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Abstract: The Cartesian product and join are two classical operations in graphs. Let dL(G)(e)
be the degree of a vertex e in line graph L(G) of a graph G. The edge versions of
atom-bond connectivity (ABCe) and geometric arithmetic (GAe) indices of G are defined as

∑
e f∈E(L(G))

√
dL(G)(e) + dL(G)( f )− 2

dL(G)(e)× dL(G)( f )
and ∑

e f∈E(L(G))

2
√

dL(G)(e)× dL(G)( f )

dL(G)(e) + dL(G)( f )
, respectively. In this

paper, ABCe and GAe indices for certain Cartesian product graphs (such as Pn�Pm, Pn�Cm and
Pn�Sm) are obtained. In addition, ABCe and GAe indices of certain join graphs (such as Cm + Pn + Sr,
Pm + Pn + Pr, Cm + Cn + Cr and Sm + Sn + Sr) are deduced. Our results enrich and revise some
known results.

Keywords: line graph; Cartesian product graph; join graph; atom-bond connectivity index; geometric
arithmetic index

1. Introduction

The invariants based on the distance or degree of vertices in molecules are called topological
indices. In theoretical chemistry, physics and graph theory, topological indices are the molecular
descriptors that describe the structures of chemical compounds, and they help us to predict certain
physico-chemical properties. The first topological index, Wiener index, was published in 1947 [1],
and the edge version of the Wiener index was proposed by Iranmanesh et al. in 2009 [2]. Because
the important effects of the topological indices are proved in chemical research, more and more
topological indices are studied, including the classical atom-bond connectivity index and the geometric
arithmetic index.

Let G be a simple connected graph. Denote by V(G) and E(G) the vertex set and edge set of G,
respectively. Let Pn, Cn, Kn and Sn be a path, a cycle, a complete graph and a star, respectively, on n
vertices. e = uv represents edge-connecting vertices u and v. N(v) is an open neighborhood of vertex
v, i.e., N(v) = {u|uv ∈ E(G)}. Denote by dG(v) (simply d(v)) the degree of vertex v of graph G, i.e.,
d(v) =|N(v)|. Let L(G) or GL be the line graph of G such that each vertex of L(G) represents an edge
of G and two vertices of L(G) are adjacent if and only if their corresponding edges share a common
endpoint in G [3]. It is known that the line graph L(G) of any graph G is claw-free. Denote by dL(G)(e)
the degree of edge e in G, which is the number of edges sharing a common endpoint with edge e in
G, or the degree of vertex e in L(G). We denote by En,m (or EL

n,m) the set of edges uv with degrees n
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and m of end vertices u and v in G (or in GL), i.e., En,m = {uv|{n, m} = {d(u), d(v)}, u ∈ G, v ∈ G}
or EL

n,m = {uv|{n, m} = {d(u), d(v)}, u ∈ L(G), v ∈ L(G)}. The distance dG(u, v) (or d(u, v) for short)
between u and v in G is the length of a shortest u− v path.

The atom-bond connectivity (ABC) index was proposed by Estrada et al. in 1998 [4]. The ABC
index is defined as:

ABC(G) = ∑
uv∈E(G)

√
dG(u) + dG(v)− 2

dG(u)× dG(v)
(1)

where dG(u) and dG(v) are the degrees of the vertices u and v in G. Meanwhile, the edge version of
the ABC index is:

ABCe(G) = ∑
e f∈E(L(G))

√
dL(G)(e) + dL(G)( f )− 2

dL(G)(e)× dL(G)( f )
(2)

where dL(G)(e) and dL(G)( f ) are the degrees of the edges e and f , respectively, in G. The recent research
on edge version ABC index can be referred to Gao et al. [5].

The geometric arithmetic (GA) index was proposed by Vukicevic and Furthla in 2009 [6]. The GA
index is defined as

GA(G) = ∑
uv∈E(G)

2
√

dG(u)dG(v)
dG(u) + dG(v)

(3)

The edge version of the GA index was proposed by Mahmiani et al. [7] and is

GAe(G) = ∑
e f∈E(L(G))

2
√

dL(G)(e)dL(G)( f )

dL(G)(e) + dL(G)( f )
(4)

Recent research on the edge-version GA index can be referred to the articles [5,8–16]. In addition,
Das [17] obtained the upper and lower bounds of the ABC index of trees. Furtula et al. [18] found the
chemical trees with extremal ABC values. Fath-Tabar et al. [19] obtained some inequalities for the ABC
index of a series of graph operations. Chen et al. [20] obtained some upper bounds for the ABC index
of graphs with given vertex connectivity. Das and Trinajstić [21] compared the GA and ABC indices for
chemical trees and molecular graphs. Xing et al. [22] gave the upper bound for the ABC index of trees
with perfect matching and characterized the unique extremal tree.

Based on the results, ABCe and GAe indices for certain Cartesian product graphs (such as Pn�Pm,
Pn�Cm and Pn�Sm) are obtained. In addition, ABCe and GAe indices of certain join graphs (such as
Cm + Pn + Sr, Pm + Pn + Pr, Cm + Cn + Cr and Sm + Sn + Sr) are deduced. Our results extend and
enrich some known results [5,23,24].

2. Main Results

It is known that the Cartesian product and join operation are very complicated. In this section,
we present these two classical type of graphs.

2.1. Cartesian Product Graphs

In graph theory, the Cartesian product G�H of graphs G and H is a graph such that the vertex
set of G�H is the Cartesian product V(G)×V(H); and any two vertices (u, u′) and (v, v′) are adjacent
in G�H if and only if either u = v and u′ are adjacent with v′ in H or u′ = v′ and u are adjacent with
v in G. The graph Pn�Pm and the line graph of Pn�Pm are illustrated in Figure 1. In the following,
we discuss the edge-version ABC and GA indices of some Cartesian product graphs.
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Figure 1. Pn�Pm and the line graph of Pn�Pm.

Theorem 1. If n, m ≥ 4, then

ABCe(Pn�Pm) =
1
2

√
3
2
(2n + 2m− 16) +

1
2

√
7
5
(4n + 4m− 24) +

√
3
10

(6n + 6m− 32)

+

√
10
6

(6nm− 18n− 18m + 52) +
8
√

2
5

+ 4

√
5
3
+ 8

√
2
5
+

8
3

;
(5)

GAe(Pn�Pm) = 6nm− 16n− 16m +
4
√

5
9

(4n + 4m− 24) +
2
√

30
11

(6n + 6m− 32)

+44 +
16
√

12
7

+ 2
√

15.
(6)

Proof. Let G = Pn�Pm, we have L(G) has 6nm − 6n − 6m + 4 edges. Moreover,
∣∣∣EL

3,3

∣∣∣= 4 ,∣∣∣EL
3,4

∣∣∣= 8 ,
∣∣∣EL

3,5

∣∣∣= 8 ,
∣∣∣EL

4,4

∣∣∣= 2n + 2m− 16 ,
∣∣∣EL

4,5

∣∣∣= 4n + 4m− 24 ,
∣∣∣EL

5,5

∣∣∣= 4 ,
∣∣∣EL

5,6

∣∣∣= 6n + 6m− 32

and
∣∣∣EL

6,6

∣∣∣= 6nm− 18n− 18m + 52 .

ABCe(Pn�Pm) = (4)(
√

3 + 3− 2
3× 3

) + (8)(
√

3 + 4− 2
3× 4

) + (8)(
√

3 + 5− 2
3× 5

)

+(2n + 2m− 16)(
√

4 + 4− 2
4× 4

)

+(4n + 4m− 24)(
√

4 + 5− 2
4× 5

) + (4)(
√

5 + 5− 2
5× 5

)

+(6n + 6m− 32)(
√

5 + 6− 2
5× 6

)

+(6nm− 18n− 18m + 52)(
√

6 + 6− 2
6× 6

)

=
1
2

√
3
2
(2n + 2m− 16) +

1
2

√
7
5
(4n + 4m− 24)

+

√
3

10
(6n + 6m− 32) +

√
10
6

(6nm− 18n− 18m + 52)

+
8
√

2
5

+ 4

√
5
3
+ 8

√
2
5
+

8
3

;

(7)
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GAe(Pn�Pm) = (4)(
2
√

3× 3
3 + 3

) + (8)(
2
√

3× 4
3 + 4

) + (8)(
2
√

3× 5
3 + 5

)

+(2n + 2m− 16)(
2
√

4× 4
4 + 4

)

+(4n + 4m− 24)(
2
√

4× 5
4 + 5

) + (4)(
2
√

5× 5
5 + 5

)

+(6n + 6m− 32)(
2
√

5× 6
5 + 6

)

+(6nm− 18n− 18m + 52)(
2
√

6× 6
6 + 6

)

= 6nm− 16n− 16m +
4
√

5
9

(4n + 4m− 24)

+
2
√

30
11

(6n + 6m− 32) + 44 +
16
√

12
7

+ 2
√

15.

(8)

By now, the proof is complete.

Theorem 2. If n ≥ 4, m ≥ 3, then

ABCe(Pn�Cm) =
√

10nm + (

√
6

2
+ 2

√
7
5
+

3
√

30
5
− 9
√

10
3

)m (9)

GAe(Pn�Cm) = 6nm + (2 +
16
√

5
9

+
12
√

30
11

− 18)m (10)

Proof. Let G = Pn�Cm, we have L(G) has 6nm − 6m edges. Moreover,
∣∣∣EL

4,4

∣∣∣= 2m ,
∣∣∣EL

4,5

∣∣∣= 4m ,∣∣∣EL
5,6

∣∣∣= 6m and
∣∣∣EL

6,6

∣∣∣= 6nm− 18m . In Figure 2, the degrees of vertices in line graph GL(Pn�Cm) are
displayed near the corresponding vertices.

ABCe(Pn�Cm) = (2m)(

√
4 + 4− 2

4× 4
) + (4m)(

√
4 + 5− 2

4× 5
)

+(6m)(

√
5 + 6− 2

5× 6
) + (6nm− 18m)(

√
6 + 6− 2

6× 6
)

=
√

10nm + (

√
6

2
+ 2

√
7
5
+

3
√

30
5
− 9
√

10
3

)m;

(11)

GAe(Pn�Cm) = (2m)(
2
√

4× 4
4 + 4

) + (4m)(
2
√

4× 5
4 + 5

) + (6m)(
2
√

5× 6
5 + 6

)

+(6nm− 18m)(
2
√

6× 6
6 + 6

)

= 6nm + (2 +
16
√

5
9

+
12
√

30
11

− 18)m.

(12)

In the end, the proof is complete.
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Figure 2. G(Pn�Cm) and GL(Pn�Cm).

Theorem 3. If n ≥ 5, m ≥ 1, then

ABCe(Pn�Sm) =
(n− 2)(m− 1)(m− 2)

2(m + 2)
√

2m + 2

+(n− 3)(m− 1)(
√

m + 4
m + 2

+ 2
√

3
2(m + 2)

)

+2(m− 1)(
√

m + 3
3(m + 2)

+

√
3m− 1

(m + 2)(2m− 1)
+

√
m + 1

3m

+

√
3m− 3

m(2m− 1)
) +

(m− 1)(m− 2)
m

√
2m− 2

+
1
4
(m− 1)(n− 4)

√
6 + (m− 1)

√
5
3

+
n− 4
2m
√

4m− 2 + 2

√
4m− 3

2m(2m− 1)
;

(13)

GAe(Pn�Sm) =
(n− 2)(m− 1)(m− 2)

2
+ 8(n− 3)(m− 1)

√
(m + 2)
m + 6

+4(m− 1)

√
3(m + 2)
m + 5

+ 4(n− 3)(m− 1)

√
2m(m + 2)
3m + 2

+4(m− 1)

√
(m + 2)(2m− 1)

3m + 1
+ (m− 1)(m− 2)

+4(m− 1)

√
3m

m + 3
+ 4(m− 1)

√
m(2m− 1)
3m− 1

+(m− 1)(n− 4) + 8(m− 1)

√
3

7

+(n− 4) + 4

√
2m(2m− 1)

4m− 1
.

(14)
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Proof. Let G = Pn�Sm, we have L(G) has
1
2
(m2n + m(7n − 10) − 8n + 8) edges.

Moreover,
∣∣∣∣EL

m+2,m+2

∣∣∣∣= (n− 2)(m− 1)(m− 2)
2

,
∣∣∣EL

m+2,4

∣∣∣= 2(n− 3)(m− 1) ,
∣∣∣EL

m+2,3

∣∣∣= 2(m− 1) ,∣∣∣EL
m+2,2m

∣∣∣= 2(n− 3)(m− 1) ,
∣∣∣EL

m+2,2m−1

∣∣∣= 2(m− 1) ,
∣∣EL

m,m
∣∣= (m− 1)(m− 2) ,

∣∣∣EL
m,3

∣∣∣= 2(m− 1) ,∣∣∣EL
m,2m−1

∣∣∣= 2(m− 1) ,
∣∣∣EL

4,4

∣∣∣= (m− 1)(n− 4) ,
∣∣∣EL

3,4

∣∣∣= 2(m− 1) ,
∣∣∣EL

2m,2m

∣∣∣= (n− 4) and∣∣∣EL
2m−1,2m

∣∣∣= 2 . In Figure 3, the degrees of vertices in line graph GL(Pn�Sm) are displayed
near by the corresponding vertices.

ABCe(Pn�Sm) =
(n− 2)(m− 1)(m− 2)

2
(

√
m + 2 + m + 2− 2
(m + 2)× (m + 2)

)

+2(n− 3)(m− 1)(

√
m + 2 + 4− 2
(m + 2)× 4

)

+2(m− 1)(
√

m + 2 + 3− 2
(m + 2)× 3

)

+2(n− 3)(m− 1)(
√

m + 2 + 2m− 2
(m + 2)× 2m

)

+2(m− 1)(

√
m + 2 + 2m− 1− 2
(m + 2)× (2m− 1)

)

+(m− 1)(m− 2)(
√

m + m− 2
m×m

)

+2(m− 1)(
√

m + 3− 2
m× 3

) + 2(m− 1)(

√
m + 2m− 1− 2
m× (2m− 1)

)

+(m− 1)(n− 4)(
√

4 + 4− 2
4× 4

) + 2(m− 1)(
√

3 + 4− 2
3× 4

)

+(n− 4)(
√

2m + 2m− 2
2m× 2m

) + 2(

√
2m− 1 + 2m− 2
(2m− 1)× 2m

)

=
(n− 2)(m− 1)(m− 2)

2(m + 2)
√

2m + 2

+(n− 3)(m− 1)(
√

m + 4
m + 2

+ 2
√

3
2(m + 2)

)

+2(m− 1)(
√

m + 3
3(m + 2)

+

√
3m− 1

(m + 2)(2m− 1)

+

√
m + 1

3m
+

√
3m− 3

m(2m− 1)
)

+
(m− 1)(m− 2)

m
√

2m− 2

+
1
4
(m− 1)(n− 4)

√
6 + (m− 1)

√
5
3

+
n− 4
2m
√

4m− 2 + 2

√
4m− 3

2m(2m− 1)
;

(15)
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GAe(Pn�Sm) =
(n− 2)(m− 1)(m− 2)

2
(

2
√
(m + 2)× (m + 2)
m + 2 + m + 2

)

+2(n− 3)(m− 1)(
2
√
(m + 2)× 4

m + 2 + 4
)

+2(m− 1)(
2
√
(m + 2)× 3

m + 2 + 3
)

+2(n− 3)(m− 1)(
2
√
(m + 2)× 2m

m + 2 + 2m
)

+2(m− 1)(
2
√
(m + 2)× (2m− 1)
m + 2 + 2m− 1

)

+(m− 1)(m− 2)(
2
√

m×m
m + m

)

+2(m− 1)(
2
√

m× 3
m + 3

) + 2(m− 1)(
2
√

m× (2m− 1)
m + 2m− 1

)

+(m− 1)(n− 4)(
2
√

4× 4
4 + 4

) + 2(m− 1)(
2
√

3× 4
3 + 4

)

+(n− 4)(
2
√

2m× 2m
2m + 2m

) + 2(
2
√
(2m− 1)× (2m)

2m− 1 + 2m
)

=
(n− 2)(m− 1)(m− 2)

2
+ 8(n− 3)(m− 1)

√
(m + 2)
m + 6

+4(m− 1)

√
3(m + 2)
m + 5

+ 4(n− 3)(m− 1)

√
2m(m + 2)
3m + 2

+4(m− 1)

√
(m + 2)(2m− 1)

3m + 1
+ (m− 1)(m− 2)

+4(m− 1)

√
3m

m + 3
+ 4(m− 1)

√
m(2m− 1)
3m− 1

+(m− 1)(n− 4) + 8(m− 1)

√
3

7

+(n− 4) + 4

√
2m(2m− 1)

4m− 1
.

(16)

Until now, the proof is complete.

Figure 3. G(Pn�Sm) and GL(Pn�Sm).



Molecules 2018, 23, 1731 8 of 15

2.2. Join Graph

The results of ABCe and GAe indices of Pn, Sn, Kn and Cn, which were first established by [7],
as well as the ABCe and GAe indices of some join graphs, such as Pn + Cm, Pn + Sm, Cm + Pn + Cm,
Sm + Pn + Sm and Cm + Pn + Sr, created by Pn, Cn and Sn were obtained by [5]. However, there are
some problems in the calculation of the ABCe and GAe indices of join graph Cm + Pn + Sr in [5].

The join graph operation’s definition is given as follows: If we are given two graphs G and H and
two vertices vi ∈ V(G), uj ∈ V(H), the join graph is obtained by merging vi and uj into one vertex.
The certain join graphs Pn + Cm and Pn + Sm are illustrated in Figures 4 and 5, respectively.

Figure 4. The join graph of Pn + Cm.

Figure 5. The join graph of Pn + Sm.

Theorem A is stated in [5]. However, the result is not correct. In this paper, we correct the result
of Theorem A and restate it in Theorem 4 as follows:

Theorem A. If n, r ≥ 4, m ≥ 3, then

ABCe(Cm + Pn + Sr) =
r− 2

2

√
2r− 4 + (r− 1)

√
2r− 3

r(r− 1)
+

√
2

2
(n + m− 3) + 2 (17)

GAe(Cm + Pn + Sr) =
2
√

2(r− 1)
r + 1

+ (r− 1)(
r− 2

2
+

2
√

r(r− 1)
2r− 1

) + n + m +
6
√

6
5
− 4 (18)

The join graph of Cm + Pn + Sr is illustrated in Figure 6. It can be seen that dL(G)(vn−2vn−1) is 2
and dL(G)(vn−1vn) is r in Cm + Pn + Sr, so we have one edge of types dL(G)(e) = 2 and dL(G)( f ) = r in
GL(Cm + Pn + Sr).
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Figure 6. The join graph of Cm + Pn + Sr.

Theorem 4. If n ≥ 4, r ≥ 4, m ≥ 3, then we have

ABCe(Cm + Pn + Sr) =
r− 2

2

√
2r− 4 + (r− 1)

√
2r− 3

r(r− 1)
+

√
2

2
(n + m− 3) + 2 (19)

GAe(Cm + Pn + Sr) =
2
√

2r
r + 2

+ (r− 1)(
r− 2

2
+

2
√

r(r− 1)
2r− 1

) + n + m +
6
√

6
5
− 4 (20)

Proof. Let G = Cm + Pn + Sr, we have
∣∣∣EL

2,2

∣∣∣= n + m− 7 ,
∣∣∣EL

2,3

∣∣∣= 3 ,
∣∣∣EL

2,r

∣∣∣= 1 ,
∣∣∣EL

3,3

∣∣∣= 3 ,∣∣∣∣EL
r−1,r−1

∣∣∣∣= (r− 1)(r− 2)
2

and
∣∣∣EL

r−1,r

∣∣∣= r− 1 .

ABCe(Cm + Pn + Sr) = (n + m− 7)ABCe(EL
2,2) + (3)ABCL

e (E2,3)

+(1)ABCe(EL
2,r) + (3)ABCe(EL

3,3)

+
(r− 1)(r− 2)

2
ABCe(EL

r−1,r−1)

+(r− 1)ABCe(EL
r−1,r)

= (n + m− 7)(
√

2 + 2− 2
2× 2

) + (3)(
√

2 + 3− 2
2× 3

)

+(1)(
√

2 + r− 2
2× r

) + (3)(
√

3 + 3− 2
3× 3

)

+
(r− 1)(r− 2)

2
(

√
(r− 1) + (r− 1)− 2
(r− 1)× (r− 1)

)

+(r− 1)(

√
(r− 1) + r− 2
(r− 1)× r

)

=
r− 2

2
√

2r− 4 + (r− 1)
√

2r− 3
r(r− 1)

+

√
2

2
(n + m− 3) + 2.

(21)
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Remark: The result of ABCe(Cm + Pn + Sr) is the same as that of [5], only because the
ABCe(EL

2,r−1) = ABCe(EL
2,r). We must note GAe(EL

2,r−1) 6= GAe(EL
2,r).

GAe(Cm + Pn + Sr) = (n + m− 7)GAe(EL
2,2) + (3)GAe(EL

2,3) + (1)GAe(EL
2,r)

+(3)GAe(EL
3,3) +

(r− 1)(r− 2)
2

GAe(EL
r−1,r)

= (n + m− 7)(
2
√

2× 2
2 + 2

) + (3)(
2
√

2× 3
2 + 3

)

+(1)(
2
√

2× r
2 + r

) + (3)(
2
√

3× 3
3 + 3

)

+
(r− 1)(r− 2)

2
(

2
√
(r− 1)× (r− 1)

(r− 1) + (r− 1)
)

+(r− 1)(
2
√
(r− 1)× r

(r− 1) + r
)

=
2
√

2r
r + 2

+ (r− 1)(
r− 2

2
+

2
√

r(r− 1)
2r− 1

)

+n + m +
6
√

6
5
− 4.

(22)

Now the proof is complete.

Theorem 5. If m ≥ 2, n ≥ 2, r ≥ 2and Pm + Pn + Pr be the join graphs depicted in Figure 7, then

ABCe(Pm + Pn + Pr) =

√
2

2
(m + n + r− 4) (23)

GAe(Pm + Pn + Pr) = m + n + r− 6 +
4
3

√
2 (24)

.

Figure 7. The join graph of Pm + Pn + Pr.

Proof. Let G = Pm + Pn + Pr, we have
∣∣∣EL

2,2

∣∣∣= m + n + r− 6 and
∣∣∣EL

1,2

∣∣∣= 2 .

ABCe(Pm + Pn + Pr) = (m + n + r− 6)ABCe(EL
2,2) + 2ABCe(EL

1,2)

= (m + n + r− 6)(
√

2 + 2− 2
2× 2

) + 2(
√

1 + 2− 2
1× 2

)

=

√
2

2
(m + n + r− 4).

(25)

GAe(Pm + Pn + Pr) = (m + n + r− 6)GAe(EL
2,2) + 2GAe(EL

1,2)

= (m + n + r− 6)(
2
√

2× 2
2 + 2

) + 2(
2
√

1× 2
1 + 2

)

= m + n + r− 6 +
4
3

√
2.

(26)

Now the proof is complete.
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Theorem 6. Let m ≥ 3, r ≥ 3, n ≥ 6 and Cm + Cn + Cr be the join graphs depicted in Figure 8. If
d(um, vn) ≥ 3, then

ABCe(Cm + Cn + Cr) =

√
2

2
(m + n + r)− 2

√
2 + 3

√
6 (27)

GAe(Cm + Cn + Cr) = m + n + r +
16
√

2
3

(28)

Figure 8. The join graph of Cm + Cn + Cr.

Proof. Let G = Cm + Cn + Cr, we have
∣∣∣EL

2,2

∣∣∣= m + n + r− 12 ,
∣∣∣EL

2,4

∣∣∣= 8 and
∣∣∣EL

4,4

∣∣∣= 12 .

ABCe(Cm + Cn + Cr) = (m + n + r− 12)ABCe(EL
2,2)

+8ABCe(EL
2,4) + 12ABCe(EL

4,4)

= (m + n + r− 12)(
√

2 + 2− 2
2× 2

)

+8(
√

2 + 4− 2
2× 4

) + 12(
√

4 + 4− 2
4× 4

)

=

√
2

2
(m + n + r)− 2

√
2 + 3

√
6.

(29)

GAe(Pm + Pn + Pr) = (m + n + r− 12)GAe(EL
2,2)

+8GAe(EL
2,4) + 12GAe(EL

4,4)

= (m + n + r− 12)(
2
√

2× 2
2 + 2

)

+8(
2
√

2× 4
2 + 4

) + 12(
2
√

4× 4
4 + 4

)

= m + n + r +
16
√

2
3

.

(30)

Now the proof is complete.

Theorem 7. Let m ≥ 2, n ≥ 3, r ≥ 3 and Sm + Sn + Sr be the join graphs depicted in Figure 9; then, we have

ABCe(Sm + Sn + Sr) = (m− 1)
√

2m + n− 5
(m− 1)(m + n− 2)

+ (n− 2)
√

m + 2n− 5
(n− 1)(m + n− 2)

+(n− 2)
√

2n + r− 6
(n− 1)(n + r− 3)

+ (r− 2)
√

n + 2r− 7
(r− 2)(n + r− 3)

+
(m− 2)

2
√

2m− 4 +
(n− 2)(n− 3)

2(n− 1)
√

2n− 4 +
(r− 3)

2
√

2r− 6

+

√
m + 2n + r− 7

(m + n− 2)(n + r− 3)
;

(31)
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GAe(Sm + Sn + Sr) = 2(m− 1)

√
(m− 1)(m + n− 2)

2m + n− 3
+ 2(n− 2)

√
(n− 1)(m + n− 2)

m + 2n− 3

+2(n− 2)

√
(n− 1)(n + r− 3)

2n + r− 4
+ 2(r− 2)

√
(r− 2)(n + r− 3)

n + 2r− 5

+
(m− 1)(m− 2)

2
+

(n− 2)(n− 3)
2

+
(r− 2)(r− 3)

2

+
2
√
(m + n− 2)(n + r− 3)

m + 2n + r− 5
.

(32)

.

Figure 9. The join graph of Sm + Sn + Sr.

Proof. Let G = Sm + Sn + Sr, we have
∣∣∣EL

m−1,m+n−2

∣∣∣= m− 1 ,∣∣∣EL
n−1,m+n−2

∣∣∣= n− 2 ,
∣∣∣EL

n−1,n+r−3

∣∣∣= n− 2 ,
∣∣∣EL

r−2,n+r−3

∣∣∣= r− 2 ,
∣∣∣∣EL

m−1,m−1

∣∣∣∣= (m− 1)(m− 2)
2

,∣∣∣∣EL
n−1,n−1

∣∣∣∣= (n− 2)(n− 3)
2

,
∣∣∣∣EL

r−2,r−2

∣∣∣∣= (r− 2)(r− 3)
2

and
∣∣∣EL

m+n−2,n+r−3

∣∣∣= 1 .

ABCe(Sm + Sn + Sr) = (m− 1)ABCe(EL
m−1,m+n−2)

+(n− 2)ABCe(EL
n−1,m+n−2)

+(n− 2)ABCe(EL
n−1,n+r−3)

+(r− 2)ABCe(EL
r−2,n+r−3)

+
(m− 1)(m− 2)

2
ABCe(EL

m−1,m−1)

+
(n− 2)(n− 3)

2
ABCe(EL

n−1,n−1)

+
(r− 2)(r− 3)

2
ABCe(EL

r−2,r−2)

+(1)ABCe(EL
m+n−2,n+r−3)

= (m− 1)

√
(m− 1) + (m + n− 2)− 2

(m− 1)(m + n− 2)

+(n− 2)

√
(n− 1) + (m + n− 2)− 2

(n− 1)(m + n− 2)

+(n− 2)

√
(n− 1) + (n + r− 3)− 2

(n− 1)(n + r− 3)

+(r− 2)

√
(r− 2) + (n + r− 3)− 2

(r− 2)(n + r− 3)

(33)
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+
(m− 1)(m− 2)

2

√
(m− 1) + (m− 1)− 2

(m− 1)(m− 1)

+
(n− 2)(n− 3)

2

√
(n− 1) + (n− 1)− 2

(n− 1)(n− 1)

+
(r− 2)(r− 3)

2

√
(r− 2) + (r− 2)− 2

(r− 2)(r− 2)

+(1)

√
(m + n− 2) + (n + r− 3)− 2

(m + n− 2)(n + r− 3)

= (m− 1)
√

2m + n− 5
(m− 1)(m + n− 2)

+(n− 2)
√

m + 2n− 5
(n− 1)(m + n− 2)

+(n− 2)
√

2n + r− 6
(n− 1)(n + r− 3)

+(r− 2)
√

n + 2r− 7
(r− 2)(n + r− 3)

+
(m− 2)

2
√

2m− 4 +
(n− 2)(n− 3)

2(n− 1)
√

2n− 4

+
(r− 3)

2
√

2r− 6 +
√

m + 2n + r− 7
(m + n− 2)(n + r− 3)

.

GAe(Sm + Sn + Sr) = (m− 1)GAe(EL
m−1,m+n−2)

+(n− 2)GAe(EL
n−1,m+n−2)

+(n− 2)GAe(EL
n−1,n+r−3)

+(r− 2)GAe(EL
r−2,n+r−3)

+
(m− 1)(m− 2)

2
GAe(EL

m−1,m−1)

+
(n− 2)(n− 3)

2
GAe(EL

n−1,n−1)

+
(r− 2)(r− 3)

2
GAe(EL

r−2,r−2)

+(1)ABCe(EL
m+n−2,n+r−3)

= (m− 1)
2
√
(m− 1)(m + n− 2)

(m− 1) + (m + n− 2)

+(n− 2)
2
√
(n− 1)(m + n− 2)

(n− 1) + (m + n− 2)

+(n− 2)
2
√
(n− 1)(n + r− 3)

(n− 1) + (n + r− 3)

+(r− 2)
2
√
(r− 2)(n + r− 3)

(r− 2) + (n + r− 3)

+
(m− 1)(m− 2)

2
2
√
(m− 1)(m− 1)

(m− 1) + (m− 1)

+
(n− 2)(n− 3)

2
2
√
(n− 1)(n− 1)

(n− 1) + (n− 1)

+
(r− 2)(r− 3)

2
2
√
(r− 2)(r− 2)

(r− 2) + (r− 2)

(34)
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+(1)
2
√
(m + n− 2)(n + r− 3)

(m + n− 2) + (n + r− 3)

= 2(m− 1)

√
(m− 1)(m + n− 2)

2m + n− 3

+2(n− 2)

√
(n− 1)(m + n− 2)

m + 2n− 3

+2(n− 2)

√
(n− 1)(n + r− 3)

2n + r− 4

+2(r− 2)

√
(r− 2)(n + r− 3)

n + 2r− 5

+
(m− 1)(m− 2)

2
+

(n− 2)(n− 3)
2

+
(r− 2)(r− 3)

2

+
2
√
(m + n− 2)(n + r− 3)

m + 2n + r− 5
.

Now the proof is complete.

3. Conclusions

The physical and chemical properties of proteins, DNAs and RNAs are very important for
human disease and various approaches have been proposed to predict, validate and identify their
structures and features [25,26]. Among these, topological indices were proved to be very helpful
in testing the chemical properties of new chemical or physical materials such as new drugs or
nanomaterials. Topological indices play an important role in studying the topological properties
of chemical compounds, especially organic materials i.e., carbon containing molecular structures.

Various topological indices provide a better correlation for certain physico-chemical properties.
Hence, the edge version ABC and GA indices for some special Cartesian product graphs and certain
join graphs are described by graph structure analysis and a mathematical derivation method in this
paper. The results of the current study also have promising prospects for applications in chemical and
material engineering. The conclusions we draw here will not work for other classes of indices such as
distance-based and distance adjacency-based topological indices. Thus a similar kind of study is needed
for other classes of indices which might be a future direction in this area of mathematical chemistry.

Author Contributions: X.Z. contributes for conceptualization, designing the experiments and analyzed the data
curation, he wrote the initial draft of the paper which were investigated and approved by Z.S. and J.-B.L. H.J.
contribute for computing and performed experiments. J.-B.L. contributes for validation and formal analyzing.
Z.S. contributes for supervision, funding and methodology and wrote the final draft. All authors read and
approved the final version of the paper.

Funding: This work was supported by Applied Basic Research (Key Project) of the Sichuan Province under
grant 2017JY0095, the key project of the Sichuan Provincial Department of Education under grant 17ZA0079 and
18ZA0118, the Soft Scientific Research Foundation of Sichuan Provincial Science and Technology Department
(18RKX1048).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wiener, H. Structural determination of paraffin boiling points. J. Am. Chem. Soc. 1947, 69, 7–20. [CrossRef]
2. Iranmanesh, A.; Gutman, I.; Khormali, O.; Mahmiani, A. The edge versions of the wiener index. MATCH

Commun. Math. Comput. Chem. 2009, 61, 663–672.
3. Harary, F.; Norman, R.Z. Some properties of line digraphs. Rendiconti del Circolo Matematico di Palermo 1960,

9, 161–169. [CrossRef]

http://dx.doi.org/10.1021/ja01193a005
http://dx.doi.org/10.1007/BF02854581


Molecules 2018, 23, 1731 15 of 15

4. Estrada, E.; Torres, L.; Rodriguez, L.; Gutman, I. An atom-bond connectivity index: Modelling the enthalpy
of formation of Alkanes. Indian J. Chem. 1998, 37A, 849–855.

5. Gao, W.; Farahani, M.; Wang, S.; Husin, M.N. On the edge-version atom-bond connectivity and geometric
arithmetic indices of certain graph operations. Appl. Math. Comput. 2017, 308, 11–17. [CrossRef]

6. Vukicevic, D.; Furtula, B. Topological index based on the ratios of geometric and arithmetical means of
end-vertex degrees of edges. J. Math. Chem. 2009, 46, 1369–1376. [CrossRef]

7. Mahmiani, A.; Khormali, O.; Iranmanesh, A. On the edge version of geometric-arithmetic index. Digest J.
Nanomater. Biostruct. 2012, 7, 411–414.

8. Liu, J.; Pan, X.; Yu, L.; Li, D. Complete characterization of bicyclic graphs with minimal Kirchhoff index.
Discrete Appl. Math. 2016, 200, 95–107. [CrossRef]

9. Liu, J.; Wang, W.; Zhang, Y.; Pan, X. On degree resistance distance of cacti. Discrete Appl. Math. 2016, 203,
217–225. [CrossRef]

10. Li, X.L.; Shi, Y.T. A survey on the Randic’ index. MATCH Commun. Math. Comput. Chem. 2008, 59, 127–156.
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13. Shi, Y. Note on two generalizations of the Randić index. Appl. Math. Comput. 2015, 265, 1019–1025. [CrossRef]
14. Estes, J.; Wei, B. Sharp bounds of the Zagreb indices of k-trees. J. Comb. Optim. 2014, 27, 271–291. [CrossRef]
15. Ji, S.; Wang, S. On the sharp lower bounds of Zagreb indices of graphs with given number of cut vertices.

J. Math. Anal. Appl. 2018, 458, 21–29. [CrossRef]
16. Zafar, S.; Nadeem, M.F.; Zahid, Z. On the edge version of geometric-arithmetic index of nanocones. Stud. Univ.

Babes-Bolyai Chem. 2016, 61, 273–282.
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