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Abstract: The study was a pioneering attempt to assess the influence of the structural polymorphism
(forms I, II, III) of benzocaine on its solubility, apparent solubility, and chemical stability, which are
vital parameters for preformulation and formulation work. The impact of differences in the solubility
of selected polymorphs of benzocaine on their permeability through artificial biological membranes
(PAMPA system) was evaluated. The polymorphs of benzocaine were obtained by means of
techniques commonly used for the preparation of various pharmaceutical dosage forms: ball milling,
micro milling, and cryogenic grinding, which allowed for the appearance or preservation of form III,
the initial conformation of benzocaine. Ball milling resulted in the conversion of form III to I, whereas
micro milling yielded form II. As a result of cryogenic grinding, form III of benzocaine was preserved.
The identification of all polymorphic forms of benzocaine was confirmed via X-ray powder diffraction
(PXRD) supported by FT-IR spectroscopy coupled with density functional theory (DFT) calculations.
The differences in solubility, dissolution, and permeability through artificial biological membranes
resulting from the polymorphic forms of benzocaine were established by using chromatographic
determinations. Accelerated stability tests indicated that all polymorphic forms were chemically
stable at a required level.
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1. Introduction

Benzocaine, which has been used in medicine for over a century [1], is a local anesthetic that
acts by inhibiting voltage-dependent sodium channels [2]. It is present in many topical preparations
for local application, such as dental sprays, throat anesthesia lozenges, skin gels and powders, ear
drops, and condom desensitizers. Benzocaine is often administered with other active pharmaceutical
ingredients (APIs) and excipients. This variety of dosage forms necessitates a large number of
techniques for processing benzocaine. The most common of them are ball milling, micro milling,
and cryogenic grinding. Since structural polymorphism is frequently observed in APIs, each of those
processes may lead to the formation or change of particular polymorphic forms of APIs exhibiting
different physicochemical properties (solubility, dissolution profile, chemical stability, and permeability
through biological barriers) related to bioavailability, which determines their therapeutic safety
and effectiveness [3–8]. At present, benzocaine is known to exist in three polymorphic forms.
Form I, formerly form β, is a monoclinic P 21/c polymorph (Z = 4): CCDC codes: QQQAXG02
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and QQQAXG04) [9]. Form II, previously α, is an orthorhombic P 21, 21, 21 polymorph (Z = 4):
CCDC code: QQQAXG01) [10]. Form III is a monoclinic P 21 polymorph (Z = 8): CCDC code:
QQQAXG03) [11]. E.J. Chan reported that conversion from form II to form III of benzocaine resulted
in a twinned structure with a new cell having the b axis doubled and a monoclinic P1121 structure [10].
The difference between forms I and II is connected with flat ribbons of structure that propagate
along the a direction. These consist of two symmetry-related halves [10]. At a low temperature,
form II of benzocaine becomes form III [12]. A similar phase transition has not been observed for
form I. Considering the melting point values, form II of benzocaine is the most stable of the three
solid phases under ambient conditions. Due to the fact that benzocaine is classified as a poorly
soluble anesthetic, it is vital to evaluate the influence of its polymorphic forms on physicochemical
properties important for the preparation of various pharmaceutical dosage forms. To the best of our
knowledge, there have been no reports on how the structural polymorphism of benzocaine affects
its solubility, dissolution profile, chemical stability, and permeability through biological barriers.
So far studies have concentrated on characterization of the polymorphic forms of benzocaine with
the use of X-ray crystallography [13]. An unstable ester bond (ester of p-aminobenzoic acid) in the
structure of benzocaine has stimulated interest exclusively in its chemical stability with no attention
given to the impact of specified polymorphic forms [14,15]. Accelerated stability tests conducted
according to ICH regulations (The International Council for Harmonisation of Technical Requirements
for Pharmaceuticals for Human Use) indicated that benzocaine of an unidentified crystalline form was
stable for 6 months in the air of increased relative humidity (RH 50%) and temperature (T = 333 K).
Compatibility studies on benzocaine and selected excipients proved that its chemical stability depended
on the presence of certain excipients, which were defined as an additional source of humidity.

The purpose of the present study was to evaluate the effect of techniques employed for the
development of new pharmaceutical dosage forms on the formation of different benzocaine polymorphs
and to assess the influence of selected polymorphic forms of the compound on its physicochemical
properties, such as solubility, apparent solubility, and chemical stability. Their permeability through
biological membranes was also assessed to establish the indirect effect of differences in the solubility of
the polymorphic forms.

2. Results and Discussion

The first part of the work involved preparing the polymorphic forms of benzocaine by using ball
milling, micro milling, and cryogenic grinding. Their identification was conducted with methods based
on X-ray powder diffraction (PXRD) supported by FT-IR spectroscopy coupled with DFT calculations.

Structural analysis was conducted on prepared samples and is depicted in Figure 1 within the
spectra indication for predominant phase occurrence. As for the micro-milled samples provided by
Galex (Murska Sobota, Slovenia) stabile form I (Z = 4): CCDC code: QQQAXG02 was confirmed. For the
initial benzocaine sample provided by Pharma Cosmetics (Krakow, Poland), PXRD data confirmed the
polymorphic form III (Z = 8): CCDC code: QQQAXG03), according to the reference data [11], with some
residual amount of form II P212121 (Z = 4): CCDC code: QQQAXG01 (Figure 1). A tendency for the
occurrence of forms III and II as the favored ones under such experimental conditions has also been
reported [12]. After the cryogenic grinding of the initial benzocaine samples, form III was maintained
for benzocaine, although minor changes in the spectrum were noticed (form IIIa). It is possible to
suggest that form IIIa is a mixture of III and I forms. As may be observed from the comparison of the
diffractograms of the initial samples of benzocaine with the diffractograms of benzocaine after cryogenic
grinding, the reflections of the second phase were considerably reduced. This could be explained by
the processing at a low temperature during cryogenic grinding and then the achievement of room
temperature. On top of the fading reflections of form II, the broadening reflections of form III were
noticed. This structural dependence may be explained by a decrease in the material grain size caused by
the milling. After the ball milling of the initial benzocaine samples, the transformation of form III with
a residual amount of form II to form I is observed. One way to explain the structural response of the
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material under the processing conditions is that the milling probably increased the temperature locally
and transformed the system during repeatable collisions between the powder and the milling ball.
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Figure 1. PXRD diffractograms of polymorphic forms of benzocaine.

The identification of characteristic bands within the FT–IR spectra of the three polymorphic forms
of benzocaine was supported by comparison with theoretical spectra obtained through applying the
density functional theory with the B3LYP (Becke, 3-parameter, Lee-Yang-Parr) hybrid functional and
the 6–31 G (d,p) basis set (Figure 2). The calculated vibrational frequencies were scaled in order to
improve agreement with the experimental values. The assignment of a vibrational model to particular
domains in a benzocaine molecule relative to the FT–IR spectra is summarized in Table 1. The most
characteristic bands associated with the vibration of bonds present in the specified forms of benzocaine
were located between 500 and 2000 cm−1. It was possible to identify polymorphic form III due to
the presence of two bands that were more intense in comparison with the FT–IR spectra of other
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polymorphic forms in the range 1280–1300 cm−1 associated with the stretching vibration of the C–O
and C–C bonds and the wagging vibration of the C–H bonds, and a band at 1682 cm−1 corresponding to
the stretching vibration of the C=O bond. In contrast to the FT-IR spectra of forms I and II, for form III a
characteristic change was the decreasing intensity of the band at 773 cm−1 linked with the out-of-plane
bending vibration of the O–C=O bond. It was also observed that additional bands appeared in the
range 1350–1500 cm−1, associated with the scissoring and rocking vibrations of the C–H bond. Table 1
lists a selection of the characteristic bands of benzocaine. The dark lines contain the bands and the
corresponding vibrations important for differentiating the polymorphic forms of benzocaine.

Table 1. Selected characteristic bands of benzocaine.

Theory (cm−1) IR (cm−1) Approximate Description

485 N–H w
652 C–C–C b in benzene ring
703 703 O–C=O b oop + C–H w
767 773 O–C=O b oop + C–H w
778 breathing benzene ring + C–O–C b + C–N s + C–H w
830 breathing benzene ring + C–O–C b + C–N s + C–H w
848 849 C–H w at benzene ring
864 breathing benzene ring + C–O–C b
890 C–O s + breathing benzene ring

1138 1110 C–O s + breathing benzene ring + C–H r
1200 1173 C–H sc
1306 1280 C–O s + C–C s + C–H w
1340 1312 C–H r + C–N s
1408 1368 C–H r
1431 1390 C–H r
1500 1444 C–H sc
1522 C–H sc
1560 1513 C–N s + C–C s + C–C–H b
1610 1596 C–N s + C–C s + C–C–H b
1677 1596 C=C s + N–H sc + C–C s + C–N s
1785 1682 C=O s
3053 C–H s in CH3 and CH2
3225 C–H s in benzene ring
3585 3341 N–H s sym.
3697 3425 N–H s asym.

s—stretching, b—bending, r—rocking, w—wagging, sc—scissoring, t—twisting, oop—out of the plane,
sym—symmetric, asym—asymmetric.Molecules 2018, 23, x FOR PEER REVIEW  5 of 13 
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Finally, it was confirmed that the polymorphic form III (monoclinic P 21—Z = 8): CCDC
code: QQQAXG03) of benzocaine was represented by the initial sample of benzocaine. Depending
on the pharmaceutical technology procedure applied, different polymorphic forms of benzocaine
appeared. Ball milling resulted in the conversion of form III to I (orthorhombic P 21, 21, 21 polymorph,
Z = 4 CCDC code: QQQAXG02 and QQQAXG04) whereas micro milling yielded form II (monoclinic
P 21/c polymorph, Z = 4 CCDC code: QQQAXG01).

Cryogrinding did not cause any change in the polymorphic form III of benzocaine. According
to the literature, this may be a consequence of the fact that the techniques applied require low
temperatures [12]. In summary, the study indicated that it was possible to obtain solids containing
any of the three polymorphic forms of benzocaine through ball milling, cryogrinding, and micro
milling. It should be stressed at this stage of research that the significant physical instability of
benzocaine resulting in an easy transition between its polymorphic forms was not coupled with
their chemical instability despite the presence of a labile ester bond in a benzocaine molecule. It was
also demonstrated, on the basis of chromatographic analysis, that the main degradation product of
benzocaine (p-aminobenzoic acid) was not formed under the conditions of the technological processes
applied in this work.

The second part of the study focused on the physicochemical properties (solubility, apparent
solubility profiles, chemical stability, and permeability through artificial biological membranes) of the
three polymorphic forms of benzocaine. The physicochemical properties of the polymorphic forms of
benzocaine were evaluated with the use of an HPLC-DAD method developed for the determination
of benzocaine in the presence of its main impurity, p-aminobenzoic acid (Figure 3). The HPLC-DAD
method was validated for the determination of benzocaine in methanol and a phosphate buffer
(pH~7.2), according to ICH guidelines [16].

. . . . . .

Figure 3. HPLC chromatogram of benzocaine in the presence of its main impurity (p-aminobenzoic acid).

As a poorly soluble anesthetic, benzocaine dissolves better in methanol, which is often used in
the preparation of the compound. The solubility studies of benzocaine were conducted in a phosphate
buffer (pH ≈ 7.2) because the majority of pharmaceutical forms are designed to release benzocaine
into an acceptor medium of a similar pH value (e.g., saliva or skin). Irrespective of the solvent type,
differences were observed in the solubility of the three polymorphic forms of benzocaine, with forms I
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and II more soluble than form III (Tables 2–4). That may be explained by the presence of impurities
confirmed in PXRD studies and attributed to the process of the benzocaine sample preparation.

Table 2. Validation parameters of the HPLC-DAD method for determination of benzocaine in methanol.

Parameter Results

Selectivity Peak symmetry factor (in the range 0.8–1.5 required) = 0.94
Absence of interfering substances confirmed

Limit of quantification
(LOQ)

LOQ = 0.32 µg mL−1

Where SD is the average of standard deviations of determinations in the lower
range of linearity and a is the directional coefficient of the plotted linear function

Limit of detection
(LOD) LOD = 0.10 µg mL−1

The range of linearity 0.35–1.50 µg mL−1

Linearity

y = ax + b
a = 464.76 ± 10.98
b = 214.24 ± 9.98

Correlation coefficient (r) = 0.9995

Accuracy Concentration 0.53 mg mL−1 0.67 mg mL−1 0.8 mg mL−1

Average of
three injections 0.54 mg mL−1 0.69 mg mL−1 0.86 mg mL−1

SD 0.04 0.07 0.04

RSD (<5% required) 0.45 0.71 0.35

Recovery
(95–105% required) 98.36 99.24 96.19

Table 3. Validation parameters of the HPLC-DAD method for the determination of benzocaine in a
phosphate buffer of pH ≈ 7.2.

Parameter Results

Selectivity Peak symmetry factor (in the range 0.8–1.5 required) = 1.29
Absence of interfering substances confirmed

Limit of quantification
(LOQ)

LOQ = 4.70 µg mL−1

Where SD is the average of standard deviations of determinations in the lower
range of linearity and a is the directional coefficient of the plotted linear function

Limit of detection
(LOD) LOD = 1.50 µg mL−1

The range of linearity 5.0–20.0 µg mL−1

Linearity

y = ax + b
a = 955.65 ± 35.22
b = −0.50 ± 0.13

Correlation coefficient (r) = 0.9987

Accuracy Concentration 8.0 µg mL−1 10.0 µg mL−1 12.0 µg mL−1

Average of
six injections 7.9 µg mL−1 10.6 µg mL−1 13.1 µg mL−1

SD 0.04 0.06 0.06

RSD (<5% required) 0.45 0.53 0.46

Recovery
(95–105% required) 95.49 96.24 95.87
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Table 4. Solubility of polymorphic forms of benzocaine.

Samples of Benzocaine III I II IIIa

Solubility in methanol at ambient
temperature (mg mL−1) 46.64 ± 0.11 50.58 ± 0.15 54.65 ± 0.34 47.34 ± 0.01

Solubility in phosphate buffer
(pH ≈ 7.2) at 37 ◦C (mg mL−1) 0.61 ± 0.01 0.65 ± 0.01 0.64 ± 0.01 0.62 ± 0.01

Considering the action mechanism and the application site of benzocaine, its apparent solubility
in a phosphate buffer of pH ≈ 7.2 was also assessed. By studying the apparent solubility, it is possible
to determine the rate at which selected forms of APIs dissolve. In our study, apparent solubility was
determined for the three polymorphic forms of benzocaine. The greatest difference in their apparent
solubility was observed 10 min after the start of the experiment. The polymorphic form II of benzocaine
dissolved more than four times as fast as form I, whereas form III ranked between those forms in that
respect. The shapes of dissolution profile curves for forms I and II were comparable, while form III
differed in its dynamics of apparent solubility. Differences were registered within sections of plateau
curves indicating that form II showed the best apparent solubility (Figure 4).Molecules 2018, 23, x FOR PEER REVIEW  8 of 13 
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Taking into consideration differences in apparent solubility for the three polymorphic forms
of benzocaine, the study was continued to investigate the compound’s permeability through
systems of biological membranes. As the PAMPA model is based on the assessment of changes
in the concentrations of analytes in acceptor and donor fluids resulting from diffusion, changes in
apparent solubility determine changes in permeability as a function of time. It should be stressed
that since benzocaine, as a poorly soluble anesthetic, may demonstrate low permeability, any
changes in this parameter may affect the compound’s activity profile. As expected, permeability
studies of the three polymorphic forms of benzocaine by using the PAMPA system confirmed that
the apparent permeability coefficients for all forms were less than 1 × 10−6 cm s−1, classifying
them as low-permeability APIs [17–19]. Form II, which exhibited the greatest permeability
(0.26 × 10−6 cm s−1), permeated through the system of biological membranes used in the study at a
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rate twice as high as that observed for form III (Figure 5). Those differences correlated positively with
differences in solubility and dissolution profiles.

.

.

.

.

.

.

.

×

Figure 5. Apparent permeability coefficient (Papp) for polymorphic forms of benzocaine.

The last stage of research into the effect of polymorphism on the physicochemical properties
of APIs involved investigation of the chemical stability of the previously mentioned polymorphic
forms of benzocaine. The presence of an ester bond in benzocaine puts it in a class of chemically
labile APIs characterized by a potential susceptibility to degradation, especially under the influence
of water molecules. Previous studies have not indicated any degradation of benzocaine in the solid
state when stored for 6 months at 298 K and RH = 60%, or under accelerated aging conditions at
313 K and RH = 75%. However, in the presence of certain excipients, benzocaine was prone to
degradation, which was linked to their humidifying effect [14,15]. It was therefore decided that the
present study would investigate accelerated degradation of the polymorphic forms of benzocaine
exposed to stronger affecting factors, such as the RH range 50–90% at T = 333 K, in order to assess
differences in their chemical stability resulting from increased humidity. Particular attention was
directed to the degradation path to determine whether it was oriented toward the formation of
p-aminobenzoic acid as the main degradation product of a probable hydrolysis of the ester bond in
benzocaine. Accelerated degradation experiments did not indicate any degradation of the polymorphic
forms of benzocaine. Similarly, an increase in the temperature (T = 383 K) in dry air did not cause any
degradation related to the polymorphic forms I, II, III, and IIIa of benzocaine (Figure 6).
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3. Materials and Methods

3.1. Materials

The initial samples of benzocaine (form III) (purity > 98%) was supplied by Pharma Cosmetic
K.M. Adamowicz Sp. z.o.o. (Krakow, Poland). Acetonitrile of an HPLC grade was supplied by Merck
KGaA (Darmstadt, Germany) and formic acid (100%) by Avantor Performance Materials (Gliwice,
Poland). High-quality pure water was prepared using an Exil SA 67120 Millipore purification system
(Molsheim, France). Hydrochloric acid, sodium hydroxide solution, hydrogen peroxide, potassium
dihydrogen phosphate, potassium bromide, and all other chemicals were obtained from Avantor
Performance Materials (Gliwice, Poland).

Benzocaine (form I) was obtained from GaleX dd. (Murska Sobota, Slovenia), and according to
the specification, had been subject to micro milling.

3.2. Preparation of Polymorphic forms of Benzocaine

Initial samples of benzocaine (form III) were subjected to ball milling and cryogenic milling.
The ball milling of benzocaine was performed by using a Retsch MM 400 mill (Retsch, Katowice,
Poland). A steel jar (50 mL) was filled with a sample of benzocaine (2 g) and 1 steel ball (30 mm
in diameter). The rotation speed was set to 1800 rpm with a frequency of 30 Hz. The total time of
milling at room temperature was 60 min. After milling, the benzocaine samples were stored at room
temperature. The cryogenic milling of benzocaine was carried out by using a Retsch MM 400 mill.
The total mass of benzocaine was 2 g. The samples were placed in a stainless-steel vessel and then
inserted in liquid nitrogen. After 10 min, the samples were subjected to milling. The milling was
set at an impact frequency of 10 Hz. The effective milling time was 60 min. After cryogenic milling,
the benzocaine samples were stored at room temperature.

3.3. Identification of Polymorphic Forms of Benzocaine

The identification of all polymorphic forms of benzocaine was confirmed by an X-ray powder
diffraction (PXRD) as the main technique and FT-IR spectroscopy coupled with DFT calculations as
supporting methods.
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3.4. X-ray Powder Diffraction (PXRD)

To analyze the initial and processed conformation of benzocaine, an X-ray powder diffraction
(PXRD) technique was used. The diffractograms were collected by a PANalytical Empyrean system
(Malvern Panalytical, Malvern, UK) with a Cu lamp (1.54056 Å). The measurements were carried out at
a scanning range between 3◦ and 50◦ at 2θ range using a step size of 0.017◦ and a step time of 15 s/step
with source parameters of 45 kV and 40 mA. For plot analysis, the backgrounds were automatically
corrected using WinPLOTR software and then subtracted from spectra by spline interpolation.

3.5. Theoretical Analysis

Theoretical FT-IR spectra of benzocaine were obtained with the use of density functional theory
calculations using Becke’s three-parameter hybrid functional (B3LYP) with 6–31++ (d,p) basis set.
All ab initio calculations were carried out using the Gaussian 03 package [20]. Although the calculations
of theoretical spectra of benzocaine were conducted for an isolated molecule in a gas state, differences
between experimental and scaled wavenumbers values were small, therefore a detailed interpretation
of FT-IR spectra of benzocaine was possible.

3.6. Fourier Transform Infrared Spectroscopy

The polymorphs of benzocaine were obtained separately with IR grade KBr at the ratio 1:100,
and corresponding pellets were prepared by applying 8 metric ton of pressure in a hydraulic
press. The vibrational infrared spectra were recorded between 400 and 2000 cm−1 with an FT-IR
Bruker Equinox 55 spectrometer (Bruker, Bremen, Germany) equipped with a Bruker Hyperion
1000 microscope (Bruker, Bremen, Germany). In order to analyze changes in positions and intensity in
experimental FT-IR spectra for the polymorphs of benzocaine, quantum chemical calculations based
on DFT for benzocaine were performed with the use of the Gaussian 09 package [20].

3.7. Studies of Physicochemical Properties of Polymorphic Forms of Benzocaine

The evaluation of the effect of the structural polymorphism of benzocaine on its solubility, stability,
dissolution, and permeability through an artificial membrane simulating gastrointestinal permeation
was conducted by using chromatographic determinations. For this purpose, an HPLC-DAD method
was developed and validated according to ICH Q2 recommendations with regard to the determination
of changes in benzocaine concentrations during the said studies. The HPLC system (DionexThermoline
Fisher Scientific, Waltham, MA, USA) was equipped with a high-pressure pump (UltiMate 3000),
an autosampler (UltiMate 3000) and a DAD detector (UltiMate 3000). For data processing and
acquisition, Chromeleon software version 7.0 from Dionex Thermoline Fisher Scientific (Waltham, MA,
USA) was used. The separation of benzocaine and its main impurity—p-aminobenzoic acid—was
achieved on a Kinetex C18 (100 × 2.10 mm, 2.6 µm) column (Phenomenex, Torrance, CA, USA) using a
mobile phase composed of acetonitrile–0.1% formic acid (30:70 v/v) at a flow rate of 0.5 mL min−1.
The injection volume was 5.0 µL and the wavelength of detection was controlled at 292 nm.

3.8. Solubility Studies

The phase-solubility profiles of the three polymorphic forms of benzocaine were determined
according to the method of Higuchi and Connors [21], and were performed by using a Thermo
Scientific™ MaxQ™ 4450 Benchtop Orbital Shaker (Thermo Scientific, Waltham, MA, USA). To 25.0 mL
flasks, containing 10.0 mL methanol or phosphate buffer (pH ~7.2), increasing amounts of selected
polymorphic forms of benzocaine were added until supersaturated solvents were received. The flasks
were shaken at room temperature (methanol solvents) or 310 K (buffer solvents) for 5 h at a frequency
of 400 rpm. The so-obtained solutions were filtered through a 0.45 µm filter.
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3.9. Apparent Solubility Profiles

Apparent solubility (solubility rate) studies of the three polymorphic forms of benzocaine were
performed by using an Agilent 708-DS Dissolution Apparatus (Agilent, Santa Clara, CA, USA).
The standard paddle method was used at 310 ± 0.5 K with a stirring speed of 50 rpm. The polymorphic
forms of benzocaine (I, II, and III) weighted into gelatin capsules were placed in a capsule sinker in
order to prevent the capsules from floating on the surface of the liquid. The so-obtained samples were
placed in 500 mL media of phosphate buffer (pH ≈ 7.2). The dissolved samples (5.0 mL) were collected
at specified time intervals with the replacement of an equal volume of temperature-equilibrated
media, filtered through a 0.45 µm membrane filter, and benzocaine concentrations were determined by
using the HPLC-DAD method. All apparent solubility profiles were compared with an independent
mathematical approach model using a similarity factor.

3.10. Permeability Studies

Studies of the permeability the polymorphic forms of benzocaine through biological membranes
were conducted by using a parallel artificial membrane permeability assay (PAMPA) evolution from
Pion, Inc. (Pion Inc., Billerica, MA, USA). The PAMPA consisted of a 96-well microfilter plate and
a 96-well filter plate, so that each sample was able to diffuse into two chambers, with a donor at
the bottom and an acceptor at the top, separated by a 120-µm-thick microfilter disc coated with a
20% (w/v) dodecane solution of a lecithin mixture (Pion, Inc.). Samples of the polymorphic forms
of benzocaine (20.0 mg) were dissolved in water, prepared in a different 96-well filter plate and
added to the donor compartments. The donor solution was adjusted to pH ≈ 7.2 (NaOH-treated
universal buffer). The plates were sandwiched together and incubated at 310 K for 4 h in a
humidity-saturated atmosphere. After incubation, the sandwiched plates were separated, and next
benzocaine concentrations were determined using the HPLC-DAD method. The apparent permeability
coefficient (Papp) was calculated using the equation:

Papp =
− ln

(
1 − CA

Cequilibrium

)
S ×

(
1

VD
+ 1

VA

)
× t

(1)

where: VD—donor volume, VA—acceptor volume, Cequilibrium—equilibrium concentration,
Cequilibrium = CD×VD+CA×VA

VD+VA
, S—membrane area, and t—incubation time (in seconds) [17].

Compounds with Papp < 1 × 10−6 cm s−1 are classified as ones of low permeability and those
with Papp > 1 × 10−6 cm s−1 as ones of high permeability [18,19]. The results were compared using
ANOVA (Statistica 13.1, StatSoft Poland, Krakow, Poland) variance analysis.

3.11. Chemical Stability Studies

For an accelerated aging test, 5.0 mg samples of the three polymorphic forms of benzocaine were
weighed into 5 mL vials. To evaluate their stability at an increased air humidity, the open vials were
placed in heat chambers at 353 K, in desiccators containing saturated solutions of inorganic salts:
sodium bromide (≈50% RH), sodium nitrate (66% RH), sodium chloride (≈76% RH) and zinc sulfate
(≈90% RH). To evaluate the stability of the benzocaine samples in dry air, the vials were immersed
in a sand bath placed in the heat chambers at 383 K. At specified time intervals, determined by the
rate of degradation, the vials were removed, cooled to room temperature and their contents were
dissolved in a mixture of methanol:water (50:50 v/v) and injected into the chromatographic column at
a concentration 0.2 mg mL−1. The accelerated aging test continued for 6 months.

4. Conclusions

The application of widely used procedures for processing APIs during preformulation and
formulation work allows for obtaining three polymorphic forms of benzocaine, as confirmed by
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changes in PXRD diffractograms and FT-IR spectra. The presence of the polymorphic forms of
benzocaine affects its physicochemical properties, such as solubility and apparent solubility. The study
showed that forms I and II are characterized by better solubility and permeability compared
to form III (IIIa). The shapes of apparent solubility profile curves and the values of apparent
solubility corresponding to the plateau curves differed significantly between the polymorphic forms of
benzocaine. With respect to differences in the solubility of those forms, various values of the apparent
permeability coefficient were registered during permeability studies using the PAMPA model. It was
found that the chemical stability of benzocaine did not depend on its polymorphism. In the context
of therapeutic safety, considerable differences in physical properties linked to the three polymorphic
forms of benzocaine should be carefully considered in the process of designing preformulation and
formulation work that involves the use of such forms.
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Abbreviations

API active pharmaceutical ingredient
I polymorphic form benzocaine subjected to ball milling
II polymorphic form benzocaine subjected to micro milling
III and IIIa polymorphic forms benzocaine in initial form and form subjected to cryogenic grinding
EXP excipient
DFT density functional theory
FT-IR Fourier transform infrared spectroscopy
HPLC-DAD high-performance liquid chromatography with diode array detector
RH relative humidity
T temperature
PAMPA parallel artificial membrane permeability assay
PXRD X-ray powder diffraction
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