molecules m\py

Article
Lipase Catalysed Kinetic Resolution of Racemic
1,2-Diols Containing a Chiral Quaternary Center

Gonzalo de Gonzalo

Departamento de Quimica Organica, Universidad de Sevilla, ¢/Profesor Garcia Gonzalez 1, 41012 Sevilla, Spain;
gdegonzalo@us.es; Tel.: +34-954559997

check for
Received: 25 May 2018; Accepted: 27 June 2018; Published: 29 June 2018 updates

Abstract: Optically active 1,2-diols are valuable buildings blocks in organic synthesis. In the present
paper, a set of racemic 1,2-diols with an ester functional group are prepared, starting from o-ketoesters
in a three-step procedure with moderate yields. The racemic 1,2-diols, containing a chiral quaternary
center in their structure, are subjected to selective acylation in order to perform their kinetic resolution
catalysed by a set of commercially available lipases. Under optimized reaction conditions, good
conversions and enantioselectivities are achieved by using the lipase PSL-C from Pseudomonas
cepacia in tert-butyl methyl ether. This biocatalyst could be reused up to five times without losing
its properties.
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1. Introduction

Optically active 1,2-diols are valuable compounds as they can be transformed into several
interesting molecules [1-3]. Due to their importance as building blocks in organic synthesis, a number
of synthetic methodologies have been developed for their preparation [4,5]. One of the most widely
applied methods is Sharpless asymmetric dihydroxylation, which involves the oxidation of alkenes
to form 1,2-diols in presence of chiral catalysts [6,7]. This methodology suffers some limitations
including the relatively low activity and selectivity of the aromatic compounds and the substrate
scope. For these reasons, different alternatives have been investigated. The use of biologically active
systems as catalysts in organic reactions, including whole cells, cells free extracts, or purified enzymes,
has emerged as a powerful tool for the preparation of high added value compounds under mild and
environmentally friendly conditions [8-11].

The enzymes that have been used to catalyse the formation of chiral 1,2-diols belong to the
oxidoreductases (alcohol dehydrogenases and dioxygenases) [12,13], and the hydrolases, including
epoxide hydrolases [14,15] and lipases. This last group of enzymes (EC 3.1.1.3) have demonstrated
their synthetic applicability, being the most used type of enzymes in industrial chemistry [16-18].
Lipases are widely available, have broad substrate acceptance and are able to catalyse reactions not
only in aqueous mediums, but also in organic solvents, which expands their synthetic repertoire.
In addition, lipases usually display a high degree of chemo-, regio- and/or enantioselectivity in the
processes that they catalyse.

Lipases have been used to prepare optically active 1,2-diols catalysing the kinetic resolution of
racemic mixtures in acylation reactions, thus leading to chiral diols and esters that can be converted
back to the starting diols via hydrolysis [19-22]. In 2000, the kinetic resolution of racemic ethyl
2-benzyl-2,3-dihydroxypropanoate was described, a 1,2-diol containing an ester moiety precursor in
the synthesis of (R)-etomoxir, which is a powerful hypoglucemic reagent [23]. After testing different
biocatalysts, the lipase PS from Amano was found to catalyse the formation of (R)-1,2-diol and
(S)-acetate with high selectivity and activity. Given this result, we decided to synthesise a set of
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functionalised 1,2-diols with an ester group and perform their kinetic resolution in the presence of
different lipases, with the aim of obtaining these valuable optically active compounds.

2. Results and Discussion

2.1. Preparation of the Racemic 1,2-Diols (£)-1-6d

The racemic 1,2-diols were prepared in a three-step procedure starting from the corresponding
a-ketoesters 1-6a, as indicated in Table 1. These compounds were treated with N-tert-butyl
formaldehyde hydrazone in toluene at room temperature to yield the racemic azocompounds (£)-1-6b
with high yields (75-92%) after 24 h. For almost all the ketoesters, the reaction occurred in the absence
of any catalyst, but for ethyl benzoylformate (1a), the addition was accelerated in the presence of
the Schreiner’s thiourea (I) at 10 mol%. The resulting azocompounds are valuable synthons that can
be transformed in different compounds [24-26]. Their hydrolysis in a biphasic system Et,O/HCl
(aq) yielded the corresponding hydroxyaldehydes (+)-1-6¢ after four hours via a tautomerization
and hydrolysis process. Debt to their instability were directly reduced without purification to the
racemic 1,2-diols (£)-1-6d by treatment with a mild reductant as tetrabutylammonium borohydride
(NBugBHy4) in CH,Cl, at room temperature over two hours. Depending on the substrate structure, the
1,2-diols were obtained with yields from 41 to 57%. Attempts to improve these yields by modifying
certain reaction parameters as the hydrolysis conditions or the reducing agent were unsuccessful.

Table 1. Synthesis of racemic 1,2-diols (+)-1-6d in a three-step procedure starting from the
commercially available x-ketoesters 1-6a.

°N
o J\H

H
1-6a
Cat. l or no Cat. . 24 h
Toluene
O
n (0] (0]
R4 OR2 HCI (1.0 M), Et,0 n BusNBH,, CH,Cl, n
HO R1 OR2 R1 OR2
Ns 0°C,4h HO | rt, 2h HO
N o} OH
Bu
(+)-1-6b (+)-1-6¢ (+)-1-6d
Entry R, R, n  Yield (£)-1-6b 2 Yield (%)-1-6d 2
1 Ph Et 0 (£)-1b, b 87 (£)-1d, 47
2 Ph Me 0 (£)-2b, 80 (£)-2d, 49
3 4-CN-Ph Et 0 (+)-3b, 92 (£)-3d, 55
4 4-OMe-Ph Et 0 (£)-4b, 85 (£)-4d, 45
5 2-Thiophenyl Bt 0 (4)-5b, 90 (+)-5d, 41
6 H Et 2 (4)-6b, 85 (4)-6d, 57

2 For reaction conditions, see Materials and Methods. P Reaction performed with 10 mol% of catalyst L.

2.2. Kinetic Resolution of Racemic Diols (+)-1-6d

Once the racemic 1,2-diols were synthesized, their kinetic resolution was performed. Our initial
studies were performed using racemic ethyl 2,3-dihydroxy-2-phenylpropanoate (£)-1d as the model
substrate. The selective acetylation of this 1,2-diol (0.15 M) in toluene at 30 °C was performed in
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presence of 3.0 equivalents of vinyl acetate to ensure an irreversible acylation process. The effects of
different biocatalysts were analysed by screening several commercially available lipases, as indicated
in Table 2. For all the biocatalysts tested, the (S)-enantiomer of the 1,2-diol was acetylated, yielding
(5)-1e, whereas the (R)-1,2-diol remained unaltered. The use of immobilized Candida antarctica lipase B
(CalB) resulted in a reaction without selectivity (entry 1), achieving a 23% conversion after four hours.
When the reaction was catalysed by its isozyme A (entry 2), a more selective process was observed
(enantioselectivity, E = 12), demonstrating acylation slower than with CalB. As shown in entry 3,
Pseudomonas cepacia lipase (PSL-C) seems to be the most suitable biocatalyst for this reaction, as a
moderate E value was obtained in a process with a 32% conversion after 20 h, achieving (5)-1d with
86% ee. The use of lipases from Pseudomonas fluorescens (PSF), Burkholderia sp. (BSL), Rhizopus oryzae,
and Aspergillus oryzae led to very low enantioselectivities (E < 10, entries 4-7), with conversions varying
from 41% after 20 h with PSF, to 16% with the same duration using the lipase from Aspergillus oryzae.
The kinetic resolution catalysed by porcine pancreatic lipase (PPL) in toluene afforded a selectivity
value of 13, and a conversion close to 50% after 24 h, as shown in entry 8. The opposite lipase from
Moucor miehei was not a suitable biocatalyst for this reaction, as only a 13% of (S)-1e was obtained after
24 h in a very low selective resolution (entry 9).

Table 2. Lipase-catalysed acylation of rac-ethyl 2,3-dihydroxy-2-phenylpropanoate (1d) at different
reaction conditions.

OH OH OAc
HO O Lipase/ Solvent HO, J
oet + I OEt + ©)\"/0Et
o T (°C)/ 220 rpm
(e} (e} (0]
(£)-1d (R)-1d (S)-1e

Entry Lipase Solvent T (°O) t(h) c(%)? eeld (%)P  eele (%) € E4
1 CalB Toluene 30 4 23 11 37 2
2 CalA Toluene 30 12 32 37 77 12
3 PSL-C Toluene 30 20 32 40 86 20
4 PSF Toluene 30 20 41 35 50 4
5 BSL Toluene 30 20 38 42 69 8
6 R. oryzae Toluene 30 20 23 22 75 9
7 A. oryzae Toluene 30 20 16 11 57 4
8 PPL Toluene 30 24 48 67 73 13
9 M. miehei Toluene 20 24 13 12 78 9
10 PSL-C TBME 30 12 42 62 91 41
11 CalA TBME 30 6 41 54 79 17
12 PPL TBME 30 12 38 50 77 13
13 PSL-C 1,4-Dioxane 30 20 23 25 86 17
14 PSL-C THF 30 20 6 6 87 15
15 PSL-C DIPE 30 12 45 67 83 22
16 PSL-C TBME 15 24 43 67 91 43
17 PSL-C*© TBME 30 24 36 52 91 37
18 PSL-C f TBME 30 48 34 47 91 34

@ Conversion, ¢ = ees/(ees + eep). b Enantiomeric excesses were determined by high performance liquid
chromatography (HPLC) after acetylation in presence of acetic anhydride in pyridine. ¢ Determined by HPLC.
d Enantioselectivity (E) value, E = In[1 — ¢(1 + eep)]/In [1 — ¢(1 — eep)]. © Reaction performed with isopropenyl
acetate as acyl donor. f Reaction performed with ethyl acetate as acyl donor.

After selecting PSL-C as the best biocatalyst for the acetylation of racemic 1d, we analysed other
parameters that can affect the activity and selectivity of the biocatalyst. Thus, different organic solvents
were tested in the acylation reaction. As shown in entry 10, tert-butyl methyl ether (TBME) was the best
solvent for this process, as a good selectivity value could be achieved (E = 41) in a reaction much faster
than in toluene (34% conversion after eight hours with 91% ee for 1e). This solvent was also tested in
the CalA-catalysed acylation, promoting an increase in both the enzyme activity and selectivity (entry
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11). However, the E value remained low. The reaction catalysed by PPL in TBME afforded the chiral
acetate (S)-1e with 77% ee in a process with a 38% conversion after 12 h (entry 12). Other solvents
analysed in the acetylation catalysed by PSL-C, such as 1,4-dioxane or THEF, led to slower resolutions
and especially for the latter, whereas the enantioselectivities were around 15. The use of diisopropyl
ether (DIPE) afforded (R)-1d with 67% ee and (S)-1e with 83% ee in a process with a 45% conversion
after 12 h (entry 15).

The effect of temperature was also analysed in this kinetic resolution, performing the
PSL-C-catalysed reaction of (£)-1d at 15 °C, as shown in entry 16. Lowering the temperature had no
effect on the enzyme selectivity, whereas, as expected, the enzyme activity dropped (c = 25% after 12 h).
The use of a less reactive acyl donor, such as isopropenyl acetate (entry 17), led to a similar selectivity.
Chiral acetate (S)-1e was obtained with a 36% conversion and 91% ee after 16 h. When ethyl acetate
was used as acyl donor (entry 17), a slower kinetic resolution was achieved, as 48 h were required to
obtain a 34% yield of (5)-1e with 91% ee (entry 18).

The recycling of the PSL-C was studied in the selective acetylation of (£)-1e with vinyl acetate
in TBME at 30 °C. After 20 h, the biocatalyst was filtered, washed with TBME, and used again in a
new reaction cycle. As shown in Figure 1, this biocatalyst could perform the selective acylation of
the racemic diol for five cycles while maintaining its activity and selectivity. For the sixth reaction,
a significant drop in the enantioselectivity of the process was observed (E = 27). For the seventh
reaction, this drop was accompanied by an appreciable loss in enzymatic conversion.
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Figure 1. Effect of the PSL-C recycling on the conversion (blue line) and on the enantioselectivity (red
bar) in the catalysed kinetic resolution of (£)-1d in tert-butyl methyl ether (TBME) at 30 °C using vinyl
acetate as he acyl donor.

After the optimized conditions were set up for the kinetic resolution of racemic ethyl
2,3-dihydroxy-2-phenylpropanoate, using PSL-C and CalA in TBME at 30 °C and vinyl acetate
as acyl donor, the scope of the reaction using different aromatic 1,2-diols was studied (Table 3).
For all the substrates, (S)-acetates 2—6e were the obtained products. The use of PSL-C led to higher
enatioselectivities in all the aromatic and the heteroaromatic substrates (2—-5a), whereas CalA showed
higher activity. Thus, the enzymatic acylation of racemic methyl 2,3-dihydroxy-2-phenylpropanoate
(2d) catalysed by PSL-C occurred with the same selectivity as for the ethyl analogue 1d (E = 42, entry
1) and with a higher conversion, achieving a 41% conversion after 12 h. When the acylation was
catalysed by CalA (entry 2) (S)-2e was obtained with 80% ee and a 42% conversion after eight hours
(E = 16). The p-cyano derivative (+)-3c was a good substrate for both catalysts (entries 3 and 4).
When using PSL-C, a 44% of (5)-3e with 90% ee was obtained after 12 h, in a resolution with a good
enantioselectivity value (E = 40), whereas the resolution catalysed by CalA led to a 47% conversion
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after eight hours and a good selectivity (E = 30). The presence of an electron-donating group in the
aromatic ring of the diol seemed to have a negative effect on both the activity (41% of (S)-4e after
24 h) and the selectivity (E = 32) of PSL-C (entry 3). This substrate was tested with CalA, but a low
selectivity was observed (E = 11), in a kinetic resolution with a 36% conversion after 16 h, as shown
in entry 6. A heteroaromatic 1,2-diol as (£)-5d was successfully resolved by PSL-C in MTBE. After
24 h, a 45% of (5)-5e with 88% ee was achieved in a process with good selectivity, as shown in entry 7.
The use of CalA led to a 38% conversion after 16 h and moderate selectivity (E = 17, entry 8).

Table 3. PSL-C catalysed kinetic resolution of racemic diols 2-6d in tert-butyl methyl ether (TBME) at
30 °C using vinyl acetate as the acyl donor.

OH OH OAc
HO o) .\ i PSL-C/ MTBE HO, (e} . HO, = 0]
Ri OR, o 30 °C/ 220 rpm R; OR, R 1>\MJ\OR2
n t (h) n n
(+)-2-6d (R)-2-6d (S)-2-6e
Entry Substrate Lipase Ry R, n t(h) c(%)? ee 2-6d (%) P ee 2-6e (%) © Ed
1 (£)-2d PSL-C Ph Me 0 12 41 63 91 42
2 (£)-2d CalA Ph Me 0 8 42 59 80 16
3 (+)-3d PSL-C 4-CN-Ph Et 0 12 44 71 90 40
4 (£)-3d CalA 4-CN-Ph Et 0 8 47 77 86 30
5 (+)-4d PSL-C 4-OMe-Ph Et 0 24 41 62 89 32
6 (+)-4d CalA 4-OMe-Ph Et 0 16 36 42 72 11
7 (£)-5d PSL-C  2-Thiophenyl Et 0 24 45 73 88 33
8 (£)-5d CalA 2-Thiophenyl  Et 0 16 38 47 83 17
9 (£)-6d  PSL-C Ph Et 2 2 45 50 62 7
10 (+)-6d CalA Ph Et 2 6 17 17 82 12
11¢ (£)-6d PSL-C Ph Et 2 6 15 14 80 10
12f (£)-6d PSL-C Ph Et 2 4 17 18 86 16

2 Conversion, ¢ = ees/(ees + eep). ° Enantiomeric excesses were determined by HPLC after acetylation in presence of
acetic anhydride in pyridine. ¢ Determined by HPLC. ¢ Enantioselectivity (E) value, E = In[1 — c(1 + eep)]/In [1 —
c(1 — eep)]. © Reaction carried out with ethyl acetate as acyl donor. f Reaction carried out at 10 °C.

Regarding the aliphatic diol (4)-6d, in which the stereogenic center presents an aliphatic
substituent, the enzymatic acylation in TBME at 30 °C using PSL-C afforded a very low
enantioselectivity value (E =7) in a very fast resolution, achieving a 45% of (S)-6e after 2 h. In view
of this result, the isozyme A from Candida antarctica was tested, leading to a slower (c = 17% after
6 h), but slightly more selective process (E = 12) than with PSL-C (see entry 10). In order to improve
the reaction selectivity, the PSL-C-catalysed resolutions were carried out using ethyl acetate as a less
reactive acyl donor. After 6 h, a 15% of (S)-6e was obtained in a process with a low enantioselectivity
(E = 10). Finally, the kinetic resolution in presence of vinyl acetate was conducted at 10 °C. After 4 h,
a 17% of diol 6d was converted into the acetate (S)-6e with 86% ee, but the E value was only increased
to 16 (entry 12), indicating that this substrate was not appropriate for the biocatalysed acylation.

3. Materials and Methods

Unless otherwise noted, analytical grade solvents and commercially available reagents were
used without further purification. Formaldehyde tert-butyl hydrazone [27] and organocatalyst
I [28] were synthesized according to the literature. Racemic azocompounds (£)-1-6b [24,26] and
1,2-diols (£)-1d and (+£)-4,5d [29] exhibited the same physical and spectral properties as described
in the bibliography and the nuclear magnetic resonance (NMR) data of the 1,2-diols are shown
in the Supplementary Information. Pseudomonas cepacia lipase PSL-C (1638 U/g) and lipases from
Pseudomonas fluorescens (>160 U/mg), Rhizopus oryzae (>30 U/mg), Aspergillus oryzae (ca. 50 U/mg),
Burkholderia sp. (>160 U/mg), porcine pancreatic (>20,000 U/mg), and Mucor miehei (>4000 U/mg)
were purchased from Sigma-Aldrich (Saint Louis, MO, USA). Candida antarctica lipase type B (CalB,
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Novozyme 435, 7300 propyl laureate units per gram) was obtained from Novozymes (Bagsvaerd,
Denmark). Candida antarctica lipase A (CalA) was obtained from Codexis (Redwood City, CA, USA).

NMR spectra were recorded in CDCl3 ['H-NMR (300 MHz); 3C-NMR (75.4 MHz)] with
the solvent peak used as the internal reference (7.26 and 77.0 ppm for 'H and '3C, respectively).
High-resolution mass spectrometry (HRMS) analyses were performed with an Orbitrap ELITE
instrument (Waltham, ThermoFisher, MA, USA). Column chromatography was performed on silica
gel (Merck Kieselgel 60, Kenilworth, NJ, USA). Analytical thin layer chromatography (TLC) was
performed on aluminum backed plates (1.5 x 5.0 cm) precoated (0.25 mm) with silica gel (Merck,
Silica Gel 60 F254, Kenilworth, NJ, USA). The compounds were visualized by exposure to UV light
or by dipping the plates into solutions of KMnOy or vainilline stains followed by heating. HPLC
analyses were performed on a Waters 2695 Instrument (Milford, MA, USA), equipped with a Waters
996 Photodiode Array Detector (Milford, MA, USA). To determine the enantiomeric excesses of diols
(R)-1-6d and acetates (S)-1-6e, the following columns from Daicel (Tokyo, Japan) were employed:
Chiralcel OD (25 x 0.46 cm) and Chiralpak AD-H (25 x 0.46 cm). The optical purity of the diols
was measured after their derivatization to the corresponding acetates using acetic anhydride and
pyridine in CH,Cl,. HPLC conditions and retention times are summarized in Table S1. The absolute
configuration of the 1,2-diols (R)-1-6d and the acetates (S)-1-6e were established by comparison with
the described values of the specific rotation for (R)-ethyl 2-benzyl-2,3-dihydroxypropanoate [23].

3.1. General Procedure for the Synthesis of Racemic Azocompounds (£)-1-6b

The corresponding «-ketoester 1-6a (5.0 mmol) was dissolved at room temperature in toluene
(8.0mL) and N-tert-butyl formaldehyde hydrazone (10 mmol) was added. For the ethyl benzoylformate,
catalyst I (0.5 mmol, 10 mol%) was added prior to the hydrazone. Reactions were stirred at room
temperature for 24 h until consumption of the starting material (TLC). The solvent was eliminated
under reduced pressure and the obtained crudes were purified by column chromatography using
toluene/EtOAc mixtures as the eluent in order to obtain the corresponding racemic azocompounds
(£)-1-6b with yields between 80 and 92%.

3.2. General Preparation of the Racemic 1,2-diols (+)-1-6d Starting from Azocompounds (+)-1-6b

The corresponding azocompound (£)-1-6b (4.0 mmol) was dissolved in Et,O (35 mL), cooled
to 0 °C, and HCI 6.0 M (15 mL) was added. The reaction mixture was allowed to warm to room
temperature and was stirred for 4 h, and then extracted with Et;O (2 x 15 mL) and CH,ClI, (2 x 15 mL).
The organic layers were dried over Na;SOy4 and the solvent was eliminated in vacuo to create the crude
a-hydroxyaldehydes (£)-1-6¢, which were further reduced without purification. Tetrabutylamonium
borohydride (560 mg, 2.0 mmol) was added to a solution of the obtained aldehyde in CH,Cl, (15 mL)
and the mixture was stirred at room temperature for 2 h. After evaporation of the organic solvent,
the crude was purified by column chromatography using CH,Cl, /MeOH 97:3 as the eluent, yielding
the racemic 1,2-diols ()-1-6d (Figure 2).

(£)-Ethyl 2,3-dihydroxy-2-phenylpropanoate, (+)-1d: Yellow pale oil (395 mg, yield 47%).
Spectroscopic data consistent with the literature [29].

(£)-Methyl 2,3-dihydroxy-2-phenylpropanoate, (+)-2d: Yellow pale oil (384 mg, yield 49%). TH-NMR
(300 MHz, CDCl3): 6 (ppm) 7.53 (d, 2H, ] = 8.0 Hz, Hy), 7.33-7.24 (m, 3H, H¢ and Hg), 4.18 (d, 1H,
J =10.8 Hz, H3), 4.13 (bs, 1H, OH), 3.77 (s, 3H, H;), 3.68 (d, 1H, ] = 10.8 Hz, Hy/), 2.80 (bs, 1H, OH).
13C-NMR (75.4 MHz, CDCl3): § (ppm) 174.2 (Cy), 138.0 (Cs), 128.5 (C7), 128.2 (Cg), 125.3 (Cg), 79.7 (Cy),
68.3 (C3), 53.5 (C1). HRMS: m/z caled. for C1gH12NaO4 (M + Na™): 219.02626; found: 219.02628.

(£)-Ethyl 2-(4-cyanophenyl)-2,3-dihydroxypropanoate, (£)-3d: Colorless oil (517 mg, yield 55%).
'H-NMR (300 MHz, CDCl3): & (ppm) 7.69 (d, 2H, ] = 8.5 Hz, Hg), 7.59 (d, 2H, ] = 8.5 Hz, Hy), 4.29-4.21
(m, 2H, Hj), 4.15 (d, 1H, ] = 11.4 Hz, Hs), 4.07 (bs, 1H, OH), 3.66 (d, 1H, ] = 11.4 Hz, Hy), 3.09 (bs,
1H, OH), 1.25 (t, 3H, ] = 7.1 Hz, H;). 3C-NMR (75.4 MHz, CDCl3): § (ppm) 172.6 (C3), 143.2 (C),
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132.2 (Cg), 126.6 (C), 118.5 (C19), 112.3 (Cy), 79.4 (Cy), 68.2 (Cs), 63.3 (Cy), 14.0 (C1). HRMS: m/z calcd.
for C1H;3NNaOy (M + Na*): 258.0739; found: 258.0737.

(£)-Ethyl 2,3-dihydroxy-2-(4-methoxyphenyl)propanoate, (£)-4d: Colorless o0il (432 mg, yield 45%).
Spectroscopic data consistent with the literature [29].

(£)-Ethyl 2,3-dihydroxy-2-(tiophen-2-yl)propanoate, (£)-5d: White solid. m.p.: 76-78 °C (354 mg,
yield 41%). Spectroscopic data consistent with the literature [29].

(£)-Ethyl 2-hydroxy-2-hydroxymethyl-4-phenylbutanoate, (£)-6d: Colorless oil (384 mg, yield 57%)
TH-NMR (300 MHz, CDCl3): § (ppm) 7.20~7.12 (m, 2H, Hyy), 7.10-7.07 (m, 3H, Hg and Hy;), 4.15 (q,
2H, ] = 7.0 Hz, Hy), 3.98 (s, OH), 3.73 (d, 1H, ] = 11.2 Hz, Hs), 3.56 (d, 1H, ] = 11.2 Hz, Hy), 2.91 (s,
OH), 2.78-2.68 (m, 1H, Hy), 2.43-2.33 (m, 1H, Hy/), 1.98-1.78 (m, 2H, Hy), 1.22 (t, 3H, ] = 7.0 Hz, H;).
I3C-NMR (75.4 MHz, CDCl3): § (ppm) 175.0 (C3), 141.2 (Cg), 128.5 (C19), 128.4 (Co), 126.0 (C11), 78.3
(C4), 68.0 (C5), 62.4 (Cz), 36.6 (C6), 29.5 (C7), 14.2 (Cl) HRMS: m/z calced. for C13H18Na04 (M + Na+):
261.1102; found: 261.1097.

(¥)-2d (£)-3d (£)-6d

Figure 2. Structure and NMR assignation of the synthesized racemic 1,2-diols (+)-2,3d and 6d.

3.3. General Synthesis of the Racemic Acetates (+)-1-6e

To a solution of the corresponding racemic 1,2-diol (£)-1-6d (0.2 mmol) in CH,Cl, (2.0 mL),
pyridine (18 uL, 0.22 mmol) and acetic anhydride (20 puL, 0.22 mmol) were added at room temperature.
The reaction was stirred until disappearance of the starting material (TLC using hexane/EtOAc 7:3 as
the eluent). The crude reaction was washed with HCI 1.0 N (2 x 2.0 mL), dried with Na,SOy, and the
solvent was removed under reduced pressure to yield the corresponding racemic acetates (£)-1-6e,
which were obtained after purification by column chromatography using n-hexane/EtOAc 7:3 as
eluent (Figure 3).

(£)-Ethyl 3-acetoxy-2-hydroxy-2-phenylpropanoate, (£)-1le: Colorless oil (45.8 mg, yield 91%).
'H-NMR (300 MHz, CDCl3): § (ppm) 7.57-7.54 (m, 2H, Hyp), 7.31-7.27 (m, 3H, Hg and Hyy), 4.68-4.64
(d, 1H, ] = 11.3 Hz, Hs), 4.30-4.15 (m, 3H, H, and Hgy/), 3.84 (bs, 1H, OH), 2.00 (s, 3H, Hy), 1.22 (4,
3H, ] = 7.1 Hz, H;); 3*C-NMR (75.4 MHz, CDCl3): § (ppm) 172.8 (Cs) 170.6 (C3), 137.6 (Cg), 129.3
(Clo), 128.5 (Cg), 125.6 (C11), 79.2 (C4), 68.8 (Cz), 62.9 (C5), 20.7 (C7), 14.1 (C]) HRMS: m/z calcd. for
C13H16NaOs (M + Na*): 275.0892; found: 275.0890.

(£)-Methyl 3-acetoxy-2-hydroxy-2-phenylpropanoate, (4)-2e: Colorless oil (44.2 mg, yield 93%).
H-NMR (300 MHz, CDCl3): 6 (ppm) & (ppm) 7.55 (d, 2H, | = 8.2 Hz, Hy), 7.31-7.27 (m, 3H, Hg and
Hyp), 4.64 (d, 1H, ] = 11.2 Hz, Hy), 4.31 (d, 1H, ] = 11.2 Hz, Hy), 3.77 (s, 3H, Hy), 2.54 (bs, 1H, OH), 2.01
(s, 3H, Hg). 3C-NMR (75.4 MHz, CDCl3):  (ppm) 173.2 (Cs), 170.6 (Cy), 137.5 (C7), 128.7 (Cy), 128.5
(Cg), 125.6 (Clo), 77.6 (C3), 68.8 (C4), 53.5 (Cl), 20.8 (Cé) HRMS: m/z calcd. for C12H14Na05 (M + Na+):
261.0373; found: 261.0377.

(£)-Ethyl 3-acetoxy-2-(4-cyanophenyl)-2-hydroxypropanoate, (£)-3e: Colorless oil (48.7 mg, yield
88%). 'H-NMR (300 MHz, CDCl3): § (ppm) 7.74-7.71 (d, 2H, ] = 8.6 Hz, Hy), 7.62-7.59 (d, 2H,
J=8.6 Hz, Hy), 4.61 (d, 1H, ] = 11.3 Hz, Hs), 4.31-4.17 (m, 3H, H, and Hy), 4.01 (bs, 1H, OH), 2.00
(s, 3H, Hy), 1.23 (t, 3H, ] = 7.1 Hz, H;). 3C-NMR (75.4 MHz, CDCl3): § (ppm) 171.7 (C¢), 170.4 (C3),
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141.0 (Cg), 132.2 (Cqg), 126.8 (Cy), 119.0 (Cy2), 112.5 (C11), 77.3 (Cy), 68.5 (Cs), 63.5 (Cy), 20.7 (Cy), 14.0
(C1).HRMS: m/z caled. for C14H15NNaOs (M + Na™): 300.0842; found: 300.0849.

(£)-Ethyl 3-acetoxy-2-hydroxy-2-(4-methoxyphenyl)propanoate, (1-)-4e: Colorless oil (50.8 mg, yield
90%). 'H-NMR (300 MHz, CDCl3): § (ppm) 7.47 (d, 2H, ] = 8.1 Hz, Hy), 6.91 (d, 2H, ] = 8.1 Hz, Hyy),
4.58 (d, 1H, | = 11.0 Hz, Hs), 4.30-4.15 (m, 3H, H, and Hy), 3.97 (bs, 1H, OH), 2.03 (s, 3H, Hy), 1.30 (t,
3H, ] = 7.0 Hz, Hy). 3C-NMR (75.4 MHz, CDCl3): § (ppm) 171.8 (Cg), 169.7 (C3), 158.0 (C11), 131.1 (Cg),
127.2 (Cy), 111.0 (Cqp), 79.3 (Cy4), 68.0 (Cs), 63.0 (C3), 57.2 (C12), 21.2 (Cy), 14.0 (C1). HRMS: m/z caled.
for C14H1304 (M*) 282.1103; found: 282.1098.

(£)-Ethyl 3-acetoxy-2-hydroxy-2-(tiophen-2-yl)propanoate, (£)-5e: Yellow pale oil (41.4 mg, yield
81%). 'H-NMR (300 MHz, CDCl3): & (ppm) 7.25 (dd, 1H, ] = 5.1, 1.3 Hz, Hyy), 7.10 (dd, 1H, ] = 3.7,
1.3 Hz, Hy), 6.98 (dd, 1H, | = 5.1, 3.7 Hz, Hy), 4.56 (d, 1H, ] = 11.1 Hz, Hs), 4.33-4.19 (m, 3H, H, and
Hy), 2.91 (bs, 1H, OH), 2.00 (s, 3H, Hy), 1.25 (t, 3H, ] = 7.0 Hz, H1). 3C-NMR (75.4 MHz, CDCl3): &
(ppm) 171.8 (Cs), 170.3 (C3), 141.7 (Cg), 127.2 (Cq1), 125.9 (Cqp), 125.0 (Co), 76.4 (Cy4), 69.2 (Cs), 63.2 (Cp),
20.7 (Cy), 13.9 (Cq). HRMS: calcd. for C11H14NaO4S (M + Na*): 281.0456; found: 281.0454.

(£)-Ethyl 2-(acetoxymethyl)-2-hydroxy-4-phenylbutanoate, (£)-6e: Colorless oil (47.6 mg, yield 85%).
'H-NMR (300 MHz, CDCl3): § (ppm) 7.21-7.18 (m, 2H, Hyy), 7.13-7.07 (m, 3H, Hy; and Hy3), 4.19-4.08
(m 4H, Hy, Hs and Hg), 3.51 (bs, 1H, OH), 2.79-2.70 (m, 1H, Hg), 2.45-2.35 (m, 1H, Hg), 1.99-1.90 (m,
5H, Hy and Hy), 1.21 (t, 3H, ] = 7.1 Hz, H;). '3C-NMR (75.4 MHz, CDCl;): § (ppm) 173.9 (Cg), 170.5
(C3), 141.0 (Cqp), 128.4 (C11), 126.1 (C12), 125.7 (Cy3), 76.0 (Cy), 68.9 (Cs), 62.4 (Cy), 36.8 (Cg), 29.3 (Co),
20.7 (Cy), 14.2 (Cy). HRMS: m/z caled. for C15HNaOs (M*): 303.1204; found: 303.1203.

Ho. Jss '
9
o 8 f 3 0\2/1
\s o

1

(1)-4e ()-5e

Figure 3. Structure and NMR assignation of the synthesized racemic acetates (1-)-1-6e.

3.4. General Procedure for the Biocatalyzed Acylation of the Racemic 1,2-diols (£)-1-6d

Unless otherwise stated, vinyl acetate (0.9 mmol) was added to a solution of the racemic diol
(£)-1-6d (0.3 mmol) in TBME (2.0 mL) containing the PSL-C (30 mg) and Na;COs (0.25 mmol).
Reactions were stirred at 30 °C at 220 rpm and monitored by TLC using n-hexane/EtOAc 7:3 as the
eluent. Once finished, the lipase was filtered, washed with TBME (2 x 2 mL), and the solvent was
evaporated under reduced pressure. The crude mixture was purified by column chromatography
using n-hexane/EtOAc 7:3 as the eluent in order to obtain the (R)-1,2-diols 1-6d and the (S)-acetates
1-6e, which were analysed by HPLC at the conditions described in Table S1 for the determination
of the optical purities. (R)-1d: 37.8 mg, 60% yield; [o]3 = —2.9 (c = 0.6, CHCl3, 47% ee); (S)-1e: 23.0
mg, 32% yield; [a]3 = +10.8 (c = 1.0, CHCl3, 92% ce). (R)-2d: 33.8 mg, 57% yield; [«]3 = —3.8 (c = 0.5,
CHCl3, 55% ee); (S)-2e: 24.1 mg, 35% yield; [oc]2D1 =+12.1 (c = 0.8, CHClI3, 92% ee). (R)-3d: 50.5 mg, 71%
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yield; [a]3 = —4.2 (c = 1.0, CHClg, 32% ee); (S)-3e: 19.4 mg, 22% yield; [«]4} = +9.8 (c = 1.2, CHCl3, 93%
ee). (R)-4d: 51.6 mg, 72% yield; [oc]ZD1 = —1.7 (c = 0.4, CHCI3, 30% ee); (S)-4e: 16.9 mg, 20% yield; [oc]le =
+6.8 (c = 1.2, CHCl3, 92% ee). (R)-5d: 38.1 mg, 59% yield; [oc]lz)1 = —2.7 (¢ = 0.75, CHCl3, 50% ee); (S)-5e:
23.2 mg, 30% yield; [«]3 = +10.2 (c = 1.05, CHCl3, 90% ee). (R)-6d: 34.0 mg, 48% yield; [«]3 = —3.8
(c=0.5, CHCl3, 50% ee); and (S)-6e: 33.6 mg, 40% yield, [oc]zD1 =+5.6 (c = 1.2, CHCl3, 62% ee).

4. Conclusions

A set of aromatic and non-aromatic 1,2-diols containing an ester moiety were prepared in a
three-step procedure with moderate yields from the corresponding «-ketoesters. These functionalized
racemic 1,2-diols were tested in lipase-catalysed acetylations. After optimization of the reaction
conditions, we achieved good activities and selectivities in the resolution of aromatic 1,2-diols
by employing the Pseudomonas cepacia lipase (PSL-C) in tert-butyl methyl ether as the solvent.
This biocatalyst showed a higher selectivity for the preparation of chiral (R)-1,2-diols and (S)-acetates
containing unsubstituted aromatic rings or presenting electron-withdrawing groups, whereas the
reactions were slower and slightly less selective for aromatic substrates with electron-donating groups
or heteroaromatic systems. PSL-C could be recycled for five reactions without appreciable loss in its
biocatalytic properties, thus resulting in a promising biocatalyst for the preparation of optically active
1,2-diols.

Supplementary Materials: The following are available online at http:/ /www.mdpi.com/1420-3049/23/7/1585/
s1, Table S1: HPLC analyses; and assignment of 1H and 13C-NMR of synthesized compounds.
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