Supporting Information
 Convenient Synthesis of Aryloxyalkyl Esters from Phenolic Esters Using Halogenated Alcohol

Preparation of acetate flavonoids

5-hydroxy-4-oxo-2-phenyl-4H-chromene-6,7-diyl diacetate (6,7-diacetyl baicalein). A mixture of baicalein ($1 \mathrm{~g}, 3.7 \mathrm{mmol}$) and sodium acetate ($759 \mathrm{mg}, 9.3 \mathrm{mmol}, 2.5$ equiv) were loaded into a flask (50 mL) under atmosphere of argon. Acetic anhydride (20 mL) was then added. The mixture was heated at $70^{\circ} \mathrm{C}$ for 5 h and then the reaction mixture was concentrated under reduced pressure. 20 mL of EtOAc and 20 mL of water were added. The organic layer was separated and the aqueous layer was extracted with $\mathrm{EtOAc}(3 \times 20 \mathrm{~mL})$, and the combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtration and removal of solvent under vacuum. The crude material was purified by column chromatography (DCM: MeOH 100:1) to afford 6,7-diacetyl baicalein as slightly yellow solids (903 $\mathrm{mg}, 69 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 12.83 (s, 1H, -OH), 7.92 (d, J = 8.1 Hz, 2H), 7.49-7.57 (m, 3H), 6.67 (s, 1H), 6.49 (s, 1H), 2.17 (s, 3H), 2.14 (s, 3H); MS (ESI): $m / z=353.1[\mathrm{M}-\mathrm{H}] ; \mathrm{R}_{\mathrm{f}}=0.5$ (DCM: MeOH 50:1).

5,6-dihydroxy-4-oxo-2-phenyl-4H-chromen-7-yl acetate (7-acetyl baicalein). A mixture of baicalein ($1 \mathrm{~g}, 3.7 \mathrm{mmol}$) and sodium acetate ($303 \mathrm{mg}, 3.7 \mathrm{mmol}, 1.0$ equiv) were loaded into a flask (50 mL) under atmosphere of argon. Acetic anhydride (20 mL) was then added. The mixture was heated at $60^{\circ} \mathrm{C}$ for 3 h and then the reaction mixture was concentrated under reduced pressure. 20 mL of EtOAc and 20 mL of water were added. The organic layer was separated and the aqueous layer was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$), and the combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtration and removal of solvent under vacuum. The crude material was purified by column chromatography (DCM: MeOH 80:1) to afford 7-acetyl baicalein as yellowish solids ($842 \mathrm{mg}, 73 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 12.79 ($\mathrm{s}, 1 \mathrm{H},-\mathrm{OH}$), 8.93 (s, 1H, -OH), 7.96 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.59(\mathrm{~m}, 3 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H})$; MS (ESI): $\mathrm{m} / \mathrm{z}=353.1[\mathrm{M}-\mathrm{H}] ; \mathrm{R}_{\mathrm{f}}=0.6$ (DCM: MeOH 30:1).

5-hydroxy-8-methoxy-4-oxo-2-phenyl-4H-chromen-7-yl acetate (7-acetyl wogonin). A mixture of wogonin ($568 \mathrm{mg}, 2 \mathrm{mmol}$) and sodium acetate ($213 \mathrm{mg}, 2.6 \mathrm{mmol}, 1.3$ equiv) were loaded into a flask (25 mL) under atmosphere of argon. Acetic anhydride (10 mL) was then added. The mixture was heated at $70^{\circ} \mathrm{C}$ for 3 h and then the reaction mixture was concentrated under reduced pressure. 10 mL of EtOAc and 10 mL of water were added. The organic layer was separated and the aqueous layer was extracted with $\mathrm{EtOAc}(3 \times 10 \mathrm{~mL})$, and the combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtration and removal of solvent under vacuum. The crude material was purified by column chromatography
(DCM: MeOH 100:1) to afford 7-acetyl wogonin as yellowish solids ($528 \mathrm{mg}, 81 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): $12.63(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}), 7.94(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, 7.55-7.59 (m, 3H), 6.63 ($\mathrm{s}, 1 \mathrm{H}$), 6.49 ($\mathrm{s}, 1 \mathrm{H}), 3.89\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 2.13(\mathrm{~s}, 3 \mathrm{H})$; MS (ESI): $m / z=325.2[\mathrm{M}-\mathrm{H}] ; \mathrm{R}_{\mathrm{f}}=0.5$ (DCM: MeOH 50:1).

Scheme s1. Standard conditions: alkyl ester ($\mathbf{1 v}, 82 \mathrm{mg}, 0.5 \mathrm{mmol}$), 3-bromo-1propanol ($\mathbf{2 a}, 48 \mu \mathrm{~L}, 0.525 \mathrm{mmol}$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(489 \mathrm{mg}, 1.5 \mathrm{mmol}), 80{ }^{\circ} \mathrm{C}$ in DMF (1.5 mL) for 6 hrs under an Ar atmosphere. Isolated yields.

NMR spectra:

				'To		$\begin{aligned} & \text { T' } \\ & \text { O } \\ & \text { i } \end{aligned}$		$\begin{aligned} & \text { W'S } \\ & \text { B } \\ & \text { Ni } \end{aligned}$		정			
12.5	11.5	10.5	9.5	8.5	7.5	$\begin{aligned} & 6.5 \\ & \mathrm{f} 1 \end{aligned}$	5.5	4.5	3.5	2.5	1.5	0.5	-0.5

$$
\mathrm{NO}_{2}
$$

-90000

$\underset{\text { İ }}{\text { I }}$
-11000
\qquad
NO

1 0

No
-120
-110
$\begin{array}{llllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 1\end{array}$

