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Abstract: Chiral alkyl aryl sulfoxides were obtained by molybdenum-catalyzed oxidation of alkyl
aryl sulfides with hydrogen peroxide as oxidant in mild conditions with high yields and moderate
enantioselectivities. The asymmetry is generated by the use of imidazolium-based dicarboxylic
compounds, HLR. The in-situ-generated catalyst, a mixture of aqueous [Mo(O)(O2)2(H2O)n] with
HLR as chirality inductors, in the presence of [PPh4]Br, was identified as the anionic binuclear
complex [PPh4]{[Mo(O)(O2)2(H2O)]2(µ-LR)}, according to spectroscopic data and Density Functional
Theory (DFT) calculations. A nonclassical hydrogen bond between one C–H bond of the alkyl
R group of coordinated (LR)− and one oxygen atom of the peroxido ligand was identified as the
interaction responsible for the asymmetry in the process. Additionally, the step that governs the
enantioselectivity was theoretically analyzed by locating the transition states of the oxido-transfer to
PhMeS of model complexes [Mo(O)(O2)2(H2O)(κ1-O-LR)]− (R = H, iPr). The ∆∆G 6= is ca. 0 kcal·mol−1

for R = H, racemic sulfoxide, meanwhile for chiral species the ∆∆G 6= of ca. 2 kcal·mol−1 favors the
formation of (R)-sulfoxide.

Keywords: sulfoxidation; asymmetric catalysis; molybdenum; hydrogen peroxide; Density
Functional Theory

1. Introduction

The synthesis and use of enantiopure sulfoxides is a topic of extraordinary interest in asymmetric
synthesis, asymmetric catalysis and in the pharmaceutical industry [1–9]. The enantioselective
sulfoxidation of prochiral sulfides is one of the most challenging approaches to chiral sulfoxides,
and catalyzed processes based on metal complexes [3,4,10–16] and metal-free systems [17] have
been described in the literature. Molybdenum-catalyzed enantioselective sulfoxidations have been
investigated [18–25] and, in general, the Mo catalysts provided results that are somewhat lower than
those of other metals, as for example titanium [26–32] or vanadium [33–41] complexes. However,
we have recently demonstrated that the use of the imidazolium-based dicarboxylic compound
(S,S)-1-(1-carboxy-2-methylpropyl)-3-(1-carboxylate-2-methylpropyl)imidazolium (HLiPr in Scheme 1),
as inductor of chirality, in combination with oxidoperoxidomolybdenum complexes, afforded a
system capable to achieve by kinetic resolution a value of 83% ee in the sulfoxidation of alkyl aryl
sulfides [42]. This system is easily accessible, simple, environmentally friendly, and compatible with a
green oxidant as aqueous hydrogen peroxide. In some cases, these advantages are not compatible with
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Ti or V catalysts. Following our recent research on Mo-catalyzed sulfoxidations [42–44], we report
here the extension of our system [42] to other imidazolium-based dicarboxylic compounds, HLR,
in order to improve its efficiency in the catalytic asymmetric oxidation of prochiral sulfides using
aqueous hydrogen peroxide (Scheme 1). Moreover, spectroscopic data and Density Functional Theory
(DFT) calculations have allowed identification of the nature of the molybdenum catalytic species,
{[Mo(O)(O2)2(H2O)]2(µ-LR)}−, and the origin of the asymmetry in the sulfoxidation process.
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2. Results and Discussion

2.1. Enantioselective Oxidation of Different Sulfides with Aqueous Hydrogen Peroxide Catalyzed by the System
[Mo(O)(O2)2(H2O)n]/HLR/[PPh4]Br

The optimization of the reaction conditions were performed with the (S,S)-HLiPr compound, 1c,
and methyl phenyl sulfide, and were previously communicated [42]. Chloroform was used as solvent
(1 mL) with a 1:1:0.025:2 ratio of methyl phenyl sulfide:H2O2:Mo-complex:[PPh4]Br. Reactions were
carried out in a micro-reactor, at 0 ◦C during 1 h, on 1 mmol scale. A solution of MoO3 (2.5% mmol) in
aqueous hydrogen peroxide, namely [Mo(O)(O2)2(H2O)n] (see Materials and Methods), in conjunction
with 1c and tetraphenylphosphonium bromide was employed to in-situ generate the catalyst. In these
conditions, a 94% of conversion with high selectivity to sulfoxide (95%) and 40% ee to the (R)-sulfoxide
was obtained [42]. A number of additional imidazolium-based zwitterionic dicarboxylic acids were
also tested as chiral inductors in the enantioselective oxidation of methyl phenyl sulfide (Table 1).
They are derived both from natural α-amino acids of general formula (S,S)-HLR (R = Me, 1b; CH2Ph,
1d; iBu, 1e, (S)-sec-Bu, 1f) or non-natural α-amino acids, such as (R,R)-HLiPr (1c’) and (S,S)-HLtBu (1g)
(Scheme 1). They were prepared by condensation of 2 equiv. of the corresponding amino acid with
glyoxal and p-formaldehyde in water at 90 ◦C for one hour, following the procedures described in the
literature [45,46]. Additionally, the new compounds (S,S)-HLtBu (1g) and (R,R)-HLiPr (1c’) were also
straightforwardly obtained in an enantiopure form by the same procedure using the corresponding
nonproteinogenic amino acids. Compounds 1g and 1c’ were characterized by IR, NMR (1H and
13C{1H}) and mass spectra (see Materials and Methods and Figures S1–S5 in Supplementary Materials).
These compounds were employed to investigate the influence of (i) absence of chirality in the ligand
(HLH, 1a); (ii) size and branching of alkyl substituents (1c–e,g); (iii) an additional chiral center (1f);
and (iv) a chiral center with opposed sense of chirality (1c vs 1c’).
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Table 1. Enantioselective oxidation of different sulfides with the system [MoO(O2)2(H2O)n]/H2O2/
HLR/[PPh4]Br a.

Entry HLR Sulfide Conversion
(%) b

Selectivity
to Sulfoxide

(%) b

Selectivity
to Sulfone

(%) b

Sulfoxide
Yield (%)

Sulfoxide ee
(%) and

Configuration c

1 HLH, 1a PhMeS 93 95 5 88 Racemic
2 (S,S)-HLMe, 1b PhMeS 93 95 5 88 2 (R)
3 (S,S)-HLiPr, 1c PhMeS 94 95 5 89 40 (R)
4 (R,R)-HLiPr, 1c’ PhMeS 95 95 5 90 42 (S)
5 (S,S)-HLCH2Ph, 1d PhMeS 67 100 0 67 5 (R)
6 (S,S)-HLiBu, 1e PhMeS 88 96 4 85 14 (R)
7 (S,S)-HLsec-Bu, 1f PhMeS 95 95 5 90 47 (R)
8 (S,S)-HLtBu, 1g PhMeS 92 96 4 88 32 (R)
9 (S,S)-HLsec-Bu, 1f (p-Me-C6H4)MeS 90 91 9 82 55 (R)
10 (S,S)-HLsec-Bu, 1f (p-Cl-C6H4)MeS 89 96 4 85 44 (R)
11 (S,S)-HLsec-Bu, 1f (p-Br-C6H4)MeS 91 87 13 79 51 (R)
12 (S,S)-HLsec-Bu, 1f Ph(PhCH2)S 90 64 36 58 53 (R)
13 (S,S)-HLsec-Bu, 1f Ph(HOCH2CH2)S 81 36 0 29 43 (S)

a Reaction conditions: catalyst [MoO(O2)2(H2O)n] 0.025 mmol, HLR 0.0125 mmol, [PPh4]Br 0.05 mmol, sulfide
1.0 mmol, solvent: Cl3CH 1.0 mL, oxidant: H2O2 (30% aq.), oxidant:sulfide ratio 1:1, 1 h, T = 0 ◦C. b Determined by
Gas Chromatography (50 µL of dodecane as the internal standard). c Determined by High-Performance Liquid
Chromatography (HPLC, see details in Supplementary Materials).

As expected, the [Mo(O)(O2)2(H2O)n]/HLR/[PPh4]Br system was effective for the sulfoxidation
of methyl phenyl sulfide with conversions ranging from 67%, for 1d (entry 5), to 93–95% for reagents
1a–c, 1f and 1g. In all cases, reactions proceeded with chemoselectivity with nearly quantitative
sulfoxide yields. The nature of the chiral inductor HLR clearly controls enantioselectivity. The use
of the achiral reagent 1a gave the expected racemic mixture (entry 1). When reagents 1b–g were
employed, it was observed that an increase in the branching at the Cα atom of the R group of the
ligand seemed to have a beneficial effect on the enantioselectivity. Specifically, reactions performed
with chiral ligands with unbranched alkyl groups, such as 1b and 1d (entries 2 and 5, respectively),
gave rise to low ee values of 2% and 5%, respectively. Conversely, the use of ligands with branched
alkyl groups, such as 1c, 1f and 1g (entries 3, 7 and 8, respectively), produced ee values higher
than 30%. The highest ee was observed with the reagent 1f (47% ee) in which the additional chiral
center could have a positive effect in the enantioselectivity. Importantly, the reaction performed with
(R,R)-HLiPr (1c’) (entry 4) gave an ee result comparable to that of its (S,S)-enantiomer, 1c, only with
opposed sense of sulfoxide chirality. The adequate selection of the HLR inductor chirality controls the
production of the sulfoxide enantiomer. Finally, the activity of the system was tested with other sulfide
substrates using compound 1f as chiral inductor (entries 9–15). In general, good conversions and
enantioselectivities close to 50% for the corresponding (R)-sulfoxide were found, with the exception
of the sulfide Ph(HOCH2CH2)S, which showed lower values (29% sulfoxide yield and 43% ee for
the (S) enantiomer, entry 13). Conversions obtained with 1f were similar to those found with 1c [42],
but enantioselectivity values were slightly superior using 1f than 1c for the same substrates [42].

One equivalent of hydrogen peroxide per substrate was used in all experiments because formation
of the corresponding sulfone was observed when two or more equivalents of the oxidant were
employed [42,43]. As we previously communicated, the ee can be increased by kinetic resolution and
the (R)-sulfoxide PhMeSO was obtained in 83% ee with a 1.6-fold excess of the oxidant [42]. To probe
the kinetic resolution process in more detail, we performed the oxidation of racemic PhMeSO sulfoxide,
under the same reaction conditions, varying the oxidant-to-substrate ratio (Figure 1). From the
analysis of the variation of the enantiomeric excess with respect to the conversion of sulfoxide, it was
possible to determinate a stereoselectivity factor E of 2.8 (E = kS’/kR’, see Supplementary Materials
for details) [47]. Therefore, one may conclude that the enantiomeric excess of the sulfoxide can be
controlled by adjusting the degree of conversion (at the expense of the sulfoxide yield).
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Figure 1. Kinetic resolution of racemic PhMeSO with catalyst [MoO(O2)2(H2O)n]/1c/[PPh4]Br (CHCl3,
0 ◦C, sulfoxide:Mo ratio of 100:2.5): sulfoxide and sulfone yields and the ee of the (R)-sulfoxide versus
the oxidant:substrate ratio.

2.2. Nature of the Molybdenum Catalyst and Origin of the Enantioselectivity

With the purpose of gaining evidence about the nature of the molybdenum catalyst, the reaction
of [Mo(O)(O2)2(H2O)n] with 2 equiv. of the sodium salt of (S,S)-HLiPr was carried out. On the basis of
Infrared (IR), Nuclear Magnetic Resonance (NMR) and Mass Spectrometry (MS) data (see Experimental
and Supplementary Materials), the binuclear formulation Na{[Mo(O)(O2)2(H2O)]2(µ-LiPr)} was
proposed for the isolated yellow powder. Further confirmation came from DFT calculations,
which were carried out at the B3LYP level of theory for the anion {[Mo(O)(O2)2(H2O)]2(µ-LiPr)}−,
2c (optimized structure shown in Figure 2). The computed IR spectrum of this anion fits well with the
experimental one of complex Na{[Mo(O)(O2)2(H2O)]2(µ-LiPr)} (Figure S7, Supplementary Materials),
thus supporting the proposed formulation. This allowed us to assign several IR absorptions of
compound Na{[Mo(O)(O2)2(H2O)]2(µ-LiPr)}, as for instance the asymmetric and symmetric ν(COO)
bands at 1611 and 1391 cm−1, respectively. This attribution gave a ∆(νCOOasym − νCOOsym) value of
ca. 220 cm−1, which is compatible with the monodentate κ1-O coordination of the carboxylate group
observed in the optimized structure. Besides the carboxylate absorptions, the oxido group generates
a characteristic ν(Mo=O) band at 962 cm−1, while the peroxide ligands display distinctive ν(OO),
νas[Mo(OO)] and νs[Mo(OO)] absorptions at 861, 643 and 582 cm−1, respectively, in the expected
ranges for this ligand [48].

In order to support the formulation of the Mo catalyst, the activity of the isolated
complex Na{[Mo(O)(O2)2(H2O)]2(µ-LiPr)} was tested in the sulfoxidation reaction of methyl phenyl
sulfide, under the optimized reaction conditions. The conversion (93%) and ee (42%) values
achieved were completely similar to those observed when the catalytic species was in-situ
formed [42], thus proving the nature of the catalyst as a binuclear {[Mo(O)(O2)2(H2O)]2(µ-LR)}−

oxidodiperoxidomolybdenum(VI) species.
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Figure 2. Optimized structure of the {[Mo(O)(O2)2(H2O)]2(µ-LiPr)}− anion, 2c, and proposed
formulation of the Mo catalyst species.

Once the catalyst structure is known, the origin of the enantioselectivity was theoretically
investigated. In principle, the simple κ1-O-carboxylate coordination of the chiral ligand (LiPr)−

can be in contradiction with the experimentally observed asymmetric process because chiral
inductors are usually bi- or polydentate ligands. However, the analysis of the optimized structure
{[Mo(O)(O2)2(H2O)]2(µ-LiPr)}−, 2c, reveals two additional interactions. One is a hydrogen bond
between the O–H from the water ligand and the noncoordinated oxygen atom of the carboxylate
group of (LiPr)− (explicitly shown in Figure 2, O–H···O distance of 2.75 Å). The second one is subtler
and consists of a nonclassical hydrogen bond [49–51] between one C–H bond of the isopropyl group
and one oxygen atom of one of the peroxido ligands (C–H···O distance of 2.51 Å). This interaction
is also present in other optimized complexes {[Mo(O)(O2)2(H2O)]2(µ-LR)}− (R = iBu, 2e; secBu, 2f;
and tBu, 2g), while is weaker (for R = CH2Ph, 2d) or absent in complexes containing R = H, 2a, and
Me, 2b, substituents (see Table 2 and optimized structures in Figure S10 in Supplementary Materials).
Compounds {[Mo(O)(O2)2(H2O)]2(µ-LR)}− (R = iPr, 2c; iBu, 2e; secBu, 2f; and tBu, 2g) display C–H···O
distances within the range 2.50–2.66 Å and C–H···O angles higher than 160◦ (Table 2), which are
typical parameters of nonclassical C–H···O hydrogen bonds (cut-off values of distances <2.8 Å and
angles >90◦) [52–54]. Interestingly, these compounds are those in which an asymmetric process is
observed (inductors 1c,e–g in Table 1), while for compounds without the C–H···O interaction, low or
null activity is found (inductors 1a,b,d in Table 1).

Table 2. Selected structural data for classical and nonclassical hydrogen bonds in optimized structures
{[Mo(O)(O2)2(H2O)]2(µ-LR)}− 2.

R (µ–LR)−
Distances, Å Angles, ◦

C–H···O O–H···O C–H···O O–H···O
H 2a - 1.814, 1.822 - 158

Me 2b >4 1.814, 1.831 - 158, 159
iPr 2c 2.509, 2.521 1.807, 1.817 168 159, 160

CH2Ph 2d 2.352 (C–Harom.), 3.570 1.803, 1.815 138 (C–Harom.), 111 160
iBu 2e 2.552, 2.558 1.796, 1.811 170, 171 160

secBu 2f 2.621, 2.656 1.793, 1.803 160 160, 161
tBu 2g 2.509, 2.521 1.807, 1.817 166 160

With the aim of confirming that these interactions are responsible of the asymmetry, we have
selected the model complexes [Mo(O)(O2)2(H2O)(κ1-O-LR)]− (R = H, 3a, and iPr, 3c), containing
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for simplicity only one molybdenum atom, and studied the step that controls the enantioselectivity.
This is the oxido-transfer step, which follows a Sharpless-type outer-sphere concerted mechanism
according to previous studies [43]. The oxygen atom transfer is produced by the nucleophilic attack of
sulfide onto the peroxide ligand that cleaves the O–O bond with sulfoxide formation. This transition
state (TS) reflects the interaction between the HOMO (Highest Occupied Molecular Orbital) of the
sulfide substrate and the σ*(O–O) LUMO (Lowest Unoccupied Molecular Orbital) of peroxide and it is
characterized by the approaching of sulfide reagent with associated elongation of the O–O linkage.
Taking into account the presence of two peroxide ligands and two prochiral faces of the sulfide,
four transition states have been located for the oxido-transfer. Figure 3 shows two of the calculated
TSs for [Mo(O)(O2)2(H2O)(κ1-O-LR)]− (R = H and iPr), while the other calculated TSs are shown
in Figure S11 (Supplementary Materials). The four transition states optimized for the nonchiral
[Mo(O)(O2)2(H2O)(κ1-O-LH)]− species, 3a, have the same Gibbs free energy (±0.2 kcal·mol−1) with
a barrier for the oxido-transfer step of ca. 35 kcal·mol−1. The ∆∆G 6= is ca. 0 kcal·mol−1, which is
compatible with the formation of racemic sulfoxide using 1a (entry 1, Table 1). By contrast, for chiral
[Mo(O)(O2)2(H2O)(κ1-O-LiPR)]− species, 3c, there are two transition states, those that yield the R
sulfoxide TS_c1 and TS_c4, showing lower energies than TS_c2 and TS_c3 that afford the S sulfoxide.
The calculated ∆∆G 6= of ca. 2 kcal·mol−1 is well suited for the asymmetric process observed using 1c
(entry 3, Table 1).
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3. Materials and Methods

3.1. General

Synthetic reactions were carried out under aerobic conditions. Chemicals were obtained from
commercial sources and used as supplied, while solvents were appropriately purified using standard
procedures. Infrared spectra were recorded on a Perkin-Elmer FT–IR Spectrum Two spectrophotometer
(pressed KBr pellets). NMR spectra were recorded at the Centro de Investigaciones, Tecnología e
Innovación (CITIUS) of the University of Sevilla by using Bruker AMX-300 or Avance III spectrometers
with 13C{1H} and 1H shifts referenced to the residual solvent signals. All data are reported in ppm
downfield from Si(CH3)4. The gas chromatograms (GC) were obtained using a Varian Chromatogram
CP-3800 with nitrogen as the carrier gas. The chromatogram used a Varian automatic injector,
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model CP-8410, flame ionization detector (FID), and an Agilent column, model CP-7502. The HPLC
chromatograms were performed on an Agilent 1260 Infinity instrument with a Chiralpak IA column
at a flow rate of 1.0 mL/min with AcOEt/heptane = 6/4 (v/v) and using a UV detector at 254 nm.
For Ph(HOCH2CH2)SO sulfoxide, a flow rate of 0.5 mL/min with heptane/iPrOH = 9/1 (v/v) was
employed. The absolute configuration (reported in Table 1) was determined by comparing HPLC
elution orders and the sign of the specific rotations with the literature data [14,15]. Polarimetry was
carried out using a JASCO P-2000 Digital Polarimeter and the measurements were made at ca. 25 ◦C
(concentration of ca. 10 mg/mL). High-resolution mass spectra (HRMS) were carried out by using a
Q-Exactive Hybrid Quadrupole-Orbitrap Mass Spectrometer from Thermo Scientific at the CITIUS of
the University of Sevilla.

3.2. Synthesis of Chiral Imidazolium-Based Zwitterionic Dicarboxylic Acids HLR

The syntheses of compounds (S,S)-HLR (1a–f) have been previously described [45,46] and they
were identified by comparison of their IR, NMR (1H and 13C{1H}) and mass spectra with those
previously reported (see Figure S6, Supplementary materials).

(R,R)-1-(1-carboxy-2-methylpropyl)-3-(1-carboxylate-2-methylpropyl)imidazolium, (R,R)-HLiPr (1c’).
A solution of D-valine (10 g, 84 mmol) in water (25 mL) was reacted with glyoxal (4.80 mL, 40% w/w
solution in water, 42 mmol) and formaldehyde (3.13 mL, 37% w/w solution in water, 42 mmol) at 95 ◦C
for 2 h. Compound (R,R)-HLiPr, 1c’, was obtained by removing the solvent under reduced pressure.
Recrystallization from water yields 5.18 g (46%) of the product as light-brown solid. IR (KBr, cm−1):
3464 (br), 3166 (w), 3114 (m), 3046 (m), 2970 (s), 2935 (w), 2878 (m), 1686 (vs,br), 1548 (s), 1473 (m),
1392 (m), 1375 (m), 1344 (w), 1295 (w), 1265 (m), 1162 (s), 1120 (m), 1096 (m), 1015 (w), 977 (w), 912 (w),
871 (w), 838 (w), 760 (w), 712 (w), 652 (w). 1H NMR (300 MHz, D2O): δ 0.91, 1.00 (d, 3JHH = 6.6 Hz,
6H, CH(CH3)2), 2.55 (m, 2H, CH(CH3)2), 4.84 (d, 3JHH = 7.8 Hz, 2H, CHiPr), 7.68 (s, 2H, C4H/C5H),
9.13 (s, 1H, C2H). 13C{1H} NMR (75 MHz, D2O): δ 17.3, 18.4 (s, CH(CH3)2), 31.2 (s, CH(CH3)2),
69.8 (s, CHiPr), 122.3 (s, C4H/C5H), 136.2 (s, C2H), 172.3 (s, CO). [α]25

D = −106.5 (H2O). HRMS for
C13H20N2O4: [M + 1]+ requires m/z 269.15, found m/z 269.1492.

(S,S)-1-(1-carboxy-2,2-dimethylpropyl)-3-(1-carboxylate-2,2-dimethylpropyl) imidazolium, (S,S)-HLtBu (1g).
A solution of L-tert-leucine (2 g, 15 mmol) in water (20 mL) was reacted with glyoxal (866 µL, 40%
w/w solution in water, 8 mmol) and formaldehyde (566 µL, 37% w/w solution in water, 8 mmol)
at 95 ◦C for 4 h. Compound (S,S)-HLtBu, 1g, was obtained by removing the solvent under reduced
pressure. Recrystallisation from water yields 1.83 g (82%) of the product as light-brown solid. IR (KBr,
cm−1): 3452 (br), 3187 (m), 3160 (m), 3108 (m), 3038 (m), 2965 (s), 2915 (w), 2878 (w), 1686 (vs,br),
1553 (s), 1482 (s), 1447 (w), 1403 (m), 1375 (s), 1369 (m), 1353 (m), 1315 (m), 1268 (m), 1215 (m), 1159 (s),
1101 (m), 1051 (m), 1029 (w), 938 (m), 892 (m), 855 (m), 820 (w), 801 (w), 789 (m), 769 (m), 731 (s),
699 (m), 681 (m), 657 (m), 643 (m). 1H NMR (300 MHz, CD3OD): δ 1.10 (s, 18H, C(CH3)3), 4.87 (s, 2H,
CHtBu), 7.75 (d, 4JHH = 1.5 Hz, 2H, C4H/C5H), 9.49 (s, 1H, C2H). 13C{1H} NMR (75 MHz, CD3OD):
δ 26.0 (s, C(CH3)3), 34.7 (s, C(CH3)3), 72.6 (s, CHtBu), 122.3 (s, C4H/C5H), 137.3 (s, C2H), 169.6 (s, CO).
[α]25

D = +144.4 (H2O). HRMS for C15H24N2O4: [M + 1]+ requires m/z 297.18, found m/z 297.1804.

3.3. Preparation and Titration of [Mo(O)(O2)2(H2O)n] Solution

Solutions of the aqua complex of oxidodiperoxidomolybdenum in aqueous hydrogen peroxide
were prepared as previously described [55]. For the purpose of simplicity the solution is referred to in
this work simply as aqueous [Mo(O)(O2)2(H2O)n].

The resulting aqueous solution of molybdenum complex has an excess of hydrogen peroxide.
The addition of the 0.025 mmol of molybdenum species in the catalytic essays includes a supplementary
amount of oxidant. In order to avoid the formation of sulfone product, one equivalent of 30% hydrogen
peroxide per sulfide substrate should be used. Thus, freshly prepared [Mo(O)(O2)2(H2O)n] 0.25 M
solutions were employed, which were conveniently titrated before each catalytic test. The titration was
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carried out as follows. To 10 mL of [Mo(O)(O2)2(H2O)n] solution was added H2SO4 6M (10 mL) and
the mixture diluted with water (25 mL). This solution was titrated with KMnO4 ca. 0.2 M (previously
standardized with Na2C2O4). The mean of five titrations afforded a typical value of ca. 0.2 mmol of
hydrogen peroxide per 100 µL of solution. On this basis, the exact amount of hydrogen peroxide 30%
employed in the catalytic test can be easily calculated.

3.4. Synthesis of Complex Na{[Mo(O)(O2)2(H2O)]2(µ-LiPr)}

Over a solution of (S,S)-HLiPr (0.504 g, 1.88 mmol) in water (15 mL) was added dropwise a solution
of NaHCO3 (0.158 g, 1.88 mmol) in water (5 mL) and the mixture was stirred at room temperature
until the evolution of CO2 ceased (5–10 min). Over this solution was added [Mo(O)(O2)2(H2O)n]
(15.03 mL, 0.25 M aqueous solution, 3.76 mmol) and the mixture was stirred at room temperature
for 1 h. The resulting solution was evaporated to dryness affording a yellow powder identified
as Na{[Mo(O)(O2)2(H2O)]2(µ-LiPr)} (1.216 g, 96%). IR (KBr, cm−1): 3440 (br vs), 3136 (m), 2966 (s),
2935 (m), 2877 (m), 1611 (vs), 1563 (m), 1548 (m), 1468 (m), 1423 (m), 1391 (s), 1344 (m), 1258 (m),
1234 (w), 1155 (s), 1120 (m), 1025 (w), 962 (s), 861 (s), 750 (m), 712 (w), 643 (m), 582 (m), 537 (m).
1H NMR (D2O, 300 MHz): δ 0.80 (br d, 6H, 2CH(CH3)2), 0.91 (br d, 6H, 2×CH(CH3)2), 2.44 (br m,
2H, 2×CH(CH3)2), 4.58 (br m, 2H, 2×CHiPr), 7.53 (s, 2H, 2×CH, H4/H5), 8.92 (s, 1H, CH, H2).
13C{1H} NMR (D2O, 75 MHz): δ 17.5 (s, 2×CH(CH3)2), 18.6 (s, 2×CH(CH3)2), 31.1 (s, 2×CH(CH3)2),
71.4 (s, 2×CHiPr), 122.0 (s, 2×CH, C4/C5), 135.8 (s, CH), 173.6 (s, 2×COO). Electrospray ionization-MS:
positive mode, found m/z 269.15 (for HLiPr + 1, C13H20N2O4, 268.14) and 291.13 (for NaLiPr + 1,
NaC13H19N2O4, 290.12). ESI-MS: negative mode, found m/z 267.13 (for HLiPr-1, C13H20N2O4, 268.14),
445.01 (for MoO5LiPr-1, C13H20MoN2O9, 446.02).

3.5. General Procedure for Enantioselective Mo-Catalyzed Oxidation of Sulfides in the Presence of HLR

The reactor (a 50 mL vial equipped with a Young valve and containing a stirrer flea) was charged
with [Mo(O)(O2)2(H2O)n] (100 µL, 0.25 M aqueous solution, 0.025 mmol), HLR (0.0125 mmol), [PPh4]Br
as specified (typically 0.05 mmol), the reaction solvent (1 mL), the oxidant (30% aqueous H2O2; 1 mmol
per sulfide substrate, see details above) and the sulfide substrate (1 mmol), in the aforementioned order.
The reactor was sealed and maintained at the working temperature, with constant stirring (600 rpm)
in a thermostatted bath for the duration of the reaction. Upon completion, the reaction mixture was
treated with diethyl ether (10 mL) and then filtered with 0.45 µm nylon syringe filter. The resulting
solution was analyzed by GC (by adding 50 µL of dodecane as the internal standard). Afterwards the
solution was evaporated to dryness by using a rotavap. The resulting residue was then analyzed by
HPLC (by adding 20 mL of ethyl acetate).

3.6. Computational Details

The electronic structure and geometries of the model compounds [Mo(O)(O2)2(H2O)]2(µ-LR)]−

(R = H, 2a; Me, 2b; iPr, 2c; CH2Ph, 2d; iBu, 2e; secBu, 2f; and tBu, 2g) and [Mo(O)(O2)2(H2O)(κ1-O-LR)]−

(R = H, 3a, and iPr, 3c) were computed using density functional theory at the B3LYP level [56,57].
The Mo atom was described with the LANL2DZ basis set [58,59] while the 6-31G(d,p) basis set was used
for the C, N, O, S and H atoms. The transition states of the interaction of PhMeS with 3a and 3c, namely
TSa1–4 and TSc1–4, were located at the same level of theory. Geometries of all model complexes were
optimized without symmetry constraints. Frequency calculations were carried out at the same level
of theory to identify all of the stationary points as transition states (one imaginary frequency) or as
minima (zero imaginary frequencies) and to provide the thermal correction to free energies at 298.15
K and 1 atm. The DFT calculations were performed using the Gaussian 09 suite of programs [60].
Coordinates of the optimized compounds are collected in Table S4 (Supplementary Materials).
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4. Conclusions

A simple process for the enantioselective Mo-catalyzed sulfoxidation with aqueous hydrogen
peroxide, by using imidazolium-based dicarboxylate compounds HLR, 1b–g, as chiral inductors, has
been developed. The advantages of this system are: (i) better reaction times (1 h); (ii) commercial
and cheap molybdenum starting material, MoO3; and (iii) straightforward synthesis of the
(S,S)- or (R,R)-HLR inductors, in comparison with the elaborated chiral ligands reported in the
bibliography. By combination of spectroscopic data and DFT calculations, the binuclear anion
{[Mo(O)(O2)2(H2O)]2(µ-LR)}−, 2, has been proposed as the chiral catalytic species. A nonclassical
hydrogen bond between one C–H bond of the alkyl R group and one oxygen atom of one of the
peroxido ligands controls the enantioselectivity of the sulfoxidation. This subtle interaction is only
present in optimized complexes 2c,e,f,g, those that showed an acceptable ee value. This has been
additionally demonstrated by analysing the transition states of the oxido-transfer of model complexes
[Mo(O)(O2)2(H2O)(κ1-O-LR)]− (R = H, 3a, and iPr, 3c) to PhMeS sulfide.

Supplementary Materials: The following are available online, Figures S1–S6: NMR and MS spectra of
1 compounds, Figure S7: calculated IR spectrum of 2c, Figures S7 and S8: determination of the stereoselectivity
factor, Figures S10 and S11: optimized structures of transition states and compounds 2, Figure S12: selected chiral
HPLC diagrams of optical active sulfoxides, Table S1: energies of the transition states for the oxido-transfer, and
Table S2: Coordinates of the optimized structures.
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Stereogenic Sulfur Atom: Applications in Asymmetric Synthesis. Chem. Rev. 2017, 117, 4147–4181. [CrossRef]
[PubMed]

9. Han, J.; Soloshonok, V.A.; Klika, K.D.; Drabowicz, J.; Wzorek, A. Chiral sulfoxides: Advances in asymmetric
synthesis and problems with the accurate determination of the stereochemical outcome. Chem. Soc. Rev.
2018, 47, 1307–1350. [CrossRef] [PubMed]

10. Srour, H.; Le Maux, P.; Chevance, S.; Simonneaux, G. Metal-catalyzed asymmetric sulfoxidation, epoxidation
and hydroxylation by hydrogen peroxide. Coord. Chem. Rev. 2013, 257, 3030–3050. [CrossRef]

http://dx.doi.org/10.1021/cr900147h
http://www.ncbi.nlm.nih.gov/pubmed/20415478
http://dx.doi.org/10.1080/17415993.2012.725247
http://dx.doi.org/10.1039/b418284g
http://www.ncbi.nlm.nih.gov/pubmed/15965542
http://dx.doi.org/10.3998/ark.5550190.0012.101
http://dx.doi.org/10.1021/cr990372u
http://www.ncbi.nlm.nih.gov/pubmed/12964880
http://dx.doi.org/10.1021/acs.chemrev.6b00517
http://www.ncbi.nlm.nih.gov/pubmed/28191933
http://dx.doi.org/10.1039/C6CS00703A
http://www.ncbi.nlm.nih.gov/pubmed/29271432
http://dx.doi.org/10.1016/j.ccr.2013.05.010


Molecules 2018, 23, 1595 10 of 12

11. Dai, W.; Li, J.; Chen, B.; Li, G.; Lv, Y.; Wang, L.; Gao, S. Asymmetric oxidation catalysis by a porphyrin-inspired
manganese complex: Highly enantioselective sulfoxidation with a wide substrate scope. Org. Lett. 2013,
15, 5658–5661. [CrossRef] [PubMed]

12. Srour, H.; Jalkh, J.; Le Maux, P.; Chevance, S.; Kobeissi, M.; Simonneaux, G. Asymmetric oxidation of sulfides
by hydrogen peroxide catalyzed by chiral manganese porphyrins in water/methanol solution. J. Mol. Catal.
A Chem. 2013, 370, 75–79. [CrossRef]

13. Legros, J.; Bolm, C. Iron-Catalyzed Asymmetric Sulfide Oxidation with Aqueous Hydrogen Peroxide.
Angew. Chem. Int. Ed. 2003, 42, 5487–5489. [CrossRef] [PubMed]

14. Legros, J.; Bolm, C. Highly enantioselective iron-catalyzed sulfide oxidation with aqueous hydrogen peroxide
under simple reaction conditions. Angew. Chem. Int. Ed. 2004, 43, 4225–4228. [CrossRef] [PubMed]

15. Legros, J.; Bolm, C. Investigations on the iron-catalyzed asymmetric sulfide oxidation. Chem. Eur. J. 2005,
11, 1086–1092. [CrossRef] [PubMed]

16. Egami, H.; Katsuki, T. Fe(salan)-Catalyzed Oxidation of Sulfides with Hydrogen Peroxide in Water. J. Am.
Chem. Soc. 2007, 129, 8940–8941. [CrossRef] [PubMed]

17. Buckley, B.R.; Neary, S.P. Organocatalysed Asymmetric Oxidation Reactions. In Enantioselective
Organocatalyzed Reactions I; Mahrwald, R., Ed.; Springer: Berlin, Germany, 2011; pp. 1–41.

18. Basak, A.; Barlan, A.U.; Yamamoto, H. Catalytic enantioselective oxidation of sulfides and disulfides by
a chiral complex of bis-hydroxamic acid and molybdenum. Tetrahedron Asymmetry 2006, 17, 508–511.
[CrossRef]

19. Pedrosa, M.R.; Escribano, J.; Aguado, R.; Sanz, R.; Díez, V.; Arnáiz, F.J. Addition compounds of MoO2Cl2
with chiral sulfoxides. First molecular structures of dioxomolybdenum complexes bearing chiral non-racemic
sulfoxide as ligand. Inorg. Chim. Acta 2010, 363, 3158–3164. [CrossRef]

20. Sakuraba, H.; Maekawa, H. Enantioselective oxidation of sulfides catalyzed by chiral MoV and CuII

complexes of catechol-appended β-cyclodextrin derivatives in water. J. Incl. Phenom. 2006, 54, 41–45.
[CrossRef]

21. Amini, M.; Haghdoost, M.M.; Bagherzadeh, M. Oxido-peroxido molybdenum(VI) complexes in catalytic
and stoichiometric oxidations. Coord. Chem. Rev. 2013, 257, 1093–1121. [CrossRef]

22. Barlan, A.U.; Zhang, W.; Yamamoto, H. Development and application of versatile bis-hydroxamic acids for
catalytic asymmetric oxidation. Tetrahedron 2007, 63, 6075–6087. [CrossRef] [PubMed]

23. Bellemin-Laponnaz, S.; Coleman, K.S.; Osborn, J.A. Co-ordination of the chiral N,O-ligand 2-[(1S,2S,5R)(−)-
menthol]-pyridine to molybdenum(VI) and vanadium(IV) oxo complexes. Polyhedron 1999, 18, 2533–2536.
[CrossRef]

24. Bonchio, M.; Carofiglio, T.; Difuria, F.; Fornasier, R. Supramolecular catalysis: Enantioselective oxidation
of thioanisole in water by hydrogen peroxide catalyzed by Mo(VI) in the presence of β-cyclodextrin-based
ligands. J. Org. Chem. 1995, 60, 5986–5988. [CrossRef]

25. Chakravarthy, R.D.; Suresh, K.; Ramkumar, V.; Chand, D.K. New chiral molybdenum complex catalyzed
sulfide oxidation with hydrogen peroxide. Inorg. Chim. Acta 2011, 376, 57–63. [CrossRef]

26. Wang, Y.; Wang, M.; Wang, L.; Wang, Y.; Wang, X.; Sun, L. Asymmetric oxidation of sulfides
with H2O2 catalyzed by titanium complexes of Schiff bases bearing a dicumenyl salicylidenyl unit.
Appl. Organomet. Chem. 2011, 25, 325–330. [CrossRef]

27. Bryliakov, K.P.; Talsi, E.P. Titanium-salan-catalyzed asymmetric oxidation of sulfides and kinetic resolution of
sulfoxides with H2O2 as the oxidant. Eur. J. Org. Chem. 2008, 3369–3376. [CrossRef]

28. Bryliakov, K.P.; Talsi, E.P. Asymmetric oxidation of sulfides with H2O2 catalyzed by titanium complexes
with aminoalcohol derived Schiff bases. J. Mol. Catal. A Chem. 2007, 264, 280–287. [CrossRef]

29. Brunel, J.M.; Diter, P.; Duetsch, M.; Kagan, H.B. Highly enantioselective oxidation of sulfides mediated by a
chiral titanium complex. J. Org. Chem. 1995, 60, 8086–8088. [CrossRef]

30. Choudary, B.M.; Shobha Rani, S.; Narender, N. Asymmetric oxidation of sulfides to sulfoxides by chiral
titanium pillared montmorillonite catalyst. Catal. Lett. 1993, 19, 299–307. [CrossRef]

31. Komatsu, N.; Hashizume, M.; Sugita, T.; Uemura, S. Catalytic asymmetric oxidation of sulfides to sulfoxides
with tert-butyl hydroperoxide using binaphthol as a chiral auxiliary. J. Org. Chem. 1993, 58, 4529–4533.
[CrossRef]

32. Cotton, H.; Elebring, T.; Larsson, M.; Li, L.; Sörensen, H.; Von Unge, S. Asymmetric synthesis of esomeprazole.
Tetrahedron Asymmetry 2000, 11, 3819–3825. [CrossRef]

http://dx.doi.org/10.1021/ol402612x
http://www.ncbi.nlm.nih.gov/pubmed/24156512
http://dx.doi.org/10.1016/j.molcata.2012.12.016
http://dx.doi.org/10.1002/anie.200352635
http://www.ncbi.nlm.nih.gov/pubmed/14618584
http://dx.doi.org/10.1002/anie.200460236
http://www.ncbi.nlm.nih.gov/pubmed/15307094
http://dx.doi.org/10.1002/chem.200400857
http://www.ncbi.nlm.nih.gov/pubmed/15742468
http://dx.doi.org/10.1021/ja071916+
http://www.ncbi.nlm.nih.gov/pubmed/17602480
http://dx.doi.org/10.1016/j.tetasy.2005.12.031
http://dx.doi.org/10.1016/j.ica.2010.05.044
http://dx.doi.org/10.1007/s10847-005-3490-9
http://dx.doi.org/10.1016/j.ccr.2012.11.018
http://dx.doi.org/10.1016/j.tet.2007.03.071
http://www.ncbi.nlm.nih.gov/pubmed/21152351
http://dx.doi.org/10.1016/S0277-5387(99)00158-8
http://dx.doi.org/10.1021/jo00123a046
http://dx.doi.org/10.1016/j.ica.2011.05.033
http://dx.doi.org/10.1002/aoc.1762
http://dx.doi.org/10.1002/ejoc.200800277
http://dx.doi.org/10.1016/j.molcata.2006.09.038
http://dx.doi.org/10.1021/jo00129a060
http://dx.doi.org/10.1007/BF00767071
http://dx.doi.org/10.1021/jo00069a009
http://dx.doi.org/10.1016/S0957-4166(00)00352-9


Molecules 2018, 23, 1595 11 of 12

33. Bolm, C.; Bienewald, F. Asymmetric Sulfide Oxidation with Vanadium Catalysts and H2O2. Angew. Chem.
Int. Ed. 1995, 34, 2640–2642. [CrossRef]

34. Liu, G.; Cogan, D.A.; Ellman, J.A. Catalytic Asymmetric Synthesis of tert-Butanesulfinamide. Application to
the Asymmetric Synthesis of Amines. J. Am. Chem. Soc. 1997, 119, 9913–9914. [CrossRef]

35. Karpyshev, N.N.; Yakovleva, O.D.; Talsi, E.P.; Bryliakov, K.P.; Tolstikova, O.V.; Tolstikov, A.G. Effect of
portionwise addition of oxidant in asymmetric vanadium-catalyzed sulfide oxidation. J. Mol. Catal. A Chem.
2000, 157, 91–95. [CrossRef]

36. Blum, S.A.; Bergman, R.G.; Ellman, J.A. Enantioselective oxidation of di-tert-butyl disulfide with a vanadium
catalyst: Progress toward mechanism elucidation. J. Org. Chem. 2003, 68, 150–155. [CrossRef] [PubMed]

37. Bolm, C. Vanadium-catalyzed asymmetric oxidations. Coord. Chem. Rev. 2003, 237, 245–256. [CrossRef]
38. Zeng, Q.; Wang, H.; Wang, T.; Cai, Y.; Weng, W.; Zhao, Y. Vanadium-catalyzed enantioselective sulfoxidation

and concomitant, highly efficient kinetic resolution provide high enantioselectivity and acceptable yields of
sulfoxides. Adv. Synth. Catal. 2005, 347, 1933–1936. [CrossRef]

39. Hinch, M.; Jacques, O.; Drago, C.; Caggiano, L.; Jackson, R.F.W.; Dexter, C.; Anson, M.S.; Macdonald, S.J.F.
Effective asymmetric oxidation of enones and alkyl aryl sulfides. J. Mol. Catal. A Chem. 2006, 251, 123–128.
[CrossRef]

40. Adão, P.; Pessoa, J.C.; Henriques, R.T.; Kuznetsov, M.L.; Avecilla, F.; Maurya, M.R.; Kumar, U.; Correia, I.
Synthesis, characterization, and application of vanadium-salan complexes in oxygen transfer reactions.
Inorg. Chem. 2009, 48, 3542–3561. [CrossRef] [PubMed]

41. Aydin, A.E. Synthesis of novel β-amino alcohols and their application in the catalytic asymmetric
sulfoxidation of sulfides. Tetrahedron Asymmetry 2013, 24, 444–448. [CrossRef]

42. Carrasco, C.J.; Montilla, F.; Galindo, A. Molybdenum-catalyzed asymmetric sulfoxidation with hydrogen
peroxide and subsequent kinetic resolution, using an imidazolium-based dicarboxylate compound as chiral
inductor. Catal. Commun. 2016, 84, 134–136. [CrossRef]

43. Carrasco, C.J.; Montilla, F.; Alvarez, E.; Mealli, C.; Manca, G.; Galindo, A. Experimental and theoretical
insights into the oxodiperoxomolybdenum-catalysed sulphide oxidation using hydrogen peroxide in ionic
liquids. Dalton Trans. 2014, 43, 13711–13730. [CrossRef] [PubMed]

44. Carrasco, C.J.; Montilla, F.; Bobadilla, L.; Ivanova, S.; Odriozola, J.A.; Galindo, A. Oxodiperoxomolybdenum
complex immobilized onto ionic liquid modified SBA-15 as an effective catalysis for sulfide oxidation to
sulfoxides using hydrogen peroxide. Catal. Today 2014, 255, 102–108. [CrossRef]

45. Kühl, O.; Palm, G. Imidazolium salts from amino acids—A new route to chiral zwitterionic carbene
precursors? Tetrahedron: Asymmetry 2010, 21, 393–397. [CrossRef]

46. Kühl, O.; Millinghaus, S.; Wehage, P. Functionalised, chiral imidazolium compounds from proteinogenic
amino acids. Cent. Eur. J. Chem. 2010, 8, 1223–1226. [CrossRef]

47. Keith, J.M.; Larrow, J.F.; Jacobsen, E.N. Practical considerations in kinetic resolution reactions. Adv. Synth. Catal.
2001, 343, 5–26. [CrossRef]

48. Montilla, F.; Galindo, A. Oxidodiperoxidomolybdenum Complexes: Properties and Their Use as Catalysts
in Green Oxidations. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier:
New York City, NY, USA, 2017; pp. 1–17.

49. Taylor, R.; Kennard, O. Crystallographic evidence for the existence of CH . . . O, CH . . . N and CH . . . Cl
hydrogen bonds. J. Am. Chem. Soc. 1982, 104, 5063–5070. [CrossRef]

50. Steiner, T. C–H···O hydrogen bonding in crystals. Crystallogr. Rev. 2003, 9, 177–228. [CrossRef]
51. Steiner, T.; Desiraju, G.R. Distinction between the weak hydrogen bond and the van der Waals interaction.

Chem. Commun. 1998, 891–892. [CrossRef]
52. Steiner, T. Effect of acceptor strength on C–H···O hydrogen bond lengths as revealed by and quantified from

crystallographic data. J. Chem. Soc. Chem. Commun. 1994, 2341–2342. [CrossRef]
53. Steiner, T. Weak hydrogen bonding. Part 1. Neutron diffraction data of amino acid Cα–H suggest lengthening

of the covalent C–H bond in C–H···O interactions. J. Chem. Soc. Perkin Trans. 1995, 2, 1315–1319. [CrossRef]
54. Steiner, T.; Saenger, W. Role of C-H . . . O hydrogen bonds in the coordination of water molecules. Analysis

of neutron diffraction data. J. Am. Chem. Soc. 1993, 115, 4540–4547. [CrossRef]
55. Herbert, M.; Montilla, F.; Galindo, A. Olefin epoxidation in solventless conditions and apolar media catalysed

by specialised oxodiperoxomolybdenum complexes. J. Mol. Catal. A Chem. 2011, 338, 111–120. [CrossRef]

http://dx.doi.org/10.1002/anie.199526401
http://dx.doi.org/10.1021/ja972012z
http://dx.doi.org/10.1016/S1381-1169(00)00037-6
http://dx.doi.org/10.1021/jo0205560
http://www.ncbi.nlm.nih.gov/pubmed/12515473
http://dx.doi.org/10.1016/S0010-8545(02)00249-7
http://dx.doi.org/10.1002/adsc.200505259
http://dx.doi.org/10.1016/j.molcata.2006.02.006
http://dx.doi.org/10.1021/ic8017985
http://www.ncbi.nlm.nih.gov/pubmed/19290614
http://dx.doi.org/10.1016/j.tetasy.2013.03.011
http://dx.doi.org/10.1016/j.catcom.2016.06.021
http://dx.doi.org/10.1039/C4DT01733A
http://www.ncbi.nlm.nih.gov/pubmed/25102034
http://dx.doi.org/10.1016/j.cattod.2014.10.053
http://dx.doi.org/10.1016/j.tetasy.2010.02.015
http://dx.doi.org/10.2478/s11532-010-0097-9
http://dx.doi.org/10.1002/1615-4169(20010129)343:1&lt;5::AID-ADSC5&gt;3.0.CO;2-I
http://dx.doi.org/10.1021/ja00383a012
http://dx.doi.org/10.1080/08893110310001621772
http://dx.doi.org/10.1039/a708099i
http://dx.doi.org/10.1039/C39940002341
http://dx.doi.org/10.1039/P29950001315
http://dx.doi.org/10.1021/ja00064a016
http://dx.doi.org/10.1016/j.molcata.2011.02.004


Molecules 2018, 23, 1595 12 of 12

56. Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648.
[CrossRef]

57. Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional
of the electron density. Phys. Rev. B 1988, 37, 785–789. [CrossRef]

58. Dunning, T.H., Jr.; Hay, P.J. Modern Theoretical Chemistry; Plenum: New York, NY, USA, 1976; p. 1.
59. Hay, P.J.; Wadt, W.R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au

including the outermost core orbitals. J. Chem. Phys. 1985, 82, 299. [CrossRef]
60. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.;

Mennucci, B.; Petersson, G.A.; et al. GAUSSIAN 09 (Revision B.01); Gaussian, Inc.: Wallingford, CT, USA, 2009.

Sample Availability: Samples of the compounds are not available from the authors.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1063/1.464913
http://dx.doi.org/10.1103/PhysRevB.37.785
http://dx.doi.org/10.1063/1.448975
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results and Discussion 
	Enantioselective Oxidation of Different Sulfides with Aqueous Hydrogen Peroxide Catalyzed by the System [Mo(O)(O2)2(H2O)n]/HLR/[PPh4]Br 
	Nature of the Molybdenum Catalyst and Origin of the Enantioselectivity 

	Materials and Methods 
	General 
	Synthesis of Chiral Imidazolium-Based Zwitterionic Dicarboxylic Acids HLR 
	Preparation and Titration of [Mo(O)(O2)2(H2O)n] Solution 
	Synthesis of Complex Na{[Mo(O)(O2)2(H2O)]2(-LiPr)} 
	General Procedure for Enantioselective Mo-Catalyzed Oxidation of Sulfides in the Presence of HLR 
	Computational Details 

	Conclusions 
	References

