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Abstract: A self-assembled ZnII-NdIII heterohexanuclear coordination compound
[Zn4Nd2(L)4(bdc)2]·2NO3 based on a hexadentate Salamo-like chelating ligand (H2L = 1,2-bis
(3-methoxysalicylideneaminooxy)ethane]) and H2bdc (H2bdc = terephthalic acid) has been
synthesized and characterized by elemental analyses, IR and UV/Vis spectra, and X-ray
crystallography. Two crystallographically equivalent [Zn2Nd(L)2] moieties lie in the inversion center
linked by two (bdc)2− ligands leading to a heterohexanuclear dimer in which the carboxylato group
bridges the ZnII and NdIII atoms. The heteropolynuclear 3d-4f coordination compound includes
four ZnII atoms, two NdIII atoms, four completely deprotonated (L)2− units, two fully deprotonated
(bdc)2− units, and two crystalling nitrate ions. All of the ZnII atoms in the ZnII-NdIII coordination
compound possess trigonal bipyramidal geometries and the NdIII atoms possess distorted bicapped
square antiprism coordination arrangements. In addition, the fluorescence properties of the ligand
and the ZnII-NdIII coordination compound were investigated.

Keywords: N2O4-type bisoxime; 3d-4f coordination compound; synthesis; crystal structure;
fluorescence property

1. Introduction

Salen-like and Salamo-like ligands have been extensively investigated in modern coordination
chemistry for several decades [1,2], and their transition to metal coordination compounds have been
widely investigated in electrochemical fields [3], biological fields [4], magnetic [5] and luminescent
materials [6], and supramolecular buildings [7]. It is important to introduce suitable functional groups
into the organic moiety of the ligands in order to improve or tune the properties of these metal
coordination compounds [8].

Although these Salamo-like coordination compounds have been in the process of development,
the heterometallic 3d-4f coordination compounds formed by terephthalic acid auxiliary ligands are
still very rare. The multidentate chelating ligands may bring new changes to the structure and simple
synthesis methods will play a catalytic role in the development of these coordination compounds [9,10].
The auxiliary ligands also play an important role in the construction of coordination compounds [11].
Some superior research on heterometallic coordination compounds with various functional properties
have been reported [12–15].
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In order to supplement and perfect the syntheses and structures of heterometallic 3d-4f
coordination compounds in this study, we have synthesized a self-assembled ZnII-NdIII hetero-metallic
coordination compound [Zn4Nd2(L)4(bdc)2] by one-pot reaction of the ligand H2L with ZnII acetate,
NdIII nitrate, and H2bdc in a 1:1:1:1 molar ratio. Furthermore, the fluorescence properties of the ligand
H2L and its ZnII-NdIII coordination compound were also studied.

2. Experimental

2.1. Materials and Physical Measurements

2-Hydroxy-3-methoxybenzaldehyde (>99%) was purchased from Alfa Aesar and used without
further purification. The other reagents and solvents were analytical grade reagents from the Tianjin
Chemical Reagent Factory.

C, H, and N analyses were obtained using a VarioEL V3.00 automatic elemental analysis
instrument. Elemental analyses for ZnII and NdIII were detected by an IRIS ER/ S-WP-1 ICP atomic
emission spectrometer. Melting points were obtained by using a microscopic melting point apparatus
from the Beijing Taike Instrument Limited Company and the thermometer was uncorrected. IR spectra
were recorded on a Vertex70 FT-IR spectrophotometer with samples prepared as KBr (400–4000 cm–1)
pellets. UV/Vis absorption spectra were recorded on a Shimadzu UV-3900 spectrometer. Luminescence
spectra in the solution were recorded on a Hitachi F-7000 spectrometer.

2.2. Synthesis of the Ligand H2L

The main reaction steps involved in the synthesis of H2L are given in Scheme 1. H2L was
synthesized according to the references reported earlier [16]. Yield: 74.2%. m.p. 131–133 ◦C. Anal.
Calcd, for C18H20N2O6: C 59.99, H 5.59, N 7.77. Found: C 60.11, H 5.63, N 7.59.
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Scheme 1. The synthetic route to H2L.

2.3. Synthesis of the ZnII-NdIII Coordination Compound

A mixture of H2L (36.0 mg, 0.1 mmol), Zn(OAc)2·2H2O (21.9 mg, 0.1 mmol), and Nd(NO3)3·6H2O
(45.6 mg, 0.1 mmol) in chloroform and methanol (1:2 v/v, 3 mL) was stirred for 5 min at room
temperature. Afterward, a solution of H2bdc (16.6 mg, 0.1 mmol) in DMF (1 mL) was added and
the mixture was stirred for another 5 min at room temperature. The mixture solution was filtered
and the filtrate was kept undisturbed in the dark to avoid decomposition of the ZnII-NdIII building
blocks. The yellow block-like crystals suitable for X-ray diffraction studies were obtained by vapor
diffusion of diethyl ether into the filtrate for three days at room temperature. These were separated
over filtration and air-dried before undergoing X-ray diffraction analysis (Scheme 2). The yield was
64.2%. Anal. Calcd. for C88H80N10Nd2Zn4O38 ([Zn4Nd2(L)4(bdc)2]·2NO3): C, 43.39; H, 3.31; N, 5.75;
Nd, 11.84; Zn, 10.74. Found: C, 43.47; H, 3.49; N, 5.66; Nd, 11.71; Zn, 10.59.
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2.4. X-ray Structure Determination of the ZnII-NdIII Coordination Compound

The diffraction data was collected using graphite-monochromatized Mo Kα radition
(λ = 0.71073 Å) at 173(2) K. The structure was solved by using the program SHELXS-2016 and different
Fourier techniques. It was refined by using the full-matrix least-squares method on F2 utilizing
SHELXL-2016 [17,18]. The ZnII-NdIII coordination compound contained large void and the solvent and
the positive or negative ions located in the void could not be identified because it was highly disordered
and had a small residual peak. Therefore, the SQUEEZE in PLATON program was performed to
remove the highly disordered solvent and ions (Solvent Accessible Volume = 916, Electrons Found in
S.A.V. = 136) [19]. All hydrogen atoms were added theoretically. The crystal and experimental data are
shown in Table 1.

Table 1. Crystal data and structure refinement for the ZnII-NdIII coordination compound.

Coordination Compound ZnII-NdIII

Empirical Formula C88H80N10Nd2Zn4O38
Molecular Weight 2435.58

Color colorless
Crystal Size, mm 0.270 × 0.250 × 0.220

Habit Block-shaped
Crystal System Triclinic
Space Group P-1

Unit Cell Dimension
a, Å 12.5088(9)
b, Å 16.0858(12)
c, Å 16.2996(12)
α, ◦ 69.0298(19)
β, ◦ 83.1411(18)
γ, ◦ 87.649(2)

Volume, Å3 3040.6(4)
Z 1

Calculated Density, mg·m–3 1.330
Absorption Coefficient, mm–1 1.688

F(000) 1222
θ Range for Data Collection, ◦ 1.346 to 27.756

h/k/l (min, max) −16, 16/−14, 21/−20, 21
Reflections Collected 25,768

Completeness 98.5%
Data/Restraints/Parameters 13,926/3/644

Final R Indices [I > 2σ(I)] R1 = 0.0422, wR2 = 0.1254
R Indices (All Data) R1 = 0.0606, wR2 = 0.1294

Largest Diff. Peak and Hole (e·Å–3) 1.033, −0.898
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Crystallographic data have been deposited with the Cambridge Crystallographic Data Center as
supplementary publication, No. CCDC 1843972 for the ZnII-NdIII coordination compound. Copies
of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge
CB21EZ, UK (Telephone: +(44)-01223-762910; Fax: +44-1223-3360-33; E-mail: deposit@ccdc.cam.ac.uk).
These data can be also obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.htm.

3. Results and Discussion

3.1. Description of Crystal Structure of the ZnII-NdIII Coordination Compound

X-ray crystallographic analysis reveals the crystal structure of the ZnII-NdIII coordination
compound. Selected bond lengths and angles are given in Table S1. The molecular structure
of the ZnII-NdIII coordination compound is shown in Figure 1. The ZnII-NdIII coordination
compound crystallizes in the triclinic space group P-1 and consists of four ZnII atoms, two NdIII

atoms, four completely deprotonated (L)2− units, and two fully deprotonated (bdc)2− units.
Two crystallographically equivalent [Zn2Nd(L)2] moieties lie near the inversion center and are linked
by two bdc2− ligands. Each carboxylato group acts as a bridge between the ZnII and NdIII atoms.
Each ZnII atom has a penta-coordinated environment and adopts distorted trigonal bipyramidal
geometries. The dihedral angles between the coordination planes and the benzene rings of terephthalic
acid are 76.79(3)◦ and 82.49(3)◦, respectively, which is shown in Figure S1. The carboxylato group
bridges the ZnII and NdIII atoms in a µ2 fashion and each NdIII atom is deca-coordinated and
surrounded by ten oxygen atoms including four from the outer O8 cavity of the deprotonated ligand
(L)2− and two from the bdc2− ligands. Therefore, the deca-coordinated NdIII atom adopts a distorted
bicapped square antiprism coordination arrangement. Moreover, this novel 4:4:2 ((L)2−:Zn(II):Ln(III))
heterometallic Salamo-type coordination compound possesses a symmetrical structure [12–15]. This is
rarely reported in comparison to the 3d-4f Salamo-type coordination compound, which has the
structures of 1:1:1 [20], 2:2:1 [9], and 2:2:2 [21].
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3.2. Supramolecular Interaction of the ZnII-NdIII Coordination Compound

As shown in Figure S2 and Table S2, there are abundant hydrogen bonds in the ZnII-NdIII

coordination compound including six formed pairs of intramolecular C1-H1B···O8, C9-H9B···O13,
C18-H18B···O15, C19-H19B···O2, C27-H27B···O16 and C36-H36B···O14 hydrogen bonds. In addition,
as shown in Figure S3, the space skeleton of the ZnII-NdIII coordination compound adopts a 1D
supramolecular structure by the action of C8-H8···O17, C8-H8···O19 and C39-H39···O17 hydrogen
bonding [22].

3.3. IR Spectra of H2L and Its ZnII-NdIII Coordination Compound

The FT-IR spectra of H2L and its corresponding ZnII-NdIII coordination compound exhibits
various bands in the 4000–400 cm−1 region (Figure S4). A typical C=N stretching band of the free
ligand H2L appears at 1601 cm−1 and the ZnII-NdIII coordination compound is observed at 1607 cm−1.
The changes in the spectrum of the ZnII-NdIII coordination compound show that H2L has coordinated
with Zn(II) atoms. In addition, the free ligand H2L exhibits a typical Ar–O stretching frequency at
1258 cm−1 while the Ar–O stretching frequency of the ZnII-NdIII coordination compound appears at
1240 cm−1. The shifts of Ar-O stretching frequencies show the Zn-O or Nd-O bond formation between
ZnII or NdIII atoms and oxygen atoms of phenolic groups [23].

3.4. UV/Vis Absorption Spectra of H2L and Its ZnII-NdIII Coordination Compound

The UV/Vis absorption spectra of the ligand H2L and its ZnII-NdIII coordination compound
in the dichloromethane solutions (1.0 × 10−5 mol·L−1) at 298 K are shown in Figure S5.
Clearly, the absorption spectrum of the free ligand H2L consists of three relatively intense absorption
peaks centered at ca. 223 nm, 269 nm, and 317 nm. The absorption peaks at 223 nm and 269 nm
can be assigned to the π–π* transition of the benzene rings and the absorption peak at 317 nm can
be attributed to the intra-ligand n–π* transition of the C=N bonds [23]. Upon coordination of the
ligand H2L, the π–π* transitions of the phenyl rings in the ZnII-NdIII coordination compound is
bathochromically shifted to 233 nm and 280 nm, which indicates the coordination of Zn(II) and Nd(III)
atoms with the ligand units, respectively [23]. Compared with the free ligand H2L, the absorption
peak at 317 nm shifted to 375 nm from the UV/Vis spectrum of the ZnII-NdIII coordination compound,
which indicates that the oxime nitrogen atoms are involved in coordination with the Zn(II) atoms.

3.5. Fluorescence Properties of H2L and Its ZnII-NdIII Coordination Compound

The fluorescent properties of H2L and its ZnII-NdIII coordination compound were measured at
room temperature (Figure 2). The ZnII-NdIII coordination compound displays enhanced emission
intensities compared to the corresponding ligand (H2L) when excited at 392 nm. The enhancement
of fluorescence is due to the coordination of metal ions with the ligands. The ligand H2L exhibits a
broad emission at 418 nm upon excitation at 392 nm, which should be assigned to the intraligand π–π*
transition [24]. The ZnII-NdIII coordination compound shows a higher intense photoluminescence
with a maximum emission at 435 nm upon excitation at 392 nm. The emission peak positions of
the ZnII-NdIII coordination compound are similar to those of the free ligand H2L. The emission
peaks in the spectrum of the ZnII-NdIII coordination compound may also rise from the intra-ligand
transition. Compared with the emission spectrum of H2L, enhanced fluorescence intensity of the
ZnII-NdIII coordination compound is observed, which indicates that the intra-ligand transition has
been influenced due to the introduction of Zn(II) ions in the structure [24]. No emissions originating
from metal-centered or metal-to-ligand/ligand-to-metal charge-transfer excited states are expected for
the ZnII-NdIII. The emission observed in the ZnII-NdIII coordination compound is tentatively assigned
to the (π–π*) intra-ligand fluorescence.
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4. Conclusions

In conclusion, we discovered a new ZnII-NdIII heterometallic coordination compound
[Zn4Nd2(L)4(bdc)2]·2NO3 with a Salamo-like chelating ligand H2L. The ZnII-NdIII coordination
compound contains four ZnII atoms, two NdIII atoms, four completely deprotonated (L)2− units,
and two fully deprotonated (bdc)2− units. All of the ZnII atoms in the ZnII-NdIII coordination
compound possesses trigonal bipyramidal geometries and the NdIII atoms possesses a distorted
bicapped square antiprism coordination arrangement. Furthermore, the fluorescent properties ofH2L
and its ZnII-NdIII coordination compound have also been discussed.

Supplementary Materials: Figure S1: View of the dihedral angles between the benzene rings of terephthalic acid
and the basal planes (N2O2 planes) of the ZnII-NdIII coordination compound. Figure S2: Intermolecular hydrogen
bonding interactions of the ZnII-NdIII coordination compound (hydrogen atoms, except those forming hydrogen
bonds, are omitted for clarity). Figure S3: View of the 1D supramolecular structure of the ZnII-NdIII coordination
compound showing the C-H···O hydrogen bondings. Figure S4: IR spectra of H2L and its corresponding ZnII-NdIII

coordination compound. Figure S5: UV/Vis absorption spectra of H2L and its ZnII-NdIII coordination compound.
Table S1: Selected bond lengths (Å) and angles (◦) for the ZnII-NdIII coordination compound. Table S2: Hydrogen
bonding interactions [Å, deg] for the ZnII-NdIII coordination compound.
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