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Abstract: Avian influenza virus (AIV) can directly cross species barriers and infect humans with high
fatality. Using machine learning methods, the present paper scores the amino acid mutations and
predicts interspecies transmission. Initially, 183 signature positions in 11 viral proteins were screened
by the scores of five amino acid factors and their random forest rankings. The most important
amino acid factor (Factor 3) and the minimal range of signature positions (50 amino acid residues)
were explored by a supporting vector machine (the highest-performing classifier among four tested
classifiers). Based on these results, the avian-to-human transmission of AIVs was analyzed and a
prediction model was constructed for virology applications. The distributions of human-origin AIVs
suggested that three molecular patterns of interspecies transmission emerge in nature. The novel
findings of this paper provide important clues for future epidemic surveillance.

Keywords: avian influenza virus; interspecies transmission; amino acid mutation; machine learning

1. Introduction

Wild birds are regarded as the natural reservoir of avian influenza virus (AIV) [1].
Interspecies transmission might have been enabled long ago, when wild birds were domesticated by
humans. A highly pathogenic subtype of AIV, avian influenza H5N1, originated in Asia in 1996 [2].
Human-origin H5N1 virus was first isolated from clinical samples in 1997, confirming that the H5N1
virus can directly cross species barriers and fatally infect the respiratory system [3,4]. Human infection
by H5N1 has been continuously reported since 2003, attracting the attention of both researchers
and wider society [5–8]. Moreover, viral subtypes other than H5N1 can infect humans by direct
interspecies transmission. Two infectious cases of H9N2 virus have been reported; one in 1999,
the other in 2003 [9,10]. H7N7 virus infected farmers in the Netherlands in 2003 [11], and H7N9 has
continuously infected China’s population since 2013 [12,13].

Interspecies transmission of AIV from its natural reservoir occurs in three steps: (1) the residence
of AIVs in their wild animal hosts; (2) AIV contact with humans and direct infection with low
probability; and (3) adaptation of AIVs to their new host and efficient human-to-human transmission
thereafter. Thus far, AIV has not progressed beyond step 2, which represents initial adaption to the
new host and low efficiency of transmission among the new host. The subtype viruses that can cross
the species barrier and cause epidemics should be identified. Approximately twenty years has passed
since human-originated AIV was first isolated from human samples in 1997. During this period,
vast amounts of genomic data have accumulated in public databases. Therefore, after screening the
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important amino acid sites in the 11 viral proteins, the AIV risk can be predicted by machine learning
methods and other mathematic models in the field of bioinformatics [14–18].

AIV transmission relies on amino acid mutations [19–21]. In a previous study, five amino acid
factors (AA factors) summarized from 491 highly redundant amino acid attributes were associated
with specific physiochemical amino acid properties, namely, polarity, secondary structure, molecular
volume, codon diversity, and electrostatic charge [22]. In this paper, we use five AA factors to transform
viral proteins and use the random forest (RF) method to select features from high-dimensional
protein data and score them by their contributions to the data category. After ranking and screening
the positions containing important mutation information, the classifier can predict the interspecies
transmission phenotypes.

Two prediction models of AIVs have been published in the literature [23–25]. However, both of
these models lack the protein data of hemagglutinin (HA) and neuraminidase (NA), and the biological
meanings of the features were not clarified. To construct a more robust and meaningful model,
we revise these models and screen the signature amino acid positions in HA, NA, and nine other viral
proteins. To this end, we first identify 183 signature mutation positions by RF scoring, then predict
AIV occurrence by four popular machine learning methods. Using the most effective classifier, we seek
the important amino acid factors and the minimal range of signature positions. The study results will
benefit epidemic surveillance and future studies on interspecies AIV transmission.

2. Results

2.1. Dataset

The cleaned dataset contained 869 high-quality AIV strains: 440 avian-origin AIVs
(negative samples; H1–H14, H16 subtypes) and 429 human-origin AIVs (positive samples; H5N1,
H5N6, H7N3, H7N7, H7N9, and H9N2 subtypes). The information related to these strains is
summarized in Table S1.

2.2. Signature Amino Acid Residues

The importance score at each position in the 11 viral proteins was computed by RF. As shown
in Figure 1a, the slope of the curve suddenly changes at an importance score of 9. Therefore, 9 was
selected as the cutoff score, providing 183 signature positions for further machine learning.
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Figure 1. Importance score curve and the performances of k-nearest neighbor (KNN), support vector
machine (SVM), naïve Bayes (NB), and random forest (RF) classifiers. (a) The ranked scores were
calculated from five AA factors using the random forest method. The x and y coordinates denote the
total length of the 11 protein alignments and the importance scores, respectively. The cutoff value (9)
is indicated by the thin horizontal line. (b) Performances of the four classifiers were evaluated from
100 repeats of 10-fold cross-validation. The area under the curve (AUC) ranges from 0 to 1.
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As shown in Table 1, the HA protein contained the largest number of signature positions (65 amino
acid residues), suggesting that HA is very important for interspecies transmission of AIVs. HA is
mainly involved in receptor-binding and fusion activities. Positions HA102–HA290 (Table 1) locate in
or close to the region of host receptor binding [26,27], and H163 is reportedly related to the specificity
of receptor binding [28]. HA91, HA96, HA328, HA377, and HA397 locate at or near the fusion
peptide [29], which triggers fusion activity in acidic environments and favors transmission to humans.
The four HA327 positions located in the cleavage site are important virulence sites [30].

NA protein contains 44 signature positions (Table 1). The three NA52s located in the stalk deletion
region are related to the virulence and pathogenesis of H5N1 influenza A virus [31]. NA19–NA37
located in the N-terminal are associated with structural stability and enzyme activity [32]. The PB2 627
position has been implicated in increased replication or virulence of AIVs in mammals [33]. PB1 14,
located in the binding region of polymerase, is related to viral genome replication [34]. M2 97, which is
affiliated with viral particle ensembles [35], was also screened. NEP 14, NP 373, and NP 377 are
reportedly involved in intracellular transport of viral proteins [36,37].

Table 1. Scores for the 183 signature amino acids of avian influenza viruses (AIVs).

Num Pro 1 Pos 2 Score Num Pro Pos Score Num Pro Pos Score

1 PB2 389 11.95 62 HA 176 13.61 123 NA 65 10.98
2 PB2 478 9.81 63 HA 179 10.08 124 NA 66 9.93
3 PB2 598 17.36 64 HA 185 14.73 125 NA 72 10.96
4 PB2 627 9.83 65 HA 189 14.55 126 NA 79 11.38
5 PB2 648 15.55 66 HA 207 9.49 127 NA 85 9.57
6 PB2 676 9.94 67 HA 211 11.15 128 NA 88 10.13
7 PB1 14 19.16 68 HA 213 11.40 129 NA 100 11.34
8 PB1 48 18.13 69 HA 216 12.17 130 NA 187 10.48
9 PB1 113 18.58 70 HA 221 10.57 131 NA 205 9.62

10 PB1 149 11.09 71 HA 222 9.02 132 NA 233 10.13
11 PB1 257 13.74 72 HA 240 17.36 133 NA 249 9.05
12 PB1 383 12.14 73 HA 251 16.26 134 NA 257 17.24
13 PB1 384 9.34 74 HA 266 10.96 135 NA 265 9.29
14 PB1 387 11.50 75 HA 273 12.53 136 NA 285 10.46
15 PB1 525 9.95 76 HA 274 9.23 137 NA 287 10.65
16 PB1 573 13.38 77 HA 275 9.38 138 NA 288 10.28
17 PB1 628 9.59 78 HA 289 10.36 139 NA 333 10.07
18 PB1-F2 4 9.38 79 HA 290 11.74 140 NA 338 9.02
19 PB1-F2 26 9.24 80 HA 297 10.48 141 NA 347 9.82
20 PB1-F2 48 13.50 81 HA 315 11.98 142 NA 359 10.08
21 PB1-F2 50 11.81 82 HA 323 13.04 143 NA 368 11.05
22 PB1-F2 57 16.85 83 HA 327 12.84 144 NA 369 10.82
23 PB1-F2 77 11.29 84 HA 327 16.23 145 NA 399 11.71
24 PA 37 18.74 85 HA 327 19.25 146 NA 415 9.43
25 PA 61 12.34 86 HA 327 10.41 147 NA 416 13.74
26 PA 63 9.70 87 HA 328 16.24 148 NA 418 9.09
27 PA 129 9.34 88 HA 377 13.91 149 NA 445 12.13
28 PA 337 11.25 89 HA 397 16.18 150 NA 468 9.66
29 PA 356 12.77 90 HA 407 9.49 151 M1 15 9.79
30 PA 367 14.56 91 HA 431 13.52 152 M1 27 12.16
31 PA 405 10.01 92 HA 492 9.49 153 M1 37 14.66
32 PA 554 14.67 93 HA 495 11.15 154 M1 46 14.96
33 PA 607 11.97 94 HA 496 10.62 155 M1 101 13.28
34 PA 684 12.20 95 HA 500 11.88 156 M1 140 12.40
35 PA 712 9.25 96 HA 503 12.76 157 M1 142 11.31
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Table 1. Cont.

Num Pro 1 Pos 2 Score Num Pro Pos Score Num Pro Pos Score

36 HA 40 9.42 97 HA 526 11.91 158 M1 166 17.35
37 HA 42 9.21 98 HA 530 11.26 159 M1 205 11.09
38 HA 45 11.92 99 HA 531 11.67 160 M1 219 13.18
39 HA 46 16.27 100 HA 534 12.77 161 M1 224 23.52
40 HA 53 9.87 101 NP 34 17.45 162 M1 232 14.80
41 HA 57 9.42 102 NP 77 12.39 163 M1 242 19.59
42 HA 65 10.99 103 NP 105 10.61 164 M1 248 11.25
43 HA 66 11.13 104 NP 373 14.73 165 M2 13 13.66
44 HA 79 12.71 105 NP 377 21.88 166 M2 21 10.53
45 HA 81 12.03 106 NP 482 19.71 167 M2 97 15.79
46 HA 84 10.27 107 NA 19 9.20 168 NS1 77 10.59
47 HA 91 17.33 108 NA 23 11.02 169 NS1 80 12.48
48 HA 96 14.98 109 NA 37 9.57 170 NS1 81 12.55
49 HA 102 9.04 110 NA 41 11.30 171 NS1 82 12.01
50 HA 112 12.67 111 NA 42 9.33 172 NS1 83 14.52
51 HA 114 19.46 112 NA 47 10.12 173 NS1 84 10.21
52 HA 115 9.66 113 NA 48 11.23 174 NS1 172 14.21
53 HA 121 10.42 114 NA 49 10.85 175 NS1 179 11.18
54 HA 124 10.28 115 NA 50 9.14 176 NS1 197 9.32
55 HA 131 12.31 116 NA 52 12.38 177 NS1 212 14.19
56 HA 142 12.01 117 NA 52 10.34 178 NEP 14 13.01
57 HA 163 10.07 118 NA 52 9.75 179 NEP 22 15.38
58 HA 164 9.03 119 NA 53 9.03 180 NEP 40 10.28
59 HA 167 14.22 120 NA 58 11.05 181 NEP 60 9.17
60 HA 173 12.81 121 NA 60 9.34 182 NEP 100 10.58
61 HA 174 10.16 122 NA 63 9.44 183 NEP 115 11.10

1 Viral protein; 2 Position of amino acid residue as H3 subtype numbering.

The AA factors and RF method screened 183 signature positions, some of which are reported to be
associated with the mechanism of interspecies transmission. All of the residues were useful, not only
for constructing the prediction model but also for further investigating the molecular mechanisms
underlying the interspecies transmission of AIVs.

2.3. Performance of the Prediction Model

The performances of the four classifiers are presented as boxplots in Figure 1b. The results were
obtained from 100 repeats of 10-fold cross-validation. The area under the curve (AUC) medians in the
support vector machine (SVM) and RF classifiers were almost 1. The AUC was clearly lower in the
k-nearest neighbor (KNN) classifier, possibly because of the nonlinear prediction rules. Although the
naïve Bayes (NB) classifier achieved a similar AUC score to the SVM classifier, its performance was
poorer and less stable than those of the SVM and RF classifiers. Considering the complexity of the
computation, the SVM classifier was selected as the optimal machine learning model for predicting
avian-to-human transmission of AIVs.

2.4. Contributions of the AA Factors

The AIV strains were characterized by five AA factors. To understand the mechanism of
interspecies transmission, the performance of the SVM classifier was calculated for all combination
patterns of these AA factors. The result reveals the importance of the five AA factors. Most of the
stable performances of the SVM classifier were contributed by AA Factor 3 or AA Factor 4 (Figure 2a).
Notably, the median AUC values were almost 1 and remained stable under AA Factor 3 or AA Factor
4 alone. The SVM classifiers were unstable under AA Factor 1, AA Factor 2, and AA Factor 5 alone.
Moreover, AA Factor 3 yielded a slightly better result than AA Factor 4. These results indicate an
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important role for AA Factor 3 in the avian-to-human transmission of AIVs. Therefore, AA Factor 3
was employed in further analysis.
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Figure 2. Contributions of AA factors and different mutation sets. (a) Performance of SVM classifier
for different combinations of the five AA factors. The x and y coordinates denote the 31 combination
patterns and the AUC values (from 0 to 1), respectively. Along the x axis, ‘13’ denotes that the set of
183 amino acid residues was transformed using AA Factor 1 and AA Factor 3 together, for example.
(b) Contributions of mutation positions for different cutoff values (range 9–20). The y coordinate shows
the AUC values.

2.5. Contributions of Mutation Positions at Different Cutoff Values

As mentioned above, 183 mutation sites survived a cutoff value of 9. To further explore the
mechanism of interspecies transmission, we should reduce the range of crucial positions. To this end,
the cutoff value was incremented in steps of 1 (thereby decreasing the number of mutation sites),
and the performance of the SVM classifier was calculated with the five AA factors. As shown in
Figure 2b, the SVM classifier achieved stable and high performance at cutoffs up to 14. The SVM
classifier destabilized at higher cutoffs.

Considering the results under AA factor combinations and cutoff values, the performance
of the SVM classifier with AA Factor 3 alone was assessed for different cutoffs. In this situation,
the SVM classifier performed stably and well up to a cutoff of 13 (Figure 3a). The analysis
results confirm that 13 is the extreme cutoff, giving 50 signature positions (Figure 3b). This set
was regarded as the minimal mutation position set for predicting AIVs. We transformed these
50 signature residues using AA Factor 3 alone, and obtained the patterns of the human-origin
AIVs (positive samples) by the multidimensional scaling method (Table S2). The resulting clusters
are shown in Figure 3c. Cluster 1 comprises three H9N2 viruses (A/Hong Kong/1073/1999;
A/Korea/KBNP-0028/2000; A/Bangladesh/0994/2011), two H7N3 viruses (A/Canada/rv504/2004;
A/Mexico/InDRE7218/2012), two H7N7 viruses (A/Netherlands/219/2003; A/Italy/3/2013),
and one H5N1 virus (A/Hong Kong/482/1997). Cluster 2 includes only H5N1 viruses isolated
from 2003 to 2015. Cluster 3 is composed of H7N9 viruses, two H5N6 viruses (A/Yunnan/14563/2015;
A/Yunnan/0127/2015), and two H9N2 viruses (A/Hong Kong/308/2014; A/Hunan/44558/2015).
The distribution of the human-origin AIVs suggests that three molecular patterns of avian-to-human
interspecies transmission emerge in nature.
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3. Discussion

Avian influenza viruses can cross the species barrier, potentially causing a human pandemic.
In this paper, human AIV transmission was predicted by a machine learning model with excellent
performance (namely, SVM). We firstly screened 183 mutation positions in 11 viral proteins after
ranking them by random forest (RF). Most of the screened amino acid positions locate in the important
functional regions of receptor binding, fusion peptides, intracellular transport, protein active sites,
or virus assembly [26–37]. Some of the residues at these positions have been related to interspecies
transmission in earlier reports, such as HA102–HA290 [26,27], H163 [28], HA91, HA96, HA328,
HA377 and HA397 [29], HA327 [30], NA52 [31], and PB2 627 [33]. The signature positions guarantee
the accuracy of the classifier and are biologically meaningful, which will benefit epidemic surveillance
and further studies on interspecies AIV transmission. The proposed method provides important
clues for future surveillance and is a useful pre-screening tool for phenotype screening in high-level
biological safety laboratories.
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The signature positions related with the phenotype of interspecies transmission were screened by
the method of random forest. Some yielded a modest score (PB2 627, for example). PB2 E627K was
firstly identified in a mouse model [33] and found in the protein of other human-origin avian influenza
viruses [12]. In part of the PB2 protein of the human seasonal influenza virus from the public database,
PB2 E627 still existed. It is possible that the mutation PB2 E627K is not a strong marker for interspecies
transmission, which is consistent with our results. In the future, we need to update the model with
new molecular evidence in the field of virology and with more powerful technology in the field of
machine learning.

Amino acid mutations in the HA protein are essential for AIV transmission in mammals [21],
but mutations in other viral proteins are also necessary [19,20]. Mutations of different proteins
introduce synergy and nonlinearity in interspecies transmission. This concept was supported by the
present study. Specifically, the linear classifier (the KNN model) showed poor predictive performance
on the initial set of 183 signature positions. Moreover, the minimal signature position set was 50 amino
acid long and distributed among different viral proteins. This synergistic effect should be notable in
further study.

The molecular characteristics of AA Factor 3 are related to molecular size or volume with high
factor coefficients of bulkiness, residue volume, average volume of buried residues, side chain volume,
and molecular weight [22]. Molecular size or volume is strong related with the binding of biology
molecules, such as viral surface protein, host receptor, enzyme, and substrate. In this paper, the AA
Factor 3 makes an important contribution to the prediction in terms of high accuracy, which agrees
with previous results concerning the receptor binding of viral surface protein [26–28], enzyme activity
of viral neuraminidase [32], and RNA binding of viral polymerase [34]. The slightly poor performance
of other factors may suggest that host receptor binding, virus partial release triggered by viral
neuraminidase, and viral polymerase activity play key roles for the interspecies transmission of
avian influenza virus.

The patterns of human-origin AIVs were clarified by the MDS method. Cluster 1 was composed
of one H5N1 virus from 1997; three H9N2 viruses from 1999, 2000, and 2011; two H7N3 viruses from
2004 and 2012; and two H7N7 viruses from 2003 and 2013. Cluster 2 contained only H5N1 viruses
isolated from 2003 to 2015. Cluster 3 contained H7N9 viruses, two H5N6 viruses from 2015, and two
H9N2 viruses from 2014 and 2015. The distribution of human-origin AIVs implies that three molecular
patterns of avian-to-human interspecies transmission have emerged. Further investigations on the
appearance of novel patterns should be undertaken in future.

The proposed method is applicable to other infectious pathogens that can cross species barriers.
As deep learning technology develops, powerful methods that omit feature selection and complex
computations might emerge. To better understand the interspecies transmission mechanism of AIVs,
the prediction model could be supplemented with information on the host’s genetic background [38].

4. Materials and Methods

4.1. Dataset

The avian- and human-origin AIVs were collected from the EpiFlu public database
(http://platform.gisaid.org/epi3/frontend) and processed using multiple public bioinformatics tools
and algorithms (Figure 4). The details of each procedure are described below.

Step 1: In total, 6305 avian-origin and 644 human-origin AIV strains were obtained from the
public influenza virus database. The strains were isolated between January 1996 and February 2016.
GISAID deposits high-quality genomic sequences along with their clinical information.

Step 2: Our prediction classifiers were based on eleven viral proteins (PB2, PB1, PBI-F2, PA, HA,
NP, NA, M1, M2, NS1, and NEP) with reported roles in interspecies transmission. AIV strains lacking
any of these 11 protein sequences in the GISAID database, and strains without subtype information,
were excluded in this step.

http://platform.gisaid.org/epi3/frontend
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Step 3: The amino acid residues in the 11 proteins were numbered by the multiple sequence
alignment tool MUSCLE [39], using the seasonal human H3 subtype virus as the reference. This step
eliminated strains lacking more than 3 amino acids at any protein terminal. The missing residues were
replaced by the corresponding residues in the protein sequence with highest identity.

Step 4: To reduce redundancy in the dataset, the AIV strains should differ by at least one amino
acid. The amino acid sequences were compared using the CD-Hit tool [40].

Step 5: If the genome sequences of the avian-origin and human-origin AIV strains share high
identity, the interspecies transmission capabilities of the avian-origin strains are ambiguous. Therefore,
this step eliminated avian-origin strains in which any nucleotide sequence of the eight genome
segments shared > 97% identity with that of the human-origin strains. The elimination was performed
by the BLAST + tool [41].

Step 6: Ambiguous amino acid residues such as ‘X’ and ‘B’ were replaced by the corresponding
residues in the protein sequence with highest identity.

The final dataset for predicting AIV interspecies transmission contained 429 positive samples
(human-origin AIVs) and 440 negative samples (avian-origin AIVs). All of these strains are listed
in Table S1.
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(b) Machine learning algorism.

4.2. Recognition of Signature Positions

The random forest method is very popularly used for feature selection of prediction
problems and can rank the importance of the features in a large scale to discriminate the different
categories. The signature positions in the 11 viral proteins were recognized by the RF method
(RF, https://cran.r-project.org/web/packages/randomForest/index.html). In each strain,
the 11 proteins were concentrated in the following order: PB2 > PB1 > PB1-F2 > PA > HA >
NP > NA > M1 > M2 > NS1 > NEP. The proteins with the length of 4620 amino acids were then
transformed into numerical sequences of the amino acid factor. Any deletions or insertions in the
protein were replaced by zeros. The strains were processed sequentially and accumulated into the
total dataset, which was input to the RF. The positive samples (human-origin AIVs) and negative
samples (avian-origin AIVs) were classified by their importance scores at each amino acid position.
As the classification was based on five factors, the final importance score at each position was the sum

https://cran.r-project.org/web/packages/randomForest/index.html
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of five calculations. Therefore, highly scoring positions were important for distinguishing positive
and negative samples. These high scorers were regarded as important amino acid mutations in the
interspecies transmission of AIVs. Breiman’s random forest algorithm was used as default.

4.3. Constructing the Classifier Model

The machine learning method can solve the classification problem and the numeric features of the
positive and negative samples are essential for classification. After screening the signature positions as
mentioned above, each strain was represented by an amino acid residue set. These amino acid sets
were again transformed into numerical sequences of the five AA factors. Each strain was represented
as a numeric vector of length 5N, where N is the number of amino acids in an amino residue set.
The interspecies AIV transmission was then predicted by four popular machine learning models that
are widely used in bioinformatics and computational biology: (1) support vector machine
(SVM, https://cran.r-project.org/web/packages/e1071/index.html), (2) random forest
(RF, https://cran.r-project.org/web/packages/randomForest/index.html), (3) naïve Bayes
(NB, https://cran.r-project.org/web/packages/e1071/index.html), and (4) k-nearest neighbor
(KNN, https://cran.r-project.org/web/packages/class/index.html). The present prediction task is
a two-class classification problem (in which human-origin and avian-origin AIVs are classified as
positive and negative, respectively). The four classifiers were implemented in the R environment and
related packages.

The SVM classifier performs the classification in a high-dimensional feature space, which was
transferred from the input feature vector with the kernel function. If the samples from two categories
were partly overlapped in the original feature space, the SVM will have good performance. In this
paper, the optimal hyperplane is determined with the regularization parameter C (C = 1) and the radial
basis function (RBF) as default. The RF classifier is an ensemble of many decision trees. Each tree is
fully grown using part of the samples in the training dataset selected with the bootstrap technique.
The NB is constructed based on the Bayes theorem. Both RF and NB were implemented with the
default parameter in the package. The KNN classifier is a nonparametric method to determine a
sample category by a majority vote of its neighbors; the number of neighbors in this paper was set to
be 3 (k = 3).

4.4. Evaluating the Performance of Different Classifiers

The four classifiers were trained on 387 positive samples and 396 negative samples randomly
selected from the AIV dataset. The remaining 10% of samples (42 positive and 44 negative samples)
were reserved as an independent test dataset for assessing the performances of the classifiers.
The classifier performances were evaluated by 10-fold cross-validation and the receiver operating
characteristic (ROC) curve. The area under the ROC curve (AUC) reveals the optimal parameters
in the four classifiers. To compare the classifier performances, we repeated the evaluation process
100 times and plotted the distributions of the resulting AUC values. The ROC curve relates the true
and false positive rates, where both rates range from 0 to 1. The AUC was calculated by the ‘ROCR’
package in R (https://cran.r-project.org/web/packages/ROCR/index.html). As both rates range
from 0 to 1, AUC also ranges from 0 to 1. A higher AUC value denotes a higher performance of the
classifier. The human-origin AIVs were shown by the multidimensional scaling method in R (MDS,
https://cran.r-project.org/web/packages/MASS/index.html) and the amino acid profile was drawn
by the WebLogo server (http://weblogo.berkeley.edu/logo.cgi).

4.5. Prediction Software

By integrating the features at the signature positions with the best-performing classifier,
we constructed a software program for predicting avian-to-human transmission of AIVs
(delivery by request).

https://cran.r-project.org/web/packages/e1071/index.html
https://cran.r-project.org/web/packages/randomForest/index.html
https://cran.r-project.org/web/packages/e1071/index.html
https://cran.r-project.org/web/packages/class/index.html
https://cran.r-project.org/web/packages/ROCR/index.html
https://cran.r-project.org/web/packages/MASS/index.html
http://weblogo.berkeley.edu/logo.cgi
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Supplementary Materials: Table S1: AIV Strains in the final dataset, Table S2: Human-origin AIVs clustered by
the MDS method.
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