk, particularly in the development of cardiovascular diseases via
oxidative stress and cell death.

Keywords: titanium dioxide nanoparticles; cardiomyoblasts; internalization; oxidative stress;
necrosis; autophagy

1. Introduction

Titanium dioxide nanoparticles (TiO, NPs) are widely used in foods, medicines, and cosmetics [1].
Human exposure occurs either by oral, dermal or inhalation routes [2]. Although initially considered
safe and inert, TiO, NPs may actually be harmful for human health. For example, mice exposed to
TiO, NPs developed strong pulmonary inflammation, acute phase responses and cytokine release
into circulation [3]. In mice instilled intratracheally with low (18 pg) and high (162 pg) TiO, NPs
doses, these nanoparticles were accumulated in heart and liver and translocated into circulation 24 h
after exposure [4]. TiO, NPs activated the complement cascade and inflammatory processes in the
heart, and triggered early innate immune responses in blood mediated by the complement factor 3.
In liver, TiO; NPs altered gene expression related to acute phase response [4]. Oral and intravenous
administrations of various TiO, NPs resulted in accumulation in many organs including liver, lung
and heart, regardless of particle size, crystalline form or hydrophobicity [5]. Furthermore, abdominal
injection of TiO, NPs in mice caused titanium accumulation in several organs, seriously damaging the
liver, kidneys and heart and altering blood sugar and lipids [6]. Taken together, these results suggest
that TiO, NPs can accumulate in different organs producing tissue damage and inflammation.
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Despite TiO, NPs have been described as an inert material [7], several studies have shown
the opposite. In the cardiovascular system, several experiments in vivo have shown myocardial
damage, oxidative stress, inflammation and atherosclerosis in mice exposed to TiO, NPs [6]. Daily
gastrointestinal administration of TiO, NPs at 0, 2, 10, 50 mg/kg in rats for up to three months resulted
in cardiac dysfunction and inflammatory response [7]. Intragastric feeding of mice with TiO, NPs for
nine consecutive months resulted in their accumulation in the heart causing inflammation, apoptosis
and cardiac dysfunction [8].

Other studies have shown a strong increase of reactive oxygen species (ROS). Sheng and
collaborators [9] administered different doses (2.5, 5, 10 mg/kg body weight) of TiO, NPs for a
long-term exposure (90 days) inducing oxidative stress and antioxidant system attenuation in mice
heart. TiO, NPs accumulated in the heart causing sparse cardiac muscle fibers, inflammatory response,
cell necrosis, and cardiac biochemical dysfunction. There was an increase of superoxide radicals,
hydrogen peroxide, malondialdehyde, carbonyl and 8-OHdG, as well as degradation products of
proteins, lipids and DNA oxidation [9]. Overall, cell toxicity induced by nanoparticles has been
associated to induction of oxidative stress. One study showed that macrophage-like THP-1 and
HPMEC-ST1.6R microvascular cells exposed to TiO, NPs were sensitive to endogenous redox changes
and apoptosis [10,11]. A549 cells incubated with TiO, NPs (Anatase 22.1 nm) for 24 h showed
reduced cell viability and increased lactate dehydrogenase activity in a concentration-dependent
manner, indicating cell membrane damage [12]. Also murine microglial cells (BV-2) treated at different
concentrations of TiOp NPs (0.1 to 200 ug/mL) showed a slight inhibition of cell growth. High TiO, NPs
concentrations enhanced permeability of cytoplasmic membrane to propidium iodide (PI), associated
with loss of mitochondrial membrane potential (AYm) and overproduction of superoxide anions [13].
In primary rat cortical astrocytes and human lung fibroblast cells (WI-38), TiO, NPs induced ROS
generation and reduced A¥Ym [14]. Moreover, food grade TiO, NPs promoted intracellular oxidative
stress in WI-38 cells, altering cell cycle progression (G2/M > S > G0/G1) [15].

Many studies have described negative effects of TiO, NPs in various systems and cell types [2,11].
In the cardiovascular system, these nanoparticles induce tissue damage and inflammatory responses;
however, the underlying mechanisms are not well understood. Therefore, in order to assess the impact
of TiO, NPs on cardiac cells we evaluated their cellular uptake in H9c2 rat cardiomyoblasts and the
mechanisms associated with their nanotoxicity.

Since TiO, NPs can translocate into the systemic circulation and the heart [4], we hypothesized
that these nanoparticles could induce damage to cardiac cells. To test this hypothesis, we exposed H9¢c2
cells to TiO, NPs and examined their effects on cell cycle phases, mitochondrial function, oxidative
stress, cell death and autophagy.

2. Results

2.1. Internalization of TiO» NPs

Due to their small size, nanoparticles uptake can occur in cardiac cells. In order to corroborate
this, H9¢2 cells were exposed to 5 ug/cm? TiO; NPs for 24 h and were then analyzed by transmission
electron microscopy (TEM). Numerous nanoparticle aggregates with size < 500 nm were observed
inside cells (Figure 1B); however, large aggregates > 2 uM were also present (Figure 1C,D). Internalized
TiO, NPs were localized in the cytoplasm but solid core NPs were not observed inside cell organelles.
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Figure 1. Internalization of TiO, NPs was evaluated by TEM. Cells were treated with 5 ug/cm? TiO,
NPs for 24 h and analyzed in a JEOL 10-10 microscope and an AMT Camera System. TEM micrographs
of non-exposed cells at a direct magnification of 10,000x (A) and treated cells a magnification of
15,000 (B), 8000% (C) and 40,000x (D) are shown.

2.2. TiOy NPs Inhibited Proliferation and Decreased Metabolic Activity

Large TiO, NPs aggregates observed inside cells could induce cytostatic/cytotoxic effects,
therefore we evaluated their impact on cell proliferation and viability. To measure proliferation,
HO9c2 cells were exposed to different TiO; NPs concentrations for 72 h and were stained with
crystal violet. Results showed that high NPs concentrations (20 and 40 pg/cm?) decreased cell
proliferation in about 30% (p < 0.05 versus control cells) (Figure 2A). To evaluate viability, a MTT
assay was performed. The metabolic activity was measured by MTT reduction to purple formazan
by mitochondrial dehydrogenases in living cells. TiO, NPs from 5 j1g/cm? decreased cell metabolic
activity by 30%, and the maximum effect was achieved at 40 pg/cm? with 60% inhibition, compared to
control cells (Figure 2B). The half maximal inhibitory concentration (ICsp) was 20 ug/ cm? (100 ug/mL);
therefore, further experiments in H9¢2 cells were performed at this concentration.
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Figure 2. TiO, NPs treatment inhibited cell proliferation and decreased metabolic activity. H9c2 cells
were treated with different TiO, NPs concentrations (5, 10, 20, 40 ug/ cm?) for 48 h. Cell proliferation
was evaluated by crystal violet staining and viability by MTT reduction. Results were expressed as
mean =+ standard deviation (SD) of three independent experiments (1 = 15). * Significant difference
between control (untreated) and treated cells (p < 0.05).

2.3. TiOy NPs Changed Cellular Redox State

TiO, NPs diminished cell viability and this cytotoxic effect is generally associated with
oxidative stress. = Therefore, we measured cellular redox state and ROS production by
2/,7'-dichlorodihydrofluorescein diacetate (H,DCFDA) oxidation. Results showed that TiO,
NPs strongly increased the fluorescence intensity in direct proportion to HyDCFDA oxidation.
This increment was observed at all evaluated times; however, the highest effect was obtained at
day one of treatment with a 17-fold increase (p > 0.05) vs. control cells (Figure 3).
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Figure 3. TiOy NPs treatment changed cellular redox state. H9c2 cells were treated with TiO, NPs
(20 ug/ cm?) alone for 1,2, 3,and 7 days and cellular redox state was evaluated by HyDCFDA oxidation.
Cells treated with H,O, (500 uM) for 1 day were used as positive controls. Results were expressed as
fluorescence intensity in arbitrary units and as mean + standard deviation (SD) of three independent
experiments (1 = 15). * Significant difference between control (untreated) and treated cells (p < 0.05).
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2.4. TiO, NPs Decreased the Mitochondrial Membrane Potential

Oxidative stress was measured by changes in the AYm with rhodamine 123 (Rh123). This molecule
is cell membrane permeable and localizes in the mitochondria of viable cells, but when the A¥Ym is
altered, Rh123 is released and the fluorescence intensity decreases. TiO, NPs decreased the fluorescence
by 50% with a significant statistical difference from 48 h of treatment, indicating alterations in the A¥Ym
(Figure 4).
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Figure 4. TiO, NPs decreased AYm in H9c2 cells treated with 20 pg/ cm? TiO, NPs for 24, 48, and
72 h. A¥m changes were measured by the fluorescent dye Rh123 in a flow cytometer. (A) Histograms
of a representative experiment performed independently. (B) Densitometric analysis expressed as
fluorescence intensity (arbitrary units). Data are presented as mean + standard deviation (SD) of three
independent experiments (1 = 3). * Significant difference between control (untreated) and treated cells
(p <0.05).

2.5. TiOy NPs Altered Cell Cycle Phases

To determine whether the effect of TiO, NPs on cell proliferation and viability was associated
with cell cycle alterations, H9c2 cells were exposed to 20 pg/cm? TiO, NPs for 24, 48 and 72 h and the
cell cycle phases were evaluated. The number of cells in the G1 phase decreased by 22% after 48 h of
treatment and reached 34% at 72 h compared with control cells. No significant changes were observed
in the S and G2/M phases in the same periods. The percentages of sub G1 cells significantly increased
in a time-dependent manner, and peaked at 72 h with 39.9%. These results indicate that NPs caused
important changes in the distribution of cell cycle phases after 48 h of exposure (Figure 5).
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Figure 5. Effect of TiOp NPs on cell cycle. H9¢2 cells were treated with 20 pg/ cm? TiO, NPs for 24,
48, and 72 h and cell cycle was analyzed by quantitation of DNA content through flow cytometry.
Histograms (A) and table (B) show the percentage of cell populations in each phase. In (B), data
were analyzed by the CellQuest Pro software (Becton Dickinson) and expressed as mean =+ standard
deviation (SD) of three independent experiments (n = 3). * Significant difference between control
(untreated) and treated cells (p < 0.05).

2.6. TiOy NPs Induced Necrotic Death and Autophagy

Since TiO, NPs induced a significant increase in sub-G1 peak, we characterized the type of cell
death. No significant change in apoptosis was observed with TiO, NPs at any time; however, TiO, NPs
produced a slight but significant 20% increase in necrotic cell death after 24 h of treatment (Figure 6).
This was consistent with higher LDH release (30%) (p < 0.05) at 24 and 48 h (Figure 7).
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Figure 6. TiO, NPs induced necrotic death. H9¢2 cells were treated with 20 ug/ cm? TiO, NPs for 24,
48, and 72 h, then apoptotic and necrotic death was measured by annexin-V and propidium iodide
staining. Dot blots show resolution of live, apoptotic and necrotic populations (A) and the bar chart
show the percentages (B) as mean =+ standard deviation (SD) of three independent experiments (1 = 3).
* Significant difference between control (untreated) and treated cells (p < 0.05).
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Figure 7. TiO, NPs induced LDH release. H9¢c2 cells were treated with 20 pg/ cm? TiO, NPs for 24,
48, and 72 h and then an LDH-based cytotoxicity assay was performed. Results are presented as
mean =+ standard deviation (SD) of three independent experiments (1 = 3). * Significant difference
between negative control (untreated) and treated cells (p < 0.05).

TiO, NPs also induced strong morphological changes related to increased numbers of cell vacuoles
(data not shown). Since autophagy is a self-degradative process and a survival mechanism involving
generation of vacuoles [16], autophagic vesicles were detected using a novel and selective green
fluorescent dye. TiO, NPs induced a nine-fold increase of fluorescence after 24 h of treatment,
indicating the formation of autophagic vacuoles (Figure 8).
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Figure 8. TiO, NPs induced autophagy. H9c2 cells were treated with 20 pg/ cm? TiO, NPs for 24 h and
autophagy was evaluated through a detection kit by flow cytometry (A,B) and confocal microscopy
(©). In (B), results are presented as mean =+ standard deviation (SD) of three independent experiments
(n = 3). * Significant difference between untreated cells (0) and TiO, NPs-treated cells (p < 0.05). In (C),
nuclear stain with DAPI and green detection reagent (autophagy) are showed.
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3. Discussion

There is evidence that TiO; NPs can translocate to the heart via systemic circulation [4]. In this
work we evaluated whether TiO, NPs could have adverse effects on cardiomyocytes, measured
through cell viability, oxidative stress, A¥m, cell cycle and cell death.

TiO, NPs decreased cell proliferation and induced a strong cytotoxic effect on H9¢c2 cells,
associated with increased oxidative stress and alterations of AYm. Important changes in cell cycle
phases were observed in association with necrotic death and autophagy. TiO, NPs also disrupted the
integrity of cell membrane leading to increased permeability and LDH release (Figure 6).

Despite the fact TiO; NPs have been considered as inert and nontoxic, a growing body of evidence
suggests quite the opposite. Cytotoxic effects of TiO, NPs are generally associated with cell growth
inhibition in different cells types [13,17-22]; however, our results are the first evidence of their toxicity
in cardiac H9¢2 cells. The inhibitory concentration ICsy was 20 ug/ cm? (75 ug/mL), consistent with
other in vitro studies [23]. Although this concentration of TiO, NPs is higher than those of occupational
exposure or commercial products, TiO, NPs may accumulate by long-term exposure and become toxic.
Particles of few nanometers in size can translocate through the air-blood-barrier in approximately
10% [24]. Considering that 40 ug/ cm? of TiO, NPs could be present in hot-spots of airways and lungs of
exposed humans [25], then approximately 4 jg/cm? could enter into systemic circulation. Once there,
particles become highly diluted, but their bioaccumulation in different tissues is not well documented,
therefore we hypothesized that these concentrations could be reached over long-term exposures. In a
recent study, the biokinetics of 48 V-radiolabeled TiO, NPs was investigated in rats at retention time
points 1, 4, 24 h and seven days after oral application of a single dose by intra-esophageal instillation.
Their results showed that 0.6% of the administered dose passed the gastro-intestinal-barrier after one
hour and about 0.05% was still distributed in the body after seven days, indicating the possibility of
chronic accumulation of nanoparticles in secondary organs and the skeleton [26].

We observed internalization of TiO, NPs by H9¢2 cells and these nanoparticles remained within
cells even after cell division. Nanoparticles were accumulated in the cytoplasm but no interactions
with organelles were observed (Figure 1). Chronic exposures at low concentrations of TiO; NPs in
human bronchial epithelium cells (BEAS-2B) showed cellular uptake and cell transformation [27],
supporting our observations. Few studies have analyzed the exocytosis of nanoparticles in mammalian
cells. Wang et al. [28] showed that TiO, NPs were internalized by the neural stem cells after 48 h
incubation, and only 35% was exocytosed after 24 h.

Nanoparticles interact directly with cells as complexes or aggregates [29]. The real identity
and toxicity of TiO, NPs in biological systems is a function of surface charge, size, solubility, shape,
hydrophobicity, dose and crystalline structures [30]. Nanoparticle surface becomes saturated by
phospholipids, proteins, DNA, small molecules and inorganic ions. The nanoparticle surface ligand
induces protein corona misfolding and therefore indirectly enhances cellular uptake [31].

TiO, reduction to nanosize increases surface area changing their electronic configuration and
reactivity. These modifications also affect cell binding and internalization. The size of TiO, NPs
aggregates in culture medium containing FBS is reduced, enhancing dispersion [32], facilitating contact
with cells and toxicity.

Our results showed that TiO, NPs induced oxidative stress in H9¢2 cells evidenced by changes in
redox state (increased ROS production). After one day of exposure, TiO, NPs induced ROS generation
but this declined after two days. A subsequent increase and decrease occurred at three and seven
days, respectively. We hypothesize that after two days of treatment, the antioxidant defense system
counteracts cell and mitochondrial damage, but after three days, cells lose this capacity. After seven
days of exposure, the extent of cell damage is greater, making difficult to evaluate ROS production.
TiO, NPs can produce ROS such as hydroxyl radicals and superoxides in the dark. These oxidize
serum proteins to form a protein corona on the nanoparticles surface. This oxidized protein could be
responsible for the oxidative stress induced by TiO, NPs in H9¢2 cells [33]. In a previous experiment
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performed in acellular conditions using a dithiothreitol (DTT) assay [34], we found the oxidant
potential of TiO, NPs.

Oxidative stress appears to be the underlying mechanism of in vivo genotoxicity of titanium [35].
We previously showed that oxidative stress induced by TiO, NPs can upregulate early and late
receptors for adhesion molecules on monocytes [36]. Taken together, these data indicate that
oxidative stress plays an important role and could be the primary mechanism for TiO, NPs toxicity
in cardiomyoblasts.

Oxidative stress was related with dissipation of A¥Ym in H9c2 cells, indicating mitochondrial
dysfunction. Similar results were observed in H9¢c2 cells exposed to platinum-coated TiO, NPs (Pt-TiOp
NPs) [37]; and in primary astrocytes exposed to different types of TiO, NPs, altering mitochondrial
morphology, ROS generation, and A¥Ym, suggesting mitochondrial damage [14]. Mitochondrial
dysfunction leads to ROS overproduction, damage to cellular components and cell death, forming a
vicious cycle [38].

Studies in yeast and complex eukaryotes show that fluctuations in oxygen consumption, energy
metabolism, and cell redox state are intimately integrated with cell cycle progression [39]. Therefore,
we evaluated cell cycle phases in H9¢2 cells exposed to TiO, NPs. Our results showed that TiO, NPs
induced changes in the cell cycle. The proportion of GO/G1 phase cells decreased and the percentage of
sub-G1 region events increased after 48 and 72 h of exposure, associated with necrosis and autophagy.
Different forms of TiO, NPs induced cell cycle arrest in various cells types [15,40,41], in connection
with elevated ROS levels [40,42,43], indicating that cytotoxic effects of TiO, NPs are related to oxidative
stress, cell cycle alterations and cell death.

HO9c2 cells exposed to TiO, NPs had severe damage resulting in strong autophagy (Figure 8).
Autophagy involves lysosomal degradation of cytoplasmic components such as mitochondria and
other intra-cellular structures [44,45]. Autophagy increases following mitochondrial dysfunction such
as generation of low ATP levels; therefore, mitochondria have a key role in autophagy [46]. Autophagy
is implicated in tumor suppression through cell cycle arrest, promoting genome and organelle integrity,
or through inhibition of necrosis-mediated inflammation [16]. Autophagy has also been linked to
pathologic conditions of cardiac remodeling that involve an increase of cardiomyocyte death [47-50].
Autophagy observed in H9¢2 cells may be a consequence of necrosis and inflammation induced by
TiO, NPs in order to counteract the damage. In the heart autophagy can be either beneficial or harmful,
but enhanced autophagy can induce cell death [51].

Some degree of necrosis but not apoptosis was observed in H9c2 cells exposed to TiO, NPs.
Cardiomyocytes may undergo apoptosis, necrosis and autophagic death [52]. Necrosis and apoptotic
cell death depend in part, on ATP levels. In situations where ATP depletion is extreme, apoptosis
is inhibited and then necrosis might occur [52]. Necrosis may also result from acidosis and higher
calcium concentrations. Nanoparticles possibly induced changes in ATP levels, acidosis or increased
intracellular calcium levels resulting in necrotic death of H9c2 cells.

The mitochondrial intermembrane protein and activator of caspases is released from the
intermembrane space following outer membrane rupture. ROS production and mitochondrial
alterations induced by TiO; NPs in H9¢2 cells may promote mitochondrial permeability transition
and subsequent cell death. Cellular features of necrosis, apoptosis, and autophagy frequently co-occur
after death signals and toxic stress [50]. Further studies are needed to evaluate whether long term
exposure of cells to TiO, NPs produces autophagic death.

In summary, TiO, NPs cause severe damage to cardiomyoblasts cells in vitro through inhibition
of proliferation (1), induction of oxidative stress and mitochondrial dysfunction (2, 3), autophagy
(4), membrane permeability and necrotic death (5) (Figure 9), indicating that occupational and
environmental exposures to these NPs, could eventually lead to heart damage and the development
of cardiovascular diseases. Taken together, these results suggest that nanoparticles accumulation
in cardiomyoblasts, could eventually drive cardiac damage and adverse health effects in the
exposed population.
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Figure 9. Toxic effects induced by TiO, NPs in H9¢c2 cells. TiO, NPs are internalized into the
cytoplasm (1), producing strong oxidative stress and changes in the cellular redox state, increasing
ROS production and mitochondrial damage (2), decreasing mitochondrial membrane potential (AYm)
(3). High oxidative stress causes strong cell damage, associated with autophagy (4), involving the
formation of autophagosomes in the endoplasmic reticulum (ER), these in turn fuse with lysosomes
to produce degradation of cytoplasmic components formed during cell damage. Finally, TiO, NPs
increase membrane permeability and induce necrosis (5).

4. Methods

4.1. Materials

Dulbecco’s modified Eagle’s medium (DMEM) high glucose, 0.25% trypsin-EDTA solution,
Antibiotic Antimycotic Solution (100x), and fetal bovine serum (FBS) were acquired from Gibco
BRL (Grand Island, NY, USA). Cell culture consumables were purchased from Corning (Corning,
NY, USA). Flow cytometry reagents were provided by Becton-Dickinson Immunocytometry Systems
(San Jose, CA, USA). HDCFDA was purchased from Molecular Probes, Invitrogen (Carlsbad, CA,
USA). CytoTox 96 Non-radioactive cytotoxicity assay was from Promega (Madison, WI, USA). Western
blot reagents were from Bio-Rad (Hercules, CA, USA). Autophagy detection kit was purchased from
abcam (Cambridge, MA, USA). Anatase TiO; NPs 25 nm and other chemicals were obtained from
Sigma-Aldrich (St. Louis, MO, USA).

4.2. Culture of Embryonic Rat H9c2 Cardiomyoblast Cells

HO9c2 rat cardiomyoblasts were used as a model since they mimic the hypertrophic responses of
primary rat neonatal cardiomyocytes in vitro [53]. H9¢2 cells were purchased from the American Type
Culture Collection (CRL-1446, ATCC, Manassas, VA, USA) and cultured with DMEM high glucose
added with 10% fetal bovine serum (FBS) plus an antibiotic-antimycotic solution. Cells were cultured
at 37 °C in a humidified atmosphere of 5% CO,.

4.3. Titanium Dioxide Nanoparticles

TiO, NPs were previously characterized by our group [54]. TiO, NPs have a surface area
of 45-50 m?/g with average particle size of 19 nm and (-potential of —12 mV. TiO, NPs were
endotoxin-free and pure, containing only oxygen and titanium [55]. Before use, TiO, NPs were
suspended at 1 mg/mL, in a HEPES phosphate buffer solution (HPBS: 4.4 mM KCl, 150 mM Na(l,
12.2 mM glucose, 10.9 mM HEPES, pH 7.4) and were vortexed a high speed for 2 min [54]. In previous
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studies, TiO, NPs induced different toxic effects in a range from 1 to 100 pg/ cm?. We also found
that 40 pg/cm? TiO; NPs induced a strong cytotoxicity in other cells; therefore, in this work we
tested concentrations equal or below this value (1, 5, 10, 20, 40 ug/ cm?, equivalent to 5, 25, 50, 100
and 200 pg/mL). Concentrations are presented as pg/cm? since TiO, NPs suspensions are unstable
and precipitate.

4.4. Internalization of TiOy NPs

Cellular uptake of nanoparticles was evaluated by TEM as previously described by Huerta-Garcia
and collaborators [55]. Cells (200 x 103/well) were treated with 5 ug/ cm? TiO, NPs for 24 h.
Then cells were fixed with 2.5% glutaraldehyde-formaldehyde in HPBS for 1 h. A second fixation was
performed in 2% OsOy (1:1 in HPBS) for 1 h. Cells were gradually dehydrated with increasing ethanol
concentrations and embedded in epoxy resin (Epon 812, Sigma-Aldrich, St. Louis, MO, USA). Ultrathin
sections were stained with lead citrate and alcoholic uranyl acetate. Finally, cells were examined with
a transmission electron microscope (JEOL 10/10, MA, USA).

4.5. Proliferation Assay

H9c2 cells (8 x 10° cells/well) were exposed to different concentrations of TiO, NPs (5, 10, 20,
40 pg/cm?) and cell proliferation was evaluated by crystal violet staining after 72 h of treatment
according to Marquez-Ramirez and collaborators [56].

4.6. Cell Viability

The reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) to
water-insoluble formazan was used to evaluate cell viability. H9c2 cells (8 x 103 cells/well) were
exposed to different concentrations of TiO, NPs (5, 10, 20, 40 ug/ cm?) for 72 h. After treatment,
cells were incubated with 5 mg/mL MTT for 4 h and optical density at 570 nm was measured in a
microplate spectrophotometer.

4.7. Oxidative Stress

The cellular redox state and oxidative stress were measured by oxidation of the HyDCFDA
(non-fluorescent) to 2',7'-dichlorofluorescein (DCF) (highly fluorescent). Changes in the A¥m
were assessed as described by Huerta-Garcia and collaborators [57] using rhodamine 123
(Rh123), a cell-permeant cationic compound captured by the active mitochondria. H9¢2 cells
(1 x 106 cells/treatment) were exposed to 20 pg/cm? TiO, NPs for 24, 48 and 72 h. After treatment, cell
suspensions were incubated with 10 uM H,DCFDA or 0.2 ug/mL Rh123 for 30 min in the dark. Finally,
cells were analyzed in a flow cytometer (Fascalibur, Becton Dickinson, Franklin Lakes, NJ, USA).

4.8. Cell Cycle Phases

Flow cytometry and staining with PI was performed to study cell cycle changes induced by TiO,
NPs. We selected the optimal concentration of TiO, NPs for a significant reduction in cell proliferation.
Therefore, H9¢2 cells were exposed to 20 pg/cm? TiO, NPs for 24, 48 and 72 h. Then cells were fixed
with 70% ethanol, washed with HPBS and incubated with RNAse (50 U/mL) for 1 h at 37 °C. Finally,
cells were stained with PI (200 ug/mL) and analyzed by flow cytometry.

4.9. Cell Death

Apoptotic and necrotic death were measured by Annexin-V/PI staining and analyzed by flow
cytometry. Necrosis was also assessed by lactate dehydrogenase (LDH) release. H9c2 cells were
cultured with 20 pg/ cm? TiO, NPs for 24, 48 and 72 h, incubated with 100 uL of Annexin-V plus Plin
the dark at 37 °C for 30 min and then examined in a flow cytometer. To evaluate LDH release, cells
were cultured in phenol red-free DMEM medium and exposed to nanoparticles. After exposure, 50 pL
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of the supernatant were mixed with 50 pL of the substrate mix and incubated in the dark at room
temperature for 30 min. After incubation, 50 uL of stop solution were added and optical density was
measured at 490 nm (ODygg). Data were normalized by subtracting average background of culture
medium from experimental values. Percentage of cytotoxicity was calculated by the formula:

Cytotoxicity (%) = (Experimental LDH release (ODygg))/
(Maximum LDH release control (ODygg)) x 100

4.10. Autophagy

Autophagy was evaluated with a detection kit according to the manufacturer’s instructions.
Autophagic vesicles are detected with a 488 nm-excitable green fluorescent dye and co-localization
with LC3, a specific autophagosome marker. Cells were exposed to 20 ng/cm? TiO, NPs for 24 h.
After exposure, cells were trypsinized, centrifuged at 1000 rpm for 5 min, and washed with 1x
assay buffer. Then cells were centrifuged and re-suspended in 250 pL of phenol red-free cell culture
medium containing 5% FBS and incubated with 250 puL of diluted green stain solution for 30 min at
room temperature in the dark. After incubation, cells were collected by centrifugation, washed with
1x assay buffer and analyzed in a flow cytometer. To analyze autophagy by confocal microscopy,
cells were grown on coverslips. After treatment with TiO, NPs, medium was removed and cells were
washed twice with 1x assay buffer. Then, cells were covered with 100 pL of microscopy dual detection
reagent and incubated at 37 °C for 30 min in the dark. Then, cells were washed with 100 pL of 1x
assay buffer, fixed with 4% formaldehyde and washed again three times. Finally, stained cells were
analyzed with a model LSM 700 confocal microscope (Zeiss, Thornwood, NY, USA).

4.11. Statistical Analysis

Data are presented as mean =+ standard deviation (SD) of at least three independent experiments.
Data were analyzed by one-way analysis of variance (ANOVA) followed by post-hoc Tukey’s multiple
comparison test, using GraphPad prism software version 5.01 (GraphPad Software La Jolla, CA, USA).
Differences among groups were considered statistically significant at p < 0.05.
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