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Abstract: Plant hormone candidate melatonin has been widely studied in plants under various
stress conditions, such as heat, cold, salt, drought, heavy metal, and pathogen attack. Under stress,
melatonin usually accumulates sharply by modulating its biosynthesis and metabolic pathways.
Beginning from the precursor tryptophan, four consecutive enzymes mediate the biosynthesis of
tryptamine or 5-hydroxytryptophan, serotonin, N-acetylserotonin or 5-methoxytryptamine, and
melatonin. Then, the compound is catabolized into 2-hydroxymelatonin, cyclic-3-hydroxymelatonin,
and N1-acetyl-N2-formyl-5-methoxyknuramine through 2-oxoglutarate-dependent dioxygenase
catalysis or reaction with reactive oxygen species. As an ancient and powerful antioxidant, melatonin
directly scavenges ROS induced by various stress conditions. Furthermore, it confreres stress tolerance
by activating the plant’s antioxidant system, alleviating photosynthesis inhibition, modulating
transcription factors that are involved with stress resisting, and chelating and promoting the
transport of heavy metals. Melatonin is even proven to defense against pathogen attacks for the
plant by activating other stress-relevant hormones, like salicylic acid, ethylene, and jasmonic acid.
Intriguingly, other precursors and metabolite molecules involved with melatonin also can increase
stress tolerance for plant except for unconfirmed 5-methoxytryptamine, cyclic-3-hydroxymelatonin,
and N1-acetyl-N2-formyl-5-methoxyknuramine. Therefore, the precursors and metabolites locating
at the whole biosynthesis and catabolism pathway of melatonin could contribute to plant stress
resistance, thus providing a new perspective for promoting plant stress tolerance.
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1. Introduction

Melatonin (N-acetyl-5-methoxytryptamine), which is widespread in almost all organisms, appears
to be a multi-regulatory molecule with multiple functions in plant growth and development, such as
seed germination, root development, fruit ripening, senescence, yield, circadian rhythm, and response
to stress [1–3]. Under various abiotic and biotic stresses, such as heat, cold, salt, drought, heavy metal,
and pathogen attack, melatonin usually could directly scavenge ROS generating from these stresses as
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a powerful antioxidant, thus promoting the stress resistance for plants [1,4–7]. Furthermore, melatonin
could improve stress tolerance by activating the plant’s antioxidant system, alleviating photosynthesis
inhibition, modulating transcription factors that are involved with stress resisting, chelating and
promoting transport of heavy metals, or activating other stress-relevant hormones, like salicylic acid,
ethylene, and jasmonic acid [8–11]. Therefore, phyto-melatonin (melatonin in plants) plays the key
role in plant stress response.

It is well understood that the biosynthesis of phyto-melatonin begins with tryptophan and it involves
several intermediates, including tryptamine, 5-hydroxytryptophan, serotonin, N-acetylserotonin,
and 5-methoxytryptamine [12]. Thereafter, melatonin is converted into other metabolites, including
2-hydroxymelatonin, cyclic-3-hydroxymelatonin, or N1-acetyl-N2-formyl-5-methoxyknuramine
(AFMK) [13,14]. Previous research showed that, besides melatonin, its precursors and metabolites also
participated in the plant stress resistance (Table 1). Though these compounds that are involved in the
synthesis and metabolism pathways of melatonin play a role in stress resistance [15,16], no review is
available focusing on the complete biosynthesis and catabolism pathway of melatonin under various
abiotic and biotic stresses. Herein, the role of phyto-melatonin and its precursors and metabolites in
response to stress is reviewed, thus providing a new perspective for promoting plant stress resistance.

Table 1. Melatonin and its precursors and metabolites mediating plant stress resistance.

Compounds Stresses Plant Species

melatonin cold
Arabidopsis thaliana [17,18], Solanum lycopersicum [19,20], rice [21],

Prunus persica [22], Citrullus lanatus [23], Triticum aestivum [24],
and Cucumis sativus [25]

melatonin heat Arabidopsis thaliana [26], Solanum lycopersicum [27,28],
Lolium perenne [29], and Festuca arundinacea [30]

melatonin salt Arabidopsis thaliana [31,32], Cucumis sativus [33],
Citrullus lanatus [34], Helianthus annuus [35], and Zea mays [36]

melatonin drought Arabidopsis thaliana [37], Malus zumi [38], Solanum lycopersicum [39],
Zea mays [40,41], Triticum aestivum [42], and Medicago sativa [43]

melatonin heavy metal rice [44–46], Solanum lycopersicum [47,48], Medicago sativa [49],
Citrullus lanatus [50], and wheat [51]

melatonin pathogen Arabidopsis thaliana [52–54], rice [55], Musa acuminate [56],
potato [57], cassava [58], and Malus pumila [59]

tryptamine pathogen rice [60]

serotonin salt Helianthus annuus [61]

Serotonin radiation Vicia faba [62]

Serotonin heavy metal rice [44]

N-acetylserotonin pathogen Arabidopsis thaliana [63]

2-hydroxymelatonin combination of cold and drought rice [64]

2-hydroxymelatonin pathogen Arabidopsis thaliana [63]

2. The Biosynthesis and Catabolism Pathway of Melatonin

The biosynthetic pathway of phyto-melatonin has been elucidated recently (Figure 1).
The molecule is produced via four consecutive enzymatic steps with tryptophan as the initial
substrate and at least six enzymes are involved in melatonin synthesis, including TPH, TDC, T5H,
SNAT, ASMT, and COMT [65]. Excluding TPH, genes encoding other five enzymes have been
cloned [12,66–69]. The first enzymic step is the decarboxylation of tryptophan catalyzed by TDC
to produce tryptamine in the cytoplasm, followed by the enzymatic hydroxylation by T5H to generate
serotonin in the endoplasmic reticulum [70]. For serotonin synthesis, alternatively, tryptophan may first
be hydroxylated by one TPH (un-identified) in the cytoplasm in order to generate 5-hydroxytryptophan,
followed by decarboxylated with TDC to produce serotonin in the cytoplasm [71]. Afterwards,
both SNAT and ASMT, through acetylation and methylation, respectively, convert the substrate
serotonin into N-acetylserotonin in the chloroplast and 5-methoxytryptamine in the cytoplasm.
These two intermediates are then converted to melatonin by ASMT in the cytoplasm or SNAT in
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the chloroplast [72,73]. Interestingly, COMT, an enzyme that is similar to ASMT, was reported to play
a pivotal role in the synthesis of phyto-melatonin, specifically existing in the cytoplasm of plants [65,74].
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Figure 1. Melatonin biosynthesis and catabolism pathways in plants. Abbreviation: TDC, tryptophan
decarboxylase; TPH, tryptophan hydroxylase; T5H, tryptamine 5-hydroxylase; SNAT, serotonin
N-acetyltransferase; ASMT, N-acetylserotonin methyltransferase; COMT, caffeic acid O-methyltransferase;
AFMK, N1-acetyl-N2-formyl-5-methoxyknuramine; AMK, N-acetyl-5-methoxyknuramine; M2H,
melatonin 2-hydroxylase; M3H, melatonin 3-hydroxylase; IDO, indoleamine 2,3-dioxygenase; 2-ODD,
2-oxoglutarate-dependent dioxygenase; ROS, reactive oxygen species. Dotted arrows represent the
hypothetical steps.
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Compared to biosynthesis, limited information is available about phyto-melatonin catabolism.
Several metabolites of melatonin have been detected in plants, including 2-hydroxymelatonin,
cyclic-3-hydroxymelatonin, and AFMK [13]. These metabolites are formed through either enzymatic
process or interactions between melatonin and ROS (Figure 1). AFMK, the first detected
phyto-melatonin metabolite in water hyacinth (Eichhornia crassipes), is thought to produce via the
catalysis of indoleamine 2,3-dioxygenase (IDO) [75–77]. AFMK can be further converted into AMK
in animals and it is considered to exist in plants as well [13]. Furthermore, melatonin can be
hydroxylated by members of 2-oxoglutarate-dependent dioxygenase (2-ODD) superfamily, among
which 2-ODD 11, 19, 21, and 33 catalyzed the formation of 2-hydroxymelatonin [76] and 2-ODD 11,
26, and 33 catalyzed the conversion to cyclic-3-hydroxymelatonin in Arabidopsis [77]. Melatonin also
can directly interact with ROS, further generating 2-hydroxymelatonin, cyclic-3-hydroxymelatonin,
or AFMK [11]. The conversion of 2-hydroxymelatonin and cyclic-3-hydroxymelatonin to other
unidentified products has not been reported in plants, however, the possibility cannot be excluded.
More studies are needed to gain a better understanding of the mechanism of melatonin catabolism
in plants.

3. Stress-Induced Melatonin Accumulation

It is widely reported that the production of phyto-melatonin is enhanced under different
stresses, including heat, cold, drought, salinity, oxidation, heavy metal, or pathogen invasion [1,78],
demonstrating that the molecule functions in the stress response. Phyto-melatonin accumulation is
relatively closely associated with the gene expression and enzymic activity of the candidates lying on
the biosynthesis and catabolism pathway of the melatonin under stress. For instance, the expression of
melatonin synthetases (TDC, T5H, and ASMT) closely related to melatonin production in rice under
excess Cd [44]. Besides, high temperature modulated the enzymic activities of SNAT and ASMT
and further increased melatonin production in rice [79]. However, little is known about the pathway
regulation mechanism of the production of melatonin in the response to stress. Recently, a transcription
factor (HsfA1a) was found to directly bind to the COMT1 gene promoter under Cd stress, and then
increase the concentration of melatonin in tomatoes [47].

Generally, the divergence of molecules concentrations closely connects with precursor
availability [1]. In contrast to expectation, a serotonin boost in the biosynthesis pathway of melatonin is
not linked with a significant rise in melatonin due to the lower catalytic efficiency of ASMT/COMT and
SNAT when compared to that of TDC and T5H [80]. Given the low enzyme activity, previous studies
mainly through modulating the expression of SNAT/ASMT from plants or HIOMT (the homologous
gene of ASMT in animals) to analysis the role of endogenous phyto-melatonin exposed to stress,
further confirming that melatonin confers plant stress tolerance (Table 2). In addition, serotonin seems
to play the same role in defense against stress under cold condition in rice [81]. Similarly, the higher
levels of 2-hydroxymelatonin suffered from a combination of cold and drought in rice suggested its
potential functions in resisting stresses [76,77].

Table 2. Melatonin-related transgenic plants under stress.

Genetically Modified Plants Melatonin Level (↑up↓down) Stress Resistance

human SNAT/HIOMT overexpressed
in Nicotiana sylvestris [82] ↑ increased resistance to

UV-B radiation

human SNAT overexpressed in
transgenic rice [81] ↑ increased cold resistance

Sheep HIOMT overexpressed in
micro-tom tomato [83] ↑ increased resistance to drought

SNAT knockout mutant Arabidopsis [84] ↓ increased the susceptibility to
avirulent pathogen
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Table 2. Cont.

Genetically Modified Plants Melatonin Level (↑up↓down) Stress Resistance

suppression of SNAT/ASMT in rice [85] ↓ increased the abiotic
stress susceptibility

maize ASMT overexpressed
in Arabidopsis [37] ↑ enhanced drought tolerance

tomato ASMT overexpressed
in tomato [27] ↑ enhanced thermotolerance

SNAT knockout mutant Arabidopsis [31] ↓ decreased salinity tolerance

ovine AANAT/HIOMT overexpressed
in switchgrass [86] ↑ improved salt-tolerance

rice SNAT overexpressed in rice [46] ↑ conferred resistance to cadmium

alfalfa SNAT overexpressed
in Arabidopsis [49] ↑ conferred plant tolerance

against cadmium

4. Melatonin, its Precursors and Metabolites Conferring Plant Abiotic Stress Resistance

Under abiotic stress, there are two major sources of ROS generating at apoplast (signaling ROS)
and cellular compartments, including chloroplast, peroxisome, and mitochondria (metabolic ROS) [87].
Metabolic ROS together with signaling ROS moving into the cytoplasm via aquaporins up-regulates
melatonin production [88–90]. However, an excess of ROS leads to lipid peroxidation in cellular
membranes, DNA damage, protein denaturation, carbohydrate oxidation, pigment breakdown, and
impaired enzyme activity [91]. Therefore, plants have to maintain a balance between ROS generation
and ROS scavenging under stress. Phyto-melatonin is one of the key ways to clear excessive ROS and
cope with kinds of abiotic stress with other measures (Figure 2).Molecules 2018, 23, x FOR PEER REVIEW  6 of 15 

 

 

Figure 2. Melatonin-mediated abiotic stress response in plants. Abbreviation: ROS, reactive oxygen 

species; GSH, glutathione; PCs, phytochelatins; Cd, cadmium; SOD, superoxide dismutase; APX, 

ascorbate peroxidase; CAT, catalase; GPX, glutathione peroxidase; ASA, antioxidants ascorbic acid; 

GSH, glutathione. Dotted arrows represent the hypothetical pathway. 

Melatonin can directly scavenge ROS and then produce at least three metabolites (2-

hydroxymelatonin, cyclic-3-hydroxymelatonin, and AFMK). It has the higher capacity to scavenge 

ROS than the classic antioxidants, such as including vitamin C, vitamin E, glutathione, and NADH 

[11,92–94]. Expect clearing ROS, melatonin also can directly bind to several toxic metals to suppress 

damage formation [95]. Exogenous melatonin significantly decreased the accumulation of vanadium 

in Citrullus lanatus, and cadmium in rice and Arabidopsis, and further reducing the heavy metal stress 

[46,49,50]. 

In addition to directly interacting with ROS, melatonin can also activate the plant’s antioxidant 

system. ROS-scavenging enzyme systems, such as superoxide dismutase (SOD), ascorbate 

peroxidase (APX), catalase (CAT), glutathione peroxidase (GPX), the antioxidants ascorbic acid 

(ASA), glutathione (GSH), and tocopherol play an important role in plant stress response [96,97]. 

Exposed to various stresses, melatonin usually up-regulates the content of SOD, APX, CAT, and GPX 

in plants by regulating antioxidant-related genes expression. For instance, melatonin induced 

expression of CAT1, APX1, and Fe-SOD under high temperature in Solanum lycopersicum [28]. 

Melatonin was also reported to increase the activities of APX, CAT, and SOD by up-regulating 

APX1/2, CAT1, and FSD1 transcripts in Arabidopsis in response to salt stress [31]. The relative 

expressions of several genes that are responsible for SOD, APX, and GPX were augmented in 

melatonin-treated seedlings exposed to vanadium stress in watermelon [50]. Furthermore, melatonin 

could activate the ASA-GSH cycle, an important antioxidant system in higher plants, to protect 

against abiotic stress. Under drought stress, the increased enzyme activity and expression of APX, 

dehydroascorbate reductase (DHAR), and monodehydroascorbate reductase (MDHAR) were 

responsible for melatonin-mediated increased GSH/(GSH + GSSG) and AsA/(ASA + DHA) in wheat 

seedlings [42]. GSH and ASA were substantially up-regulated as well in melatonin-treated tomato 

under cold stress [19]. Phyto-melatonin also enhanced contents of GSH and phytochelatins (PCs) in 

tomatoes under cadmium (Cd) stress, and then ATP-binding cassette transporters actively 

Figure 2. Melatonin-mediated abiotic stress response in plants. Abbreviation: ROS, reactive
oxygen species; GSH, glutathione; PCs, phytochelatins; Cd, cadmium; SOD, superoxide dismutase;
APX, ascorbate peroxidase; CAT, catalase; GPX, glutathione peroxidase; ASA, antioxidants ascorbic
acid; GSH, glutathione. Dotted arrows represent the hypothetical pathway.
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Melatonin can directly scavenge ROS and then produce at least three metabolites
(2-hydroxymelatonin, cyclic-3-hydroxymelatonin, and AFMK). It has the higher capacity to scavenge
ROS than the classic antioxidants, such as including vitamin C, vitamin E, glutathione, and
NADH [11,92–94]. Expect clearing ROS, melatonin also can directly bind to several toxic metals
to suppress damage formation [95]. Exogenous melatonin significantly decreased the accumulation of
vanadium in Citrullus lanatus, and cadmium in rice and Arabidopsis, and further reducing the heavy
metal stress [46,49,50].

In addition to directly interacting with ROS, melatonin can also activate the plant’s antioxidant
system. ROS-scavenging enzyme systems, such as superoxide dismutase (SOD), ascorbate peroxidase
(APX), catalase (CAT), glutathione peroxidase (GPX), the antioxidants ascorbic acid (ASA), glutathione
(GSH), and tocopherol play an important role in plant stress response [96,97]. Exposed to various
stresses, melatonin usually up-regulates the content of SOD, APX, CAT, and GPX in plants by regulating
antioxidant-related genes expression. For instance, melatonin induced expression of CAT1, APX1,
and Fe-SOD under high temperature in Solanum lycopersicum [28]. Melatonin was also reported to
increase the activities of APX, CAT, and SOD by up-regulating APX1/2, CAT1, and FSD1 transcripts in
Arabidopsis in response to salt stress [31]. The relative expressions of several genes that are responsible
for SOD, APX, and GPX were augmented in melatonin-treated seedlings exposed to vanadium stress in
watermelon [50]. Furthermore, melatonin could activate the ASA-GSH cycle, an important antioxidant
system in higher plants, to protect against abiotic stress. Under drought stress, the increased enzyme
activity and expression of APX, dehydroascorbate reductase (DHAR), and monodehydroascorbate
reductase (MDHAR) were responsible for melatonin-mediated increased GSH/(GSH + GSSG) and
AsA/(ASA + DHA) in wheat seedlings [42]. GSH and ASA were substantially up-regulated as well
in melatonin-treated tomato under cold stress [19]. Phyto-melatonin also enhanced contents of GSH
and phytochelatins (PCs) in tomatoes under cadmium (Cd) stress, and then ATP-binding cassette
transporters actively transported Cd-PCs and Cd-GSH complexes into the vacuole [47], contributing
to heavy metal stress resistance by mediating sequestration or chelation [51].

Photosynthesis is highly sensitive to temperature, drought, salt, and heavy metal, and usually
suppressed when exposed to these stresses [98]. Melatonin can enhance chlorophyll contention,
electron transport, and stomatal conductance to alleviate photosynthetic inhibition that is caused
by stress [9–11]. By down-regulating the chlorophyll degradation genes (chlorophyllase (Chase),
pheophytinase (PPH) and Chl-degrading peroxidase (Chl-PRX)), melatonin protects chlorophyll of
plants from various stresses [21,34,40,51,99]. Melatonin application also regulated electron transport
system, such as improving nonphotochemical quenching (NPQ) or photochemical quenching (qP), and
further increased the maximal quantum yield of PSII photochemistry (Fv/Fm) [34,41]. Furthermore,
exogenous melatonin raised stomatal conductance to relieve the limitation of CO2 that is caused by
drought [40].

Transcription factors regulation is one of the critical ways of the phyto-melatonin-mediated stress
response. Three melatonin-mediated abiotic stress transcription factors (Zinc Finger protein 6 (ZAT6),
Heat Shock Factors (HSFA1s), and C-Repeat-Binding Factor (CBF)/Drought Response Element Binding
1 Factors (DREB1s)) were detected in plants. Melatonin up-regulated ZAT6 expression, which activated
the CBF pathway and further mediated the freezing stress response [78]. HSFA1s, induced by melatonin,
could up-regulate the transcription levels of the heat-response genes HSFA2, HSA32, HSP90, and
HSP101, further conferring thermotolerance and Cd tolerance [26,47]. Meanwhile, the up-regulation of
CBF/DREB1s closely associated with high level of melatonin led to an increase in the transcription
levels of multiple stress-responsive genes (cold-related 15A (COR15A), responsive to dehydration
22 (RD22), and cold-inducible 1 (KIN1)), resulting in improved resistance to salt, drought, and freezing
stresses [100]. Transcription factors activated by melatonin under abiotic stress play important roles in
regulating the transcription of stress-responsive genes. Notably, 2-hydroxymelatonin, the metabolite
of melatonin, also up-regulated the transcription factors Myb4 and AP37 to alleviate the effects of
multiple abiotic stresses in rice [64].
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Similar to melatonin, related intermediates and metabolites can also initiate plant stress response.
Tryptophan, the primary precursor of phyto-melatonin, is also the substrate for auxin, glucosinolates,
phytoalexins, alkaloids, and indoles, therefore it is an important molecule for the plant stress
response [101,102]. For tryptamine, it is closely related with the light-enhanced resistance in rice [103].
Serotonin was reported to enhance a diverse range of abiotic stress responses, including improving
survival under salinity by mediating the influx of ions into chloroplasts [104], enhancing the heavy
metal tolerance through the high capacity for binding cadmium to form stable complexes [8], and
relieving X-ray radiation stress [62]. It is worth noting that 2-hydroxymelatonin was amplified in rice
in response to cold and drought stress [64]. The role of N-acetylserotonin in plants abiotic stress has not
been identified, but N-acetylserotonin exhibited antioxidant activity in animals [105]. The involvement
of 5-methoxytryptamine, cyclic-3-hydroxymelatonin, and AFMK in the enhancement of plant stress
resistance remains un-explored until now, but may potentially contribute to stress response based
upon their molecular similarity with melatonin.

5. Melatonin and Its Precursors and Metabolites Play Key Roles in Plant Biotic Stress

Plants have evolved a melatonin immune system to protect individual cells against pathogen
infection (Figure 3). Pathogen invasion induces plants to produce ROS by effectors or
pathogen-microbe-associated molecular patterns (PAMPs or MAMPs) [106,107]. Similar to abiotic
stress, ROS leading to the up-regulation of melatonin is observed upon infection by pathogens,
however, the mechanism is not yet clear [54]. The role of melatonin in defense against pathogen
attacks has been investigated in terms of the signaling pathway and mechanisms that are involved,
among which the interaction of melatonin with salicylic acid (SA) is particularly important [54].
SA is an important defense hormone that is involved in the innate plant immunity [10], and
it increases the transcript levels of a defense-gene (pathogenesis-related 1 (PR1)) by a receptor
nonexpressor of PR1 (NPR1). High level of melatonin could indirectly induce transcription of
isochorismate synthase 1 (ICS1), which is responsible for the biosynthesis of SA, by stimulating the
mitogen-activated protein kinase (MAPK) cascade (MAPKKK3/OXI1-MAPKK4/5/7/9-MAPK3/6) in
Arabidopsis thaliana infected with Pseudomonas syringe pv. Tomato (Pst) DC3000 [52,54]. Besides MAPKs,
nitric oxide (NO) also induces the innate plant immunity via positively modulating the expression
levels of both SA synthesis genes (AtEDS1 and AtPAD4) and downstream SA resistant genes
(AtPR1, AtPR2, and AtPR5) [53,108]. Intriguingly, melatonin induced augmented the transcription
of CBF/DREB1s, leading to an increase in NO by enhancing the accumulation of soluble sugars
in Arabidopsis thaliana infected with Pst DC3000 [100]. Ethylene (ET) and jasmonic acid (JA) are
involved in melatonin-mediated disease resistance as well [109]. For example, melatonin up-regulated
1-aminocyclopropane-1-carboxylate synthase 6 (ACS6), which is a key enzyme in the biosynthesis of
ET, and then induced expression of an antimicrobial peptide (plant defensin 1.2 (PDF1.2)) via ethylene
insensitive 2 (EIN2) [52]. As JA could induce the expression of PDF1.2 as well as melatonin, we cannot
rule out the possible involvement of JA with melatonin in the pathogen resistance pathway [52].
Additionally, MaHSP90s was reported to be up-regulated by melatonin triggered the effects of
defense-related plant hormones (IAA, SA, JA, and ET) [56]. It is notable that transcriptome data
analysis of melatonin-treated watermelon and Arabidopsis showed that various defense-related genes
that were involved in plant hormone signaling or innate plant immunity, and the further analysis
could lead to deep insight in molecular mechanisms of pathogen resistance for plants treated with
melatonin [110,111].

Similar to melatonin, serotonin may also be essential in long distance and rapid signaling in
response to pathogen attacks by mediating ROS and interacting with hormone signaling networks [16].
The indole alkaloid tryptamine, a key factor in light-enhanced resistance, inhibited infection by
Magnaporthe oryzae in rice [60]. 2-hydroxymelatonin and N-acetylserotonin could also activate MAPKs
to confer the biotic stress, but to a lesser degree than melatonin in Arabidopsis thaliana [63].
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Figure 3. Melatonin-mediated biotic stress response in plants. Abbreviation: ROS, reactive oxygen
species; PAMPs, pathogen-associated molecular patterns; MAMPs, microbe-associated molecular
patterns; MAPK, Mitogen-activated protein kinase; NO, nitric oxide; SA, salicylic acid; JA, jasmonic
acid; ET, ethylene. Dotted arrows represent the hypothetical pathway.

6. Conclusions

Faced with environmental changes, melatonin biosynthesis, and catabolism pathway would take
essential functions in plants for coping with various stresses. Phyto-melatonin with its precursors and
metabolites were adjusted to mitigate abiotic stress through both direct (scavenging ROS and chelating
heavy metal) and indirect (activating the plant’s antioxidant system, transporting heavy metal,
alleviating photosynthesis inhibition, and regulating transcription factor) mechanisms. Moreover,
melatonin imposes plant anti-pathogenic functions by activation of plant stress-relevant hormones,
such as SA, ET, or JA. For a long time, previous studies have focused on how melatonin increases the
abiotic and biotic stress resistance of plants. However, little attention has been given to the compounds
located in the synthesis and catabolism pathway of melatonin. Further investigations on the role of
precursors and metabolites of melatonin will shed more light on the underlying plant stress resistance.

Funding: This research was funded by the National Natural Science Foundation of China (81560622).
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Abbreviations

AFMK N1-acetyl-N2-formyl-5-methoxyknuramine
AMK N-acetyl-5-methoxyknuramine
2-ODD 2-oxoglutarate-dependent dioxygenase
ROS reactive oxygen species
SA salicylic acid
ET ethylene
JA jasmonic acid
TPH tryptophan hydroxylase
TDC tryptophan decarboxylase
T5H tryptamine 5-hydroxylase
SNAT serotonin N-acetyltransferase
ASMT N-acetylserotonin methyltransferase
COMT caffeic acid O-methyltransferase
AMK N-acetyl-5-methoxyknuramine
HIMOT hydroxyindole-O-methyltransferase
Cd cadmium
IDO indoleamine 2,3-dioxygenase
SOD superoxide dismutase
APX ascorbate peroxidase
CAT catalase
GPX glutathione peroxidase
ASA antioxidants ascorbic acid
GSH glutathione
DHAR dehydroascorbate reductase
MDHAR monodehydroascorbate reductase
Cd cadmium
Fv/Fm maximal quantum yield of PSII photochemistry
PCs phytochelatins
qP photochemical quenching
NPQ nonphotochemical quenching
PAMPs pathogen-associated molecular patterns
MAMPs microbe-associated molecular patterns
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