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Abstract: Regioselective anti-allylindation of alkynes was achieved using InBr3 and allylic silanes.
Various types of alkynes and allylic silanes were applicable to the present allylindation. This sequential
process used the generated 1,4-dienylindiums to establish novel synthetic methods for skipped dienes.
The 1,4-dienylindiums were characterized by spectral analysis and treated with I2 to stereoselectively give
1-iodo-1,4-dienes. The Pd-catalyzed cross coupling of 1,4-dienylindium with iodobenzene successfully
proceeded in a one-pot manner to afford the corresponding 1-aryl-1,4-diene.
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1. Introduction

Carbometalation is an important synthetic method in organic synthesis because organometallic
compounds are produced with an expansion of the carbon framework [1–7]. In particular, the allylmetalation
of alkynes provides metalated skipped dienes (1,4-diene), which are effectively transformed to functionalized
skipped dienes via sequential reactions [8–18]. Skipped diene units are present in many biologically
important natural products, and are also versatile synthetic building blocks in organic synthesis [19–22].
Therefore, various types of allylmetalation of alkynes have been developed. However, most reported
reactions involve a syn-addition to alkynes, and few reports have focused on anti-allylmetalation (Scheme 1).
Allylmagnesations via direct anti-addition of allylic Grignard reagent were also reported (Scheme 1A,B),
in which a directing group such as hydroxy and amino groups nearby the alkyne moiety are required [23–29].
Yamamoto reported an allylsilylation of simple alkynes with allylic silanes catalyzed by either HfCl4 or
EtAlCl2-Me3SiCl (Scheme 1C) [16,30–32]. However, the produced 1,4-dienyl trialkylsilanes cannot be
applied to sequential transformations such as Hiyama coupling without activation by a strong base
because of their low reactivity. In this context, we achieved regioselective anti-allylindation of simple
alkynes using InBr3 and allylic silanes (Scheme 1D). To the best of our knowledge, anti-allylindation of
alkynes has never been established, while several syn-allylindations using allylic indiums have [13,33–39].
The 1,4-dienylindium compounds can be excellent precursors for functionalized skipped dienes due to their
moderate reactivity and high compatibility with many functional groups. In fact, the 1,4-dienylindiums
synthesized by the present allylindation can be easily transformed to functionalized skipped dienes by
iodination or Pd-catalyzed cross coupling without the addition of bases in contrast to 1,4-dienylsilanes
produced via allylsilylation.
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2. Results 

Recently, we reported regioselective anti-carbometalations of alkynes using organosilicon 
nucleophiles and metal halides such as InBr3 [40], GaBr3 [41], BiBr3 [42], ZnBr2 [43], and AlBr3 [44]. In 
our established carbometalations, a metal halide directly activates an alkyne, and then an 
organosilicon nucleophile adds to the alkyne from an opposite site of the metal halide. Therefore, we 
applied a combination of indium trihalides and allylic silanes to establish anti-allylindation of 
alkynes. First, various indium salts were investigated for the reaction using alkyne 1a and methallyl 
trimethylsilane 2a (Table 1). InBr3, 1a, and 2a were mixed in CH2Cl2, and then the reaction mixture 
was stirred at room temperature for 24 h. After an I2 solution in THF was added at −78 °C, alkenyl 
iodide 4aa was obtained as a single isomer in 89% yield (Entry 1). An iodine group was introduced 
exclusively cis to the allylic group. The production of 4aa by quenching with I2 suggested that anti-
allylindation regioselectively proceeded to give the corresponding 1,4-dienylindium 3aa. The use of 
InCl3 instead of InBr3 afforded 4aa in a 42% yield (Entry 2). On the other hand, examinations using 
InF3, InI3, and In(OTf)3 resulted in no reaction (Entries 3–5). The thermodynamic stability of a 
generated side product Me3SiX might influence the driving force of the reaction. An investigation of 
the solvent effect was carried out. The reaction performed in non-polar solvents such as toluene 
resulted in no product because InBr3 did not dissolve the solvent (Entry 6). Polar solvents such as 
Et2O, CH3CN, and THF were not suitable to the present allylindation because of the deactivation of 
InBr3 by the solvent coordination (Entries 7–9). 
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2. Results

Recently, we reported regioselective anti-carbometalations of alkynes using organosilicon nucleophiles
and metal halides such as InBr3 [40], GaBr3 [41], BiBr3 [42], ZnBr2 [43], and AlBr3 [44]. In our established
carbometalations, a metal halide directly activates an alkyne, and then an organosilicon nucleophile
adds to the alkyne from an opposite site of the metal halide. Therefore, we applied a combination of
indium trihalides and allylic silanes to establish anti-allylindation of alkynes. First, various indium salts
were investigated for the reaction using alkyne 1a and methallyl trimethylsilane 2a (Table 1). InBr3,
1a, and 2a were mixed in CH2Cl2, and then the reaction mixture was stirred at room temperature for
24 h. After an I2 solution in THF was added at −78 ◦C, alkenyl iodide 4aa was obtained as a single
isomer in 89% yield (Entry 1). An iodine group was introduced exclusively cis to the allylic group.
The production of 4aa by quenching with I2 suggested that anti-allylindation regioselectively proceeded
to give the corresponding 1,4-dienylindium 3aa. The use of InCl3 instead of InBr3 afforded 4aa in a 42%
yield (Entry 2). On the other hand, examinations using InF3, InI3, and In(OTf)3 resulted in no reaction
(Entries 3–5). The thermodynamic stability of a generated side product Me3SiX might influence the driving
force of the reaction. An investigation of the solvent effect was carried out. The reaction performed in
non-polar solvents such as toluene resulted in no product because InBr3 did not dissolve the solvent
(Entry 6). Polar solvents such as Et2O, CH3CN, and THF were not suitable to the present allylindation
because of the deactivation of InBr3 by the solvent coordination (Entries 7–9).
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1 InBr3 CH2Cl2 89
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4 InI3 CH2Cl2 0
5 In(OTf)3 CH2Cl2 0
6 InBr3 toluene 0
7 InBr3 Et2O 0
8 InBr3 CH3CN 0
9 InBr3 THF 0

a InX3 (1 mmol), alkyne 1a (1 mmol), allylic silane 2a (2 mmol), solvent (1 mL), room temperature, 24 h. I2 (1.5 mmol),
THF (2 mL). Yields were determined via 1H-NMR using 1,1,2,2-tetrachloroethane as an internal standard; b Et2O
was used instead of THF.

The scope of the alkynes 1 is shown in Table 2. Sterically hindered aliphatic alkynes 1b and 1c (R =
primary alkyl group) that were slightly larger than 1a resulted in lower yields of the corresponding
alkenyl iodides 4ba and 4ca, respectively (Entries 1 and 2). Cyclohexylacetylene 1d (R = secondary
alkyl group) gave a moderate yield (Entry 3), and the allylindation of tert-butylacetylene 1e did not
proceed due to large steric hindrance (Entry 4). These results showed that the steric hindrance on
an alkyne disturbs the allylindation. This allylindation system tolerated functionalities such as Ph
and alkyl chloride moieties (Entries 5 and 6). Aromatic alkyne 1h was also applicable to the present
allylindation. In this case, the addition of Me2Si(OMe)2 effectively increased the yield of the desired
alkenyl iodide 4ha (Entries 7 and 8), probably because the MeO group of Me2Si(OMe)2 coordinated to
an indium atom of the produced 1,4-dienylindium 3 to stabilize 3, and to avoid protonation of 3 by
alkyne 1h.

Table 2. Scope and limitation of alkyne 1 in allylindation a.
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Next, we evaluated the scope of allylic silanes 2 in the allylindation of alkyne 1h in the presence 
of Me2Si(OMe)2 (Table 3). Allylindation using the simplest allylic silane 2b effectively proceeded to 
give the desired product 4hb in 48% yield (Entry 1). Allylic silane 2c bearing a Ph group at the 2-
position also afforded a high yield (Entry 2). Allylindations using prenylsilane 2d and cinnamylsilane 
2e, which have a substituent at the 3-position, effectively occurred to give the corresponding 
iodinated skipped dienes 4hd and 4he in 72% and 39% yields, respectively (Entries 3 and 4). 
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a Alkyne 1a (1 mmol), allylic silane 2 (2 mmol), InBr3 (1 mmol), Me2Si(OMe)2 (1 mmol), and CH2Cl2 (1 
mL). Yields were determined by 1H-NMR using 1,1,2,2-tetrachloroethane as an internal standard. 

The 1,4-dienylindium 3 synthesized by the present allylindation were isolated and characterized 
(Figure 1). After the allylindation of alkyne 1h using InBr3 and methallylsilane 2a, the volatiles were 
evaporated and the residual oil was washed with hexane to obtain the desired 1,4-dienylindium 3ha 
as a white solid (Figure 1A). The 1,4-dienylindium 3ha was characterized by NMR spectroscopy. The 
resonance of a vinylic proton (H1) at the α-position of the InBr2 group appeared at δ 5.99 ppm (Figure 
1B). The 13C-NMR spectrum of 3ha showed a slightly broad signal for C1 at δ 134.1 ppm. These 
chemical shift values are similar to those of previously reported alkenylindium generated by the 
carboindation of alkyne 1h with InBr3 and a silyl ketene acetal [41]. A nuclear Overhauser effect 
between H1 and H3 was observed, which showed that anti-allylindation proceeded stereoselectively 
to give 1,4-dienylindium with a trans-configuration between the InBr2 and allylic groups. 
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Figure 1. Isolation and characterization of 1,4-dienylindium synthesized by allylindation. (A) 
Isolation of 1,4-dienylindium 3ha. (B) 1H-NMR spectrum of 3ha. 

A plausible reaction mechanism is illustrated in Scheme 2. A carbon-carbon triple bond of alkyne 
1 coordinates to InBr3, and then the positive charge on the internal carbon atom of alkyne 1 is 
increased. Allylic silane 2 adds to the internal carbon atom from the opposite side of InBr3 to give 1,4-
dienylindium 3. The iodination of 1,4-dienylindium 3 with I2 proceeds with retention of the double 
bond configuration of 3 to yield alkenyl iodide 4 as a single isomer. 
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A plausible reaction mechanism is illustrated in Scheme 2. A carbon-carbon triple bond of
alkyne 1 coordinates to InBr3, and then the positive charge on the internal carbon atom of alkyne 1
is increased. Allylic silane 2 adds to the internal carbon atom from the opposite side of InBr3 to give
1,4-dienylindium 3. The iodination of 1,4-dienylindium 3 with I2 proceeds with retention of the double
bond configuration of 3 to yield alkenyl iodide 4 as a single isomer.Molecules 2018, 23, x 6 of 14 
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Finally, we applied the synthesized 1,4-dienylindium to Pd-catalyzed cross coupling [40,45,46].
After 1,4-dienylindium 3ha was produced via the allylindation of alkyne 1h with allyl silane 2a and
InBr3, iodobenzene, a catalytic amount of Pd(PPh3)4, and DMF were added to the reaction mixture
in a one-pot manner. Then, the Pd-catalyzed coupling reaction of 3ha with iodobenzene smoothly
proceeded at 100 ◦C to give the desired skipped diene 5 as a single isomer. It should be noted that the
coupling product 5 was stereoselectively obtained with retention of the double bond configuration of
the alkenylindium (Scheme 3).
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3. Materials and Methods

3.1. Analysis

NMR spectra were recorded on a JEOL JNM-400 (400 MHz for 1H-NMR and 100 MHz for
13C-NMR) spectrometer (JEOL Ltd., Tokyo, Japan). Chemical shifts were reported in ppm on the δ

scale relative to tetramethylsilane (δ = 0 for 1H-NMR) with the residual CHCl3 (δ = 77.0 for 13C-NMR)
used as an internal reference. 1H and 13C-NMR signals of all new compounds were assigned by using
HMQC, HMBC, COSY, and 13C off-resonance techniques. Infrared (IR) spectra were recorded on a
JASCO FT/IR-6200 Fourier transform infrared spectrophotometer (JASCO Co., Tokyo, Japan). Silica
gel column chromatography was performed using an automated flash chromatography system from
the Yamazen Co. (W-Prep 2XY) (Yamazen Co., Osaka, Japan). Gel permeation chromatography (GPC)
was performed using a NEXT recycling preparative HPLC from the Japan Analytical Industry Co.
(Tokyo, Japan) (solvent: CHCl3; column: JAIGEL-1HH and JAIGEL-2HH). Reactions were carried
out in dry solvents under a nitrogen atmosphere, unless otherwise stated. All allylic silanes were
prepared by reported methods. Other reagents were purchased from Sigma-Aldrich Co. (St. Louis,
MO, USA), the Tokyo Chemical Industry Co., Ltd. (TCI) (Tokyo, Japan) or Wako Pure Chemical
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Industries, Ltd. (Osaka, Japan), and used after purification by distillation or used without purification
for solid substrates.

3.2. Typical Procedure

Alkyne 1 (1 mmol) was added to a solution of InBr3 (1 mmol) and allylic silane 2 (2 mmol) in
dichloromethane (1 mL). The mixture was stirred at room temperature for 24 h, and then 0.75 M I2 in
THF solution (2 mL) was added at −78 ◦C. The resultant mixture was stirred at −78 ◦C for 30 min.
The mixture was quenched by saturated Na2S2O3 aq (10 mL), and then extracted with dichloromethane
(3 × 10 mL). The collected organic layers were dried over MgSO4, and concentrated under reduced
pressure. The yield was determined by 1H-NMR using 1,1,2,2-tetrachloroethane as an internal standard.
The crude product was purified by flash chromatography (spherical silica gel 60 µm, 30 g, diameter
2.7 cm) and GPC to give the product.

(E)-4-(Iodomethylene)-2-methyldodec-1-ene (4aa)
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was quenched by saturated Na2S2O3 aq (10 mL). The mixture was extracted with dichloromethane
(3 × 10 mL). The collected organic layer was dried over MgSO4. The solvent was evaporated and the
residue was purified by column chromatography (hexane, column length 10 cm, diameter 26 mm silica
gel) and GPC (CHCl3) to give the product (0.0930 g, 33%).

IR: (neat) 1650, 1467, 1455 cm−1; 1H-NMR: (400 MHz, CDCl3) 5.90 (s, 1H, 4-CHI), 4.83 (s, 1H, 1-H),
4.75 (s, 1H, 1-H), 2.88 (s, 2H, 3-H2), 2.18–2.16 (m, 2H, 5-H2), 1.65 (s, 3H, 2-Me), 1.62–1.52 (m, 1H, 7-H),
1.30–1.24 (m, 2H, 6-H2), 0.93 (d, J = 6.3 Hz, 6H, 8-H3 and 7-Me); 13C-NMR: (100 MHz, CDCl3) 149.5 (s,
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C-4), 142.4 (s, C-2), 113.1 (t, C-1), 75.9 (d, 4-CHI), 45.8 (t, C-3), 36.0 (t, C-6), 34.5 (t, C-5), 28.2 (d, C-7),
22.5 (q, C-8 and 7-Me), 21.8 (q, 2-Me); HRMS: (EI, 70 eV) Calculated (C11H19I) 278.0531 (M+), Found:
278.0529.

(E)-4-(Iodomethylene)-2,6-dimethylhept-1-ene (4ca)
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standard. The crude product was purified by flash chromatography (spherical silica gel 60 μm, 30 g, 
diameter 2.7 cm) and GPC to give the product. 

(E)-4-(Iodomethylene)-2-methyldodec-1-ene (4aa) 

 
The alkyne 1-decyne (0.980 mmol, 0.1354 g) was added to a solution of InBr3 (0.996 mmol, 0.3530 

g) and methallyl trimethylsilane (2.07 mmol, 0.2654 g) in dichloromethane (1 mL). The mixture was 
stirred at room temperature for 24 h. The reaction mixture was cooled to −78 °C, and 0.75 M I2 in THF 
solution (2 mL) was added. The resultant mixture was stirred at −78 °C for 30 min. The mixture was 
quenched by saturated Na2S2O3 aq (10 mL). The mixture was extracted with dichloromethane (3 × 10 
mL). The collected organic layer was dried over MgSO4. The solvent was evaporated, and the residue 
was purified by column chromatography (hexane, column length 10 cm, diameter 26 mm silica gel) 
and GPC (CHCl3) to give the product (0.279 g, 89%). 

IR: (neat) 1650, 1457 cm−1; 1H-NMR: (400 MHz, CDCl3) 5.92 (s, 1H, 4-CHI), 4.83 (s, 1H, 1-H), 4.75 (s, 
1H, 1-H), 2.87 (s, 2H, 3-H2), 2.16 (t, J = 7.8 Hz, 2H, 5-H), 1.65 (s, 3H, 2-Me), 1.43–1.23 (m, 14H), 0.88 (t, 
J = 6.8 Hz, 3H); 13C-NMR: (100 MHz, CDCl3) 149.4 (s, C-4), 142.5 (s, C-2), 113.0 (t, C-1), 76.2 (d, 4-CHI), 
45.8 (t, C-3), 36.4 (t, C-5), 31.9 (t), 29.43 (t), 29.38 (t), 29.22 (t), 27.0 (t), 22.7 (t), 21.8 (q, 2-Me), 14.1 (q, C-
12); HRMS: (EI, 70 eV) Calculated (C14H25I) 320.1001 (M+), Found: 320.1000. 

(E)-4-(Iodomethylene)-2,7-dimethyloct-1-ene (4ba) 

 
The alkyne 5-methylhex-1-yne (1.02 mmol, 0.0985 g) was added to a solution of InBr3 (0.983 

mmol, 0.3485 g) and methallyl trimethylsilane (1.94 mmol, 0.2487 g) in dichloromethane (1 mL). The 
mixture was stirred at room temperature for 24 h. The reaction mixture was cooled to −78 °C, and 
0.75 M I2 in THF solution (2 mL) was added. The resultant mixture was stirred at −78 °C for 30 min. 
The mixture was quenched by saturated Na2S2O3 aq (10 mL). The mixture was extracted with 
dichloromethane (3 × 10 mL). The collected organic layer was dried over MgSO4. The solvent was 
evaporated and the residue was purified by column chromatography (hexane, column length 10 cm, 
diameter 26 mm silica gel) and GPC (CHCl3) to give the product (0.0930 g, 33%). 

IR: (neat) 1650, 1467, 1455 cm−1; 1H-NMR: (400 MHz, CDCl3) 5.90 (s, 1H, 4-CHI), 4.83 (s, 1H, 1-H), 4.75 
(s, 1H, 1-H), 2.88 (s, 2H, 3-H2), 2.18–2.16 (m, 2H, 5-H2), 1.65 (s, 3H, 2-Me), 1.62–1.52 (m, 1H, 7-H), 1.30–
1.24 (m, 2H, 6-H2), 0.93 (d, J = 6.3 Hz, 6H, 8-H3 and 7-Me); 13C-NMR: (100 MHz, CDCl3) 149.5 (s, C-4), 
142.4 (s, C-2), 113.1 (t, C-1), 75.9 (d, 4-CHI), 45.8 (t, C-3), 36.0 (t, C-6), 34.5 (t, C-5), 28.2 (d, C-7), 22.5 (q, 
C-8 and 7-Me), 21.8 (q, 2-Me); HRMS: (EI, 70 eV) Calculated (C11H19I) 278.0531 (M+), Found: 278.0529. 

(E)-4-(Iodomethylene)-2,6-dimethylhept-1-ene (4ca)  

 
The alkyne 4-methylpent-1-yne (1.06 mmol, 0.0872 g) was added to a solution of InBr3 (1.02 mmol, 

0.3606 g) and methallyl trimethylsilane (2.03 mmol, 0.2620 g) in dichloromethane (1 mL). The mixture 
was stirred at room temperature for 24 h. The reaction mixture was cooled to −78 °C, and 0.75 M I2 in 
THF solution (2 mL) was added. The resultant mixture was stirred at −78 °C for 30 min. The mixture 
was quenched by saturated Na2S2O3 aq (10 mL). The mixture was extracted with dichloromethane (3 

The alkyne 4-methylpent-1-yne (1.06 mmol, 0.0872 g) was added to a solution of InBr3 (1.02 mmol,
0.3606 g) and methallyl trimethylsilane (2.03 mmol, 0.2620 g) in dichloromethane (1 mL). The mixture
was stirred at room temperature for 24 h. The reaction mixture was cooled to −78 ◦C, and 0.75 M I2 in
THF solution (2 mL) was added. The resultant mixture was stirred at −78 ◦C for 30 min. The mixture
was quenched by saturated Na2S2O3 aq (10 mL). The mixture was extracted with dichloromethane
(3 × 10 mL). The collected organic layer was dried over MgSO4. The solvent was evaporated and the
residue was purified by column chromatography (hexane, column length 10 cm, diameter 26 mm silica
gel) and GPC (CHCl3) to give the product (0.0560 g, 20%).

IR: (neat) 1650, 1463 cm−1; 1H-NMR: (400 MHz, CDCl3) 6.01 (s, 1H, 8-H), 4.84 (s, 1H, 1-H), 4.74 (s, 1H,
1-H), 2.87 (s, 2H, 3-H2), 2.09 (d, J = 8.0 Hz, 2H, 5-H2), 1.90 (septet, J = 8.0 Hz, 1H, 6-H), 1.65 (s, 3H,
2-Me), 0.93 (d, J = 0.8 Hz, 6H, 7-H3 and 6-Me); 13C-NMR: (100 MHz, CDCl3) 148.4 (s, C-4), 142.4 (s,
C-2), 113.2 (t, C-1), 77.5 (d, C-8), 46.1 (t, C-3), 44.7 (t, C-5), 26.8 (d, C-6), 22.4 (q, C-7 and 6-Me), 21.8 (q,
2-Me); HRMS: (EI, 70 eV) Calculated (C10H17I) 264.0375 (M+), Found: 264.0370.

(Z)-(1-Iodo-4-methylpenta-1,4-dien-2-yl)cyclohexane (4da)
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× 10 mL). The collected organic layer was dried over MgSO4. The solvent was evaporated and the 
residue was purified by column chromatography (hexane, column length 10 cm, diameter 26 mm 
silica gel) and GPC (CHCl3) to give the product (0.0560 g, 20%). 

IR: (neat) 1650, 1463 cm−1; 1H-NMR: (400 MHz, CDCl3) 6.01 (s, 1H, 8-H), 4.84 (s, 1H, 1-H), 4.74 (s, 1H, 
1-H), 2.87 (s, 2H, 3-H2), 2.09 (d, J = 8.0 Hz, 2H, 5-H2), 1.90 (septet, J = 8.0 Hz, 1H, 6-H), 1.65 (s, 3H, 2-
Me), 0.93 (d, J = 0.8 Hz, 6H, 7-H3 and 6-Me); 13C-NMR: (100 MHz, CDCl3) 148.4 (s, C-4), 142.4 (s, C-2), 
113.2 (t, C-1), 77.5 (d, C-8), 46.1 (t, C-3), 44.7 (t, C-5), 26.8 (d, C-6), 22.4 (q, C-7 and 6-Me), 21.8 (q, 2-
Me); HRMS: (EI, 70 eV) Calculated (C10H17I) 264.0375 (M+), Found: 264.0370. 

(Z)-(1-Iodo-4-methylpenta-1,4-dien-2-yl)cyclohexane (4da) 

 
Ethynylcyclohexane (1.01 mmol, 0.1094 g) was added to a solution of InBr3 (0.968 mmol, 0.3432 

g) and methallyl trimethylsilane (1.98 mmol, 0.2540 g) in dichloromethane (1 mL). The mixture was 
stirred at room temperature for 24 h. The reaction mixture was cooled to −78 °C, and 0.75 M I2 in THF 
solution (2 mL) was added. The resultant mixture was stirred at −78 °C for 30 min. The mixture was 
quenched by saturated Na2S2O3 aq (10 mL). The mixture was extracted with dichloromethane (3 × 10 
mL). The collected organic layer was dried over MgSO4. The solvent was evaporated and the residue 
was purified by column chromatography (hexane, column length 10 cm, diameter 26 mm silica gel) 
and GPC (CHCl3) to give the product (0.0607 g, 21%). 

IR: (neat) 1650, 1448 cm−1; 1H-NMR: (400 MHz, CDCl3) 5.83 (s, 1H, 11-H), 4.87 (s, 1H, 10-H), 4.77 (s, 
1H, 10-H), 2.81 (s, 2H, 8-H2), 2.63–2.56 (m, 1H, 1-H), 1.79–1.55 (m, 8H), 1.4–1.23 (m, 4H), 1.20–1.09 (m, 
1H); 13C-NMR: (100 MHz, CDCl3) 151.8 (s, C-7), 142.8 (s, C-9), 113.7 (t, C-10), 76.0 (d, C-11), 47.3 (d, C-
1), 42.1 (t, C-8), 29.9 (t), 26.3 (t), 26.0 (t), 22.0 (t, C-12); HRMS: (EI, 70 eV) Calculated (C12H19I) 290.0531 
(M+), Found: 290.0530. 

(E)-(3-(Iodomethylene)-5-methylhex-5-en-1-yl)benzene (4fa)  

 
Pent-4-yn-1-ylbenzene (1.01 mmol, 0.1314 g) was added to a solution of InBr3 (0.979 mmol, 0.3471 

g) and methallyl trimethylsilane (2.00 mmol, 0.2560 g) in dichloromethane (1 mL). The mixture was 
stirred at room temperature for 24 h. The reaction mixture was cooled to −78 °C, and 0.75 M I2 in THF 
solution (2 mL) was added. The resultant mixture was stirred at −78 °C for 30 min. The mixture was 
quenched by saturated Na2S2O3 aq (10 mL). The mixture was extracted with dichloromethane (3 × 10 
mL). The collected organic layer was dried over MgSO4. The solvent was evaporated and the residue 
was purified by column chromatography (hexane, column length 10 cm, diameter 26 mm silica gel) 
and GPC (CHCl3) to give the product (0.1357 g, 43%). 

IR: (neat) 1649, 1604, 1494, 1454 cm−1; 1H-NMR: (400 MHz, CDCl3) 7.31–7.17 (m, 5H, Ph), 6.00 (s, 1H, 
3-CHI), 4.85 (s, 1H, 6-H), 4.76 (s, 1H, 6-H), 2.86 (s, 2H, 4-H2), 2.72–2.68 (m, 2H, 1-H2), 2.48–2.44 (m, 2H, 
2-H2), 1.64 (s, 3H, 5-Me); 13C-NMR: (100 MHz, CDCl3) 148.4 (s, C-3), 142.2 (s, C-5), 141.4 (s, i), 128.39 
(d), 128.35 (d), 126.0 (d, p), 113.3 (t, C-6), 77.2 (d, 3-CHI), 46.3 (t, C-4), 38.6 (t, C-2), 33.3 (t, C-1), 21.8 (q, 
5-Me); HRMS: (EI, 70 eV) Calculated (C14H17I) 312.0375 (M+), Found: 312.0377. 

(E)-7-Chloro-4-(iodomethylene)-2-methylhept-1-ene (4ga) 

Ethynylcyclohexane (1.01 mmol, 0.1094 g) was added to a solution of InBr3 (0.968 mmol, 0.3432 g)
and methallyl trimethylsilane (1.98 mmol, 0.2540 g) in dichloromethane (1 mL). The mixture was
stirred at room temperature for 24 h. The reaction mixture was cooled to −78 ◦C, and 0.75 M I2 in
THF solution (2 mL) was added. The resultant mixture was stirred at −78 ◦C for 30 min. The mixture
was quenched by saturated Na2S2O3 aq (10 mL). The mixture was extracted with dichloromethane
(3 × 10 mL). The collected organic layer was dried over MgSO4. The solvent was evaporated and the
residue was purified by column chromatography (hexane, column length 10 cm, diameter 26 mm silica
gel) and GPC (CHCl3) to give the product (0.0607 g, 21%).

IR: (neat) 1650, 1448 cm−1; 1H-NMR: (400 MHz, CDCl3) 5.83 (s, 1H, 11-H), 4.87 (s, 1H, 10-H), 4.77 (s, 1H,
10-H), 2.81 (s, 2H, 8-H2), 2.63–2.56 (m, 1H, 1-H), 1.79–1.55 (m, 8H), 1.4–1.23 (m, 4H), 1.20–1.09 (m, 1H);
13C-NMR: (100 MHz, CDCl3) 151.8 (s, C-7), 142.8 (s, C-9), 113.7 (t, C-10), 76.0 (d, C-11), 47.3 (d, C-1),
42.1 (t, C-8), 29.9 (t), 26.3 (t), 26.0 (t), 22.0 (t, C-12); HRMS: (EI, 70 eV) Calculated (C12H19I) 290.0531
(M+), Found: 290.0530.

(E)-(3-(Iodomethylene)-5-methylhex-5-en-1-yl)benzene (4fa)
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× 10 mL). The collected organic layer was dried over MgSO4. The solvent was evaporated and the 
residue was purified by column chromatography (hexane, column length 10 cm, diameter 26 mm 
silica gel) and GPC (CHCl3) to give the product (0.0560 g, 20%). 

IR: (neat) 1650, 1463 cm−1; 1H-NMR: (400 MHz, CDCl3) 6.01 (s, 1H, 8-H), 4.84 (s, 1H, 1-H), 4.74 (s, 1H, 
1-H), 2.87 (s, 2H, 3-H2), 2.09 (d, J = 8.0 Hz, 2H, 5-H2), 1.90 (septet, J = 8.0 Hz, 1H, 6-H), 1.65 (s, 3H, 2-
Me), 0.93 (d, J = 0.8 Hz, 6H, 7-H3 and 6-Me); 13C-NMR: (100 MHz, CDCl3) 148.4 (s, C-4), 142.4 (s, C-2), 
113.2 (t, C-1), 77.5 (d, C-8), 46.1 (t, C-3), 44.7 (t, C-5), 26.8 (d, C-6), 22.4 (q, C-7 and 6-Me), 21.8 (q, 2-
Me); HRMS: (EI, 70 eV) Calculated (C10H17I) 264.0375 (M+), Found: 264.0370. 

(Z)-(1-Iodo-4-methylpenta-1,4-dien-2-yl)cyclohexane (4da) 

 
Ethynylcyclohexane (1.01 mmol, 0.1094 g) was added to a solution of InBr3 (0.968 mmol, 0.3432 

g) and methallyl trimethylsilane (1.98 mmol, 0.2540 g) in dichloromethane (1 mL). The mixture was 
stirred at room temperature for 24 h. The reaction mixture was cooled to −78 °C, and 0.75 M I2 in THF 
solution (2 mL) was added. The resultant mixture was stirred at −78 °C for 30 min. The mixture was 
quenched by saturated Na2S2O3 aq (10 mL). The mixture was extracted with dichloromethane (3 × 10 
mL). The collected organic layer was dried over MgSO4. The solvent was evaporated and the residue 
was purified by column chromatography (hexane, column length 10 cm, diameter 26 mm silica gel) 
and GPC (CHCl3) to give the product (0.0607 g, 21%). 

IR: (neat) 1650, 1448 cm−1; 1H-NMR: (400 MHz, CDCl3) 5.83 (s, 1H, 11-H), 4.87 (s, 1H, 10-H), 4.77 (s, 
1H, 10-H), 2.81 (s, 2H, 8-H2), 2.63–2.56 (m, 1H, 1-H), 1.79–1.55 (m, 8H), 1.4–1.23 (m, 4H), 1.20–1.09 (m, 
1H); 13C-NMR: (100 MHz, CDCl3) 151.8 (s, C-7), 142.8 (s, C-9), 113.7 (t, C-10), 76.0 (d, C-11), 47.3 (d, C-
1), 42.1 (t, C-8), 29.9 (t), 26.3 (t), 26.0 (t), 22.0 (t, C-12); HRMS: (EI, 70 eV) Calculated (C12H19I) 290.0531 
(M+), Found: 290.0530. 

(E)-(3-(Iodomethylene)-5-methylhex-5-en-1-yl)benzene (4fa)  

 
Pent-4-yn-1-ylbenzene (1.01 mmol, 0.1314 g) was added to a solution of InBr3 (0.979 mmol, 0.3471 

g) and methallyl trimethylsilane (2.00 mmol, 0.2560 g) in dichloromethane (1 mL). The mixture was 
stirred at room temperature for 24 h. The reaction mixture was cooled to −78 °C, and 0.75 M I2 in THF 
solution (2 mL) was added. The resultant mixture was stirred at −78 °C for 30 min. The mixture was 
quenched by saturated Na2S2O3 aq (10 mL). The mixture was extracted with dichloromethane (3 × 10 
mL). The collected organic layer was dried over MgSO4. The solvent was evaporated and the residue 
was purified by column chromatography (hexane, column length 10 cm, diameter 26 mm silica gel) 
and GPC (CHCl3) to give the product (0.1357 g, 43%). 

IR: (neat) 1649, 1604, 1494, 1454 cm−1; 1H-NMR: (400 MHz, CDCl3) 7.31–7.17 (m, 5H, Ph), 6.00 (s, 1H, 
3-CHI), 4.85 (s, 1H, 6-H), 4.76 (s, 1H, 6-H), 2.86 (s, 2H, 4-H2), 2.72–2.68 (m, 2H, 1-H2), 2.48–2.44 (m, 2H, 
2-H2), 1.64 (s, 3H, 5-Me); 13C-NMR: (100 MHz, CDCl3) 148.4 (s, C-3), 142.2 (s, C-5), 141.4 (s, i), 128.39 
(d), 128.35 (d), 126.0 (d, p), 113.3 (t, C-6), 77.2 (d, 3-CHI), 46.3 (t, C-4), 38.6 (t, C-2), 33.3 (t, C-1), 21.8 (q, 
5-Me); HRMS: (EI, 70 eV) Calculated (C14H17I) 312.0375 (M+), Found: 312.0377. 

(E)-7-Chloro-4-(iodomethylene)-2-methylhept-1-ene (4ga) 
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Pent-4-yn-1-ylbenzene (1.01 mmol, 0.1314 g) was added to a solution of InBr3 (0.979 mmol,
0.3471 g) and methallyl trimethylsilane (2.00 mmol, 0.2560 g) in dichloromethane (1 mL). The mixture
was stirred at room temperature for 24 h. The reaction mixture was cooled to −78 ◦C, and 0.75 M I2 in
THF solution (2 mL) was added. The resultant mixture was stirred at −78 ◦C for 30 min. The mixture
was quenched by saturated Na2S2O3 aq (10 mL). The mixture was extracted with dichloromethane
(3 × 10 mL). The collected organic layer was dried over MgSO4. The solvent was evaporated and the
residue was purified by column chromatography (hexane, column length 10 cm, diameter 26 mm silica
gel) and GPC (CHCl3) to give the product (0.1357 g, 43%).

IR: (neat) 1649, 1604, 1494, 1454 cm−1; 1H-NMR: (400 MHz, CDCl3) 7.31–7.17 (m, 5H, Ph), 6.00 (s, 1H,
3-CHI), 4.85 (s, 1H, 6-H), 4.76 (s, 1H, 6-H), 2.86 (s, 2H, 4-H2), 2.72–2.68 (m, 2H, 1-H2), 2.48–2.44 (m,
2H, 2-H2), 1.64 (s, 3H, 5-Me); 13C-NMR: (100 MHz, CDCl3) 148.4 (s, C-3), 142.2 (s, C-5), 141.4 (s, i),
128.39 (d), 128.35 (d), 126.0 (d, p), 113.3 (t, C-6), 77.2 (d, 3-CHI), 46.3 (t, C-4), 38.6 (t, C-2), 33.3 (t, C-1),
21.8 (q, 5-Me); HRMS: (EI, 70 eV) Calculated (C14H17I) 312.0375 (M+), Found: 312.0377.

(E)-7-Chloro-4-(iodomethylene)-2-methylhept-1-ene (4ga)Molecules 2018, 23, x 9 of 14 

 

 
The alkyne 5-chloropent-1-yne (1.01 mmol, 0.1031 g) was added to a solution of InBr3 (0.983 

mmol, 0.3486 g) and methallyl trimethylsilane (1.99 mmol, 0.2557 g) in dichloromethane (1 mL). The 
mixture was stirred at room temperature for 24 h. The reaction mixture was cooled to −78 °C, and 
0.75 M I2 in THF solution (2 mL) was added. The resultant mixture was stirred at −78 °C for 30 min. 
The mixture was quenched by saturated Na2S2O3 aq (10 mL). The mixture was extracted with 
dichloromethane (3 × 10 mL). The collected organic layer was dried over MgSO4. The solvent was 
evaporated and the residue was purified by column chromatography (hexane, column length 10 cm, 
diameter 26 mm silica gel) to give the product (0.1676 g, 59%). 

IR: (neat) 1649, 1443 cm−1; 1H-NMR: (400 MHz, CDCl3) 6.01 (s, 1H, 4-CHI), 4.84 (s, 1H, 7-H), 4.76 (s, 
1H, 7-H), 3.54 (t, J = 7.3 Hz, 2H, 1-H2), 2.88 (s, 2H, 5-H2), 2.31 (t, J = 7.3 Hz, 2H, 3-H2), 1.88 (quintet, J = 
7.3 Hz, 2H, 2-H2), 1.64 (s, 3H, 6-Me); 13C-NMR: (100 MHz, CDCl3) 147.6 (s, C-4), 141.9 (s, C-6), 113.4 (t, 
C-7), 77.6 (d, 4-CHI), 46.0 (t, C-5), 44.5 (t, C-1), 33.9 (t, C-3), 30.0 (t, C-2), 21.7 (q, 6-Me); HRMS: (EI, 70 
eV) Calculated (C9H14ClI) 283.9829 (M+), Found: 283.9823. 

(Z)-(1-Iodo-4-methylpenta-1,4-dien-2-yl)benzene (4ha) 

 
Phenylacetylene (1.08 mmol, 0.110 g) was added to a solution of InBr3 (1.00 mmol, 0.3541 g), 

methallyl trimethylsilane (1.99 mmol, 0.2552 g), and Me2Si(OMe)2 (1.02 mmol, 0.1230 g) in 
dichloromethane (1 mL). The mixture was stirred at room temperature for 24 h. The reaction mixture 
was cooled to −78 °C, and 0.75 M I2 in THF solution (2 mL) was added. The resultant mixture was 
stirred at −78 °C for 30 min. The mixture was quenched by saturated Na2S2O3 aq (10 mL). The mixture 
was extracted with dichloromethane (3 × 10 mL). The collected organic layer was dried over MgSO4. 
The solvent was evaporated and the residue was purified by column chromatography (hexane, 
column length 10 cm, diameter 26 mm silica gel) and GPC (CHCl3) to give the product (0.169 g, 55%). 

IR: (neat) 1650, 1490, 1442 cm−1; 1H-NMR: (400 MHz, CDCl3) 7.38–7.30 (m, 3H, Ar), 7.21 (d, J = 6.8 Hz, 
2H, Ar), 6.35 (s, 1H, 1-H), 4.78 (s, 1H, 5-H), 4.66 (s, 1H, 5-H), 3.20 (s, 2H, 3-H), 1.70 (s, 3H, 4-Me); 13C-
NMR: (100 MHz, CDCl3) 150.1 (s), 141.9 (s), 141.5 (s), 128.1 (d), 127.9 (d), 127.6 (d), 113.7 (t, C-5), 77.6 
(d, C-1), 48.6 (t, C-3), 21.9 (q, 4-Me); Calculated (C12H13I) 284.0062 (M+), Found: 284.0062. 

(Z)-(1-Iodopenta-1,4-dien-2-yl)benzene (4hb) 

 
Phenylacetylene (1.00 mmol, 0.102 g) was added to a solution of InBr3 (1.11 mmol, 0.3921 g), allyl 

trimethylsilane (1.96 mmol, 0.2236 g), and Me2Si(OMe)2 (1.00 mmol, 0.1202 g) in dichloromethane (1 
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13C-NMR: (100 MHz, CDCl3) 150.1 (s), 141.9 (s), 141.5 (s), 128.1 (d), 127.9 (d), 127.6 (d), 113.7 (t, C-5),
77.6 (d, C-1), 48.6 (t, C-3), 21.9 (q, 4-Me); Calculated (C12H13I) 284.0062 (M+), Found: 284.0062.
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Phenylacetylene (1.02 mmol, 0.104 g) was added to a solution of InBr3 (1.01 mmol, 0.3597 g), prenyl
trimethylsilane (1.96 mmol, 0.2788 g), and Me2Si(OMe)2 (0.962 mmol, 0.1157 g) in dichloromethane
(1 mL). The mixture was stirred at room temperature for 24 h. The reaction mixture was cooled to
−78 ◦C, and 0.75 M I2 in THF solution (2 mL) was added. The resultant mixture was stirred at −78 ◦C
for 30 min. The mixture was quenched by saturated Na2S2O3 aq (10 mL). The mixture was extracted
with dichloromethane (3 × 10 mL). The collected organic layer was dried over MgSO4. The solvent
was evaporated and the residue was purified by column chromatography (hexane, column length
10 cm, diameter 26 mm silica gel) and GPC (CHCl3) to give the product (0.126 g, 41%).

IR: (neat) 1638, 1490, 1462, 1442 cm−1; 1H-NMR: (400 MHz, CDCl3) 7.41–7.7.32 (m, 3H, Ar), 7.04–7.00
(m, 2H, Ar), 6.53 (s, 1H, 1-H), 5.94 (dd, J = 17.4, 10.6 Hz, 1H, 4-H), 5.09 (d, J = 10.6 Hz, 1H, 5-H), 5.03 (d,
J = 17.4 Hz, 1H, 5-H), 1.21 (s, 6H, 3-Me2); 13C-NMR: (100 MHz, CDCl3) 159.7 (s, C-2), 145.2 (d, C-4),
142. 4 (s), 128.9 (d), 127.8 (d), 127.1 (d), 112.3 (t, C-5), 80.2 (d, C-1), 45.1 (s, C-3), 26.4 (q, 3-Me2); HRMS:
(EI, 70 eV) Calculated (C13H15I) 298.0218 (M+), Found: 298.0219.
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All manipulations were carried out in a globe box filled with nitrogen gas. Phenylacetylene
(0.886 mmol, 0.0905 g) was added to a solution of InBr3 (1.00 mmol, 0.3550 g), methallyl trimethylsilane
(1.98 mmol, 0.2541 g), and Me2Si(OMe)2 (1.05 mmol, 0.1267 g) in dichloromethane (1 mL). The mixture
was stirred at room temperature for 24 h. The volatiles were evaporated and the residual oil was
washed with hexane to obtain the desired alkenylindium compound as a white solid (0.106 g, 26%).

1H-NMR: (400 MHz, CDCl3) 7.43–7.22 (m, 5H, Ar), 5.99 (s, 1H, 1-H), 4.83 (s, 1H, 5-H), 4.73 (s, 1H, 5-H),
3.30 (s, 2H, 3-H2), 1.72 (s, 3H, 4-Me); 13C-NMR: (100 MHz, CDCl3) 160.6 (s), 145.7 (s), 141.9 (s), 134.1 (d,
C-1), 129.5 (d), 128.8 (d), 126.5 (d), 113.9 (t, C-5), 48.1 (t, C-3), 22.1 (q, 4-Me).
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Phenylacetylene (0.540 mmol, 0.0551 g) was added to a solutin of InBr3 (0.532 mmol, 0.1885 g),
methallyl trimethylsilane (1.01 mmol, 0.1290 g), and Me2Si(OMe)2 (0.499 mmol, 0.060 g) in
dichloromethane (0.5 mL). The mixture was stirred at room temperature for 3 h. DMF (1 mL) was
added to the reaction mixture at −78 ◦C. Then, the »reaction mixture was warmed to room temperature.
PhI (0.749 mmol, 0.1528 g) and Pd(PPh3)4 (0.028 mmol, 0.0325g) were added to the reaction mixture,
and the mixture was heated at 100 ◦C for 3 h. The mixture was quenched by H2O (10 mL) and Et2O
(20 mL) at room temperature. The organic layer was washed by H2O (3 × 10 mL), and was dried over
MgSO4. The solvent was evaporated and the residue was purified by column chromatography (hexane,
column length 10 cm, diameter 26 mm silica gel) and GPC (CHCl3) to give the product (0.0686 g, 54%).

IR: (neat) 1650, 1599, 1494, 1444 cm−1; 1H-NMR: (400 MHz, CDCl3) 7.29–7.20 (m, 3H, Ar), 7.15 (d,
J = 6.8 Hz, 2H, Ar), 7.12–7.04 (m, 3H, Ar), 6.95 (d, J = 6.8 Hz, Ar), 4.79 (s, 1H, 5-H), 4.72 (s, 1H, 5-H),
3.18 (s, 2H, 3-H2), 1.76 (s, 3H, 4-Me); 13C-NMR: (100 MHz, CDCl3) 142.9 (s, C-4), 141.1 (s), 140.4 (s),
137.3 (s), 129.0 (d), 128.6 (d), 128.3 (d), 128.1 (d), 127.8 (d), 126.9 (d), 126.3 (d), 113.1 (t, C-5), 49.1 (t, C-3),
22.1 (q, 4-Me); HRMS: (EI, 70 eV) Calculated (C18H18) 234.1409 (M+), Found: 234.1408.

4. Conclusions

We established a regioselective anti-allylindation of alkynes using InBr3 and allylic silanes. Many
types of aliphatic and aromatic alkynes were applicable. The present allylindation has a wide scope
of allylic silanes, and the reactions using allyl, methallyl, prenyl, cinnamyl silanes gave the desired
products. A 1,4-dienyl indium compound generated by the present allylindation was successfully
isolated and characterized by NMR spectroscopy. The synthesized 1,4-dienyl indiums were applicable
to iodination and Pd-catalyzed cross-coupling with an aryl iodide in a one-pot manner to give the
corresponding functionalized skipped dienes.

Supplementary Materials: The following are available online, Supporting Information of NOE Experiments and
NMR Spectra.
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