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Abstract: Background: Schistosomiasis is a major neglected disease for which the current control
strategy involves mass treatment with praziquantel, the only available drug. Hence, there is an
urgent need to develop new antischistosomal compounds. Methods: The antischistosomal activity
of hederacolchiside A1 (HSA) were determined by total or female worm burden reductions in mice
harboring Schistosoma japonicum or S. mansoni. Pathology parameters were detected on HSA against
1-day-old S. japonicum-harboring mice. Moreover, we confirmed the antischistosomal effect of HSA
on newly transformed schistosomula (NTS) of S. japonicum in vitro. Results: HSA, a natural product
isolated from Pulsatilla chinensis (Bunge) Regel, was initially corroborated to possess promising
antischistosomal properties. We demonstrated that HSA had high activity against S. japonicum and
S. mansoni less in 11 days old parasites harbored in mice. The antischistosomal effect was even more
than the currently used drugs, praziquantel, and artesunate. Furthermore, HSA could ameliorate
the pathology parameters in mice harboring 1-day-old juvenile S. japonicum. We also confirmed
that HSA-mediated antischistosomal activity is partly due to the morphological changes in the
tegument system when NTS are exposed to HSA. Conclusions: HSA may have great potential to be an
antischistosomal agent for further research.
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1. Introduction

Schistosomiasis is a chronic and debilitating disease caused by digenetic trematodes from
the genus Schistosoma mainly comprising three species: Schistosoma japonicum, S. mansoni and
S. haematobium [1,2]. It is the second most frequent parasitic disease affecting humans after malaria,
the global burden of schistosomiasis has been estimated to exceed 70 million disability-adjusted
life years [3], but even the higher estimate might be an underestimation of the true burden [2,4,5].
According to the investigation of World Health Organization in 2012, around 800 million individuals
are at risk of contracting the disease and 239 million people have been infected by schistosomes,
whereas schistosomiasis has not evoked enough focus in this field [6,7]. Generally, human infections
occur after penetration of the skin by the infectious larvae, or cercariae, and migration of the adult
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parasite to the portal vasculature surrounding the intestinal tract (S. mansoni and S. japonicum) or the
vesicle plexus of the bladder (S. haematobium) [7]. Morbidity due to schistosomiasis includes hepatic
and intestinal fibrosis (S. mansoni and S. japonicum), and ureteric and bladder fibrosis and calcification
of the genitourinary tract (S. haematobium) [8].

As it stands now, the only clinical available drug against schistosomiasis is praziquantel, that has
been used for 40 years [9]. Recently, a deluge of evidences indicated that the drug resistance of
praziquantel has emerged in the clinic [10,11]. Praziquantel has little or no effect on eggs and immature
worms [12], so pre-patent or newly acquired infections cannot be cured by praziquantel [9,13]. In order
to provide new hit and lead compounds, the search for anthelmintic compounds from natural sources
has intensified [14]. Natural products have been the source of medicines for thousands of years,
and also provide modern medicine with effective pharmaceuticals for the treatment of diseases caused
by parasites [15-17]. Artemisinin, isolated from the plant Artemisia annua, has been effectively used
for schistosomiasis control [18], however, this drug is confined to the young developmental stages of
the parasites.

Pulsatilla chinensis (Bunge) Regel, a traditional Chinese medicine with a long history,
exhibits “blood-cooling” and detoxification activities. It has been widely used for adjunctive treatment of
intestinal amebiasis, malaria, vaginal trichomoniasis, bacterial infections and malignant tumors [19-22].
Recent studies have found that various P. chinensis extracts and fractions had antiprotozoal activity
against Giardia intestinalis [23] and selectively inhibited the growth of human intestinal bacteria, such as
E. coli. and Clostridium perfringens [24]. Hederacolchiside Al (HSA), a known structure which contains a
trisaccharide scaffold, manifests strong and broad-spectrum antiproliferation inhibitory activities against
human cancer cell lines [25]. However, up to now, there is little knowledge about the antischistosomal
activity of HSA. In this study, we demonstrate that HSA have antischistosomal activity, affecting parasite
viability both in vivo and in vitro.

2. Results

2.1. HSA Has Antischistosomal Activity against Juvenile and Adult S. japonicum

Our previous injection toxicity test study found that the mouse median lethal dose (LDsj) by
intravenous injection of HSA is 21.05 mg-kg~!. Moreover, mouse could be treated with 8 mg-kg !
HSA by intraperitoneal injection with no obvious toxicity. In view of the promising antischistosomal
activity of HSA, total and female worm burden reductions in juvenile (14-day-old) (Figure 1B) and
adult (35-day-old) (Figure 1C) S. japonicum harbored mice decreased in a time and dose-dependent
manner. In the juvenile infection model, total and female worm burden reductions of 59.9% and 62.4%
were achieved with 8 mg-kg~! HSA, respectively (Table 1). Moreover, intraperitoneal administration
of 8 mg-kg~! HSA on mice infected with adult S. japonicum resulted in total and female worm burden
reductions of 53.2% and 65.8%, respectively (Table 1). These results revealed the antischistosomal
activity of HSA against both juvenile and adult S. japonicum with a dose-response relationship.

Table 1. Total and female worm burdens in the different dosage of HSA, praziquantel or artesunate
treatment against the schistosomula and adult worms of S. japonicum.

Worm Reduction Rate (%)

Treatment (Dose mg-kg 1)

Total Female Total Female
14-18 days 35-39 days
Control - - - -
HSA (8) 59.9 62.4 53.2 65.8
HSA (6) 47.6 52.6 324 52.6
HSA (4) 29.3 5.3 21.8 2.9
praziquantel (300) 52.0 45.6 85.2 83.2

artesunate (300) 85.1 85.0 92.4 94.7
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Figure 1. Dose-response relationship of HSA was administered to mice harboring S. japonicum.
(A) Chemical structure of HAS; (B) 4-8 mg~kg*1 HSA was administered to mice harboring 14-day-old
juvenile S. japonicum; (C) 4-8 mg-kg~! HSA was administered to mice harboring 35 day-old adult
S. japonicum. Mice were treated by intraperitoneal administration of 4-8 mg-kg~! HSA as shown in
Materials and Methods. Infected untreated (Negative control) mice were treated with vehicle. Each bar
represents the mean 4 SD (* p < 0.05, ** p < 0.01 vs. total worms of untreated group, t-test; * p < 0.01
vs. female worms of untreated group, t-test).

2.2. HSA Was Superior in Inhibiting S. japonicum Less than 11 Days Old

Since 8 mg-kg~! HSA showed the highest activities against juvenile and adult stages of
S. japonicum, next, a single intraperitoneal dose of 8 mg-kg~! HSA was used to investigate the
stage-specific susceptibility of HSA against S. japonicum. Table 2 summarizes the antischistosomal
activity of HSA shortly after infection (1-day post-infection) and until 49 days post-infection. Regardless
of the timing of HSA administration when mice were infected with juvenile or adult S. japonicum,
total and female worm numbers were reduced highly significant in HSA-treated mice (Table 2).
HSA administration to mice harboring 1-, 7-day-old S. japonicum showed more effectiveness than other
infected stages. More importantly, 8 mg-kg ! HSA was highly active against 1-day-old S. japonicum
harbored in mice, and the antischistosomal activity of HSA was better than the positive drugs,
praziquantel and artesunate (Figure 2). These results demonstrated that HSA showed significant
antischistosomal activity on the different development stage of S. japonicum, especially for 1-day-old
S. japonicum.
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Figure 2. The antischistosomal effect of HSA against 1-day-old juvenile S. japonicum harbored in mice.

Each point represents data from an individual treated or infected untreated mouse. Horizontal bars

indicate mean values. The means £ SD (n = 8) for each experimental condition are as follows:
Total (untreated: 55.6 &+ 6.8; HSA: 1.9 & 2.7; praziquantel: 20.9 £ 13.3; artesunate: 22.6 &+ 5.5) and
female (untreated: 19.0 £ 2.8; HSA: 0.6 £ 1.0; praziquantel: 8.1 & 5.4; artesunate: 8.4 & 3.5).

Table 2. Stage-specificity of a single 8 mg-kg~! dose HSA, praziquantel or artesunate was administered

to mice infected with S. japonicum.

Treatment Stage of
Post-Infection

Treatment (Dose mg/kg)

Mean Number of Worms (SD)

Worm Burden Reduction (%)

Total Female Total Female
1-5 days - 55.6 (6.8) 19.0 (2.8) — —
HSA (8) 1.9 (2.7) *** 0.6 (1.0) *** 97.2 94.7
praziquantel (300) 20.9 (13.3) *** 8.1 (5.4) *** 62.4 57.2
artesunate (300) 22.6 (5.5) *** 8.4 (3.5) *** 59.3 55.9
7-11 days HSA (8) 5.5(3.3) *** 1.6(3.3) *** 90.0 89.5
praziquantel (300) 22.4(6.8) *** 7.6(2.9) *** 55.6 59.9
artesunate (300) 26.4(11.9) *** 10.0(5.0) ** 52.5 47.4
14-19 days HSA (8) 22.3 (8.6) *** 7.2 (3.1) *** 60.7 63.2
praziquantel (300) 26.7 (9.5) *** 10.3 (3.2) *** 52.0 45.6
artesunate (300) 8.3 (5.9) *** 2.9 (2.2) *** 85.1 85.0
21-25 days HSA (8) 24.6 (9.6) *** 6.4 (4.1) *** 55.4 68.4
praziquantel (300) 7.9 (5.8) *** 5.0 (3.5) *** 85.9 73.7
artesunate (300) 8.7 (3.8) *** 5.4 (2.8) *** 84.3 714
28-32 days HSA (8) 32.6 (7.1) *** 6.1 (1.8) *** 411 68.4
praziquantel (300) 4.3 (3.4) *** 3.5 (2.5) *** 92.2 81.6
artesunate (300) 1.5 (1.9) *** 1.3 (1.6) *** 97.3 93.0
35-39 days HSA (8) 26.0 (12.4) ** 6.5 (3.1) *** 53.2 65.8
praziquantel (300) 8.2 (14.9) ** 3.2 (5.9) ** 85.2 83.2
artesunate (300) 43 (4.0) ** 1(1.2) % 924 94.7

** p < 0.01 vs. the negative control group, t-test; *** p < 0.001 vs. the negative control group, t-test.

2.3. The Efficacy Advantage of HSA against 1-Day-Old and 7-Day-Old Juvenile S. mansoni

To determine the promising antischistosomal properties of HAS (and due to limited resources),
we tested the anti-parasite effect of HSA on juvenile (1-, 7-, 21-day-old) and adult (42-, 49 day-old)
S. mansoni harbored in mice. As Table 3 shows, HSA resulted in high and comparable total and
female worm burden reductions when given to mice infected with either juvenile or adult stages of
S. mansoni. At a single dose of 8 mg-kg~!, HSA achieved worm burden reductions of 88.6 to 80.7% in
mice harboring 1-day-old and 7-day-old juvenile S. mansoni, respectively. We still observed moderate
total and female worm burden reductions of 68.3 to 84.1% in mice harboring 21-day-old juvenile and
49-day-old adult S. mansoni treated with a single dose of 8 mg-kg~! HSA (Table 3). Comparing with
the untreated group, the significant decrease in total and female worm number was shown in all
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HSA-treated groups. These results indicated that HSA also had promising antischistosomal properties
against 1-day-old and 7-day-old juvenile S. mansoni, and that was even better than the positive drugs.

Table 3. Stage-specificity of a single 8 mg-kg~! dose HSA, praziquantel or artesunate was administered
to mice infected with S. mansoni.

Treatment Stage of

R Treatment (Dose mg/kg) Mean Number of Worms (SD) Worm Burden Reduction (%)
Post-Infection
Total Females Total Females
1-5 days - 38.3 (16.6) 14.1 (7.8) — —
HSA (8) 44 (2.7) 1.0 (1.5) ** 88.6 92.9
praziquantel (300) 5.3 (5.4) *** 2.3 (2.6) ** 86.2 83.8
artesunate (300) 13.6 (4.7) ** 5.0(1.8)* 64.4 64.6
7-11 days HSA (8) 7431 2.1 (1.5)* 80.7 85.0
praziquantel (300) 13.2 (6.3) ** 2.5(1.5)** 65.6 82.3
artesunate (300) 23.8 (11.2) 6.5(3.6)* 37.7 54.0
21-25 days HSA (8) 12.1 (7.0) ** 43(3.3)* 68.3 70.0
praziquantel (300) 16.7 (10.3) * 50(3.7)* 56.4 64.6
artesunate (300) 1.5 (1.3) *** 0.2 (0.4) ** 96.1 98.8
42-46 days HSA (8) 9.5 (4.4) ** 2.3 (1.4)* 752 84.1
praziquantel (300) 13.2(8.5)* 4.5 (3.5) ** 65.6 68.1
artesunate (300) 2.5 (2.5) *** 0.7 (0.7) ** 93.5 95.3
49-53 days HSA (8) 11.3 (4.1) ** 2.5(1.4)** 70.6 82.3
praziquantel (300) 1.3 (0.7) ** 0.3 (0.5) *** 96.5 97.6
artesunate (300) 13.7(7.0) ** 3.8 (2.0) ** 64.3 72.9

*p <0.05,* p <0.01 **p <0.001 vs. the Negative control group, t-test.

2.4. HSA Inhibited Liver Damage in S. japonicum-Infected Mice

Chronic morbidity during infection with S. japonicum develops as a result of schistosome eggs
that lodge in the liver, gut and other organs, which causes extensive tissue damage [8]. To evaluate the
potential effect of HSA on tissue egg loads, liver tissues of infected mice were digested separately in
5% KOH and eggs/g tissues were calculated. The highest reduction percentages of ova in tissues were
recorded in HSA-treated mice harboring 1-day-old juvenile S. japonicum (99.3%) (Table 4).

Table 4. Ova load in S. japonicum infected mice received HSA, praziquantel or artesunate treatment.

Treatment Stage of Post-Infection Treatment (Dose mg/kg) Hepatic Ova Reduction Rate (%)
1-5 days - —
HSA (8) 99.3
praziquantel (300) 64.7
artesunate (300) 61.3
7-11 days HSA (8) 98.7
praziquantel (300) 68.1
artesunate (300) 54.6
14-19 days HSA (8) 72.6
praziquantel (300) 59.5
artesunate (300) 97.6
21-25 days HSA (8) 79.7
praziquantel (300) 89.9
artesunate (300) 89.6
28-32 days HSA (8) 75.7
praziquantel (300) 98.2
artesunate (300) 99.8
35-39 days HSA (8) 75.4
praziquantel (300) 97.8

artesunate (300) 99.7
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To investigate the tissue responses to the HSA treatment, the liver weight index (liver weight/body
weight) and liver disease burden (displayed as mean granuloma diameter) of the untreated
mice, infected mice, and HSA-treated mice were analyzed. Intraperitoneal administration of
HSA at the single doses 8 mg-kg~! with 1-day and 7-day, 14-day and 21-day S. japonicum
post-infected mice showed a dramatic decrease in the liver index, comparing with the untreated
mice (Supplementary Materials Figure S1A). Moreover, HSA achieved lower liver index in mice
harboring 1-day-old juvenile S. japonicum than praziquantel or artesunate administration (Figure 3A).

A C
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Figure 3. Reduction of hepatic granulomatous inflammation by HSA treated 1-5 days S. japonicum
post-infected mice. Mice were treated with administration of 8 mg-kg~! HSA, 300 mgkg!
praziquantel (positive control) and 300 mg-kg~! artesunate (positive control) as antischistosomal
treatments for 1-day-old juvenile S. japonicum infection. The effect of HSA on hepatic granulomatous
inflammation of infected mice was tested. (A) Liver weight index (liver weight/body weight). Each bar
represents the mean & SD. # p < 0.01 vs. Normal, t-test; ** p < 0.01 vs. Negative control, t-test;
(B) Representative hepatic granulomas of untreated and drug-treated mice. Photographs were taken
at 100x (H&E). Black arrows represent the area of granuloma; (C) Quantification of egg-induced
liver pathology by measurement of mean granuloma diameter. Each bar represents the mean + SD;
**p < 0.01 vs. Negative control, f-test.

Microscopic examination of liver sections stained with hematoxylin and eosin revealed intact liver
architecture in all the studied mice groups. The size of granuloma and the intensity of inflammatory
infiltrate were evidently variable between the groups in this study (Supplementary Materials Figure
S1B). At 7 weeks post-infection, the eggs were surrounded by a dense population of immune cells, such
as lymphocytes and eosinophils, followed by a band of fibro-vascular tissue leading to the formation
of a mature granuloma in the untreated group (Figure 3B, Black arrows).

Contrarily, examination of the infected livers revealed a significant reduction in the size
of granulomatous inflammation in all HSA-treated mice compared with the untreated mice
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(Supplementary Materials Figure S1B). Moreover, by administration of 8 mg-kg~! HSA at days 1-5
post-infection, mature granuloma could hardly be detected and the hepatic lobular architecture restored
its normal organization and most hepatocytes showed normal appearance (Figure 3B). The reduction
degrees of liver disease burden (displayed as mean granuloma diameter) in S. japonicum-infected mice
after HSA treatment are displayed in Supplementary Materials Figure S1C. The significant changes of
granuloma diameter were observed from 0.92 mm in untreated mice to 0.09 mm in 8 mg-kg~! HSA
treated 1-5 days post-infected mice (Figure 3C). These results suggested that 8 mg-kg~! HSA could
significantly reduce the granulomatous inflammation.

2.5. HSA Altered Cytokine Profile in S. japonicum Infected Mice

In order to investigate the immunomodulatory effect of HSA, we tested the body weight,
spleen weight index (spleen weight/body weight) and the expression of Th1/Th2/Th17 cytokines,
as the major cytokines responsible for granulomatous inflammatory [26] in HSA treated 1-5 days
post-infected mice. For HSA antischistosomal treatment, the body weights of mice in the treatment
group were significantly heavier than that of the untreated group, but no significant difference was
found between uninfected HSA-treated group and uninfected group (normal control) (Figure 4A).
Moreover, the spleen indexes of the mice were also dramatically reduced in the HSA antischistosomal
treatment group in comparison to the infected untreated group (Figure 4B).

Schistosome eggs elicit a CD4+ Th cell-mediated hepatic granulomatous inflammation, which is
the major pathological consequence of the disease. Granuloma formation is associated with an
imbalance in Th1/Th2/Th17 cytokines. In trying to explain the ameliorating effect of HSA on hepatic
granuloma size, the serum levels of some cytokines, such as TNF-«, IL-4, and IL-17a, which have
been involved in Schistosoma granuloma formation in drug-treated mice harboring 1-day-old juvenile
S. japonicum were measured. Levels of TNF-o (Figure 4C), IL-4 (Figure 4D) and IL-17a (Figure 4E) were
significantly decreased in the HSA-treated group, compared with the untreated group. The levels of
TNF-« and IL-17a in HSA treated group was lower than praziquantel and artesunate-treated group.
These results revealed that immune responses in 1-day-old juvenile S. japonicum infected mice were
reduced by HSA treatment.
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Figure 4. Inmune responses in S. japonicum infected mice reduced by HSA. Antischistosomal effects
on immune responses of 7-week-infected drug-untreated and drug-treated mice. (A) Statistical analysis
of body weights; (B) Spleen weight index (spleen weight/body weight); (C) Expression of TNF-«
in S. japonicum infected mice serum with different treatment; (D) Expression of IL-4 in S. japonicum
infected mice serum with different treatment; (E) Expression of IL-17a in S. japonicum infected mice
serum with different treatment. Each bar represents the mean + SD. Each bar represents the mean + SD.
# p < 0.01 vs. Normal mice; * p < 0.05 vs. Negative control; ** p < 0.01 vs. Negative control, t-test.
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2.6. HSA Protects the Liver with Anti-Fibrotic Effects

In order to examine the anti-fibrotic effect of HSA on 1-day-old S. japonicum infected mice,
the expression of collagen I, TGF-f31, TIMP-1 in liver tissue was quantified by immunohistochemistry.
Wispy traces of collagen I, TGF-f31, TIMP-1 positive staining were sparsely distributed in sections of
normal group. At week 7 post-infection, in the untreated group, densely collagen I-, TGF-31- and
TIMP-1-stained cells which could be distinguished by their yellow, brownish-yellow or snuff color
surrounded by and infiltrated into the granulomas, and accumulated in fibrotic lesions or stretched
along the fibrous septum. In HSA-treated group, the intensity of positive traces was dramatically
reduced compared to untreated group; the hepatic lobular architecture was restored to its normal
organization and most hepatocytes showed as normal appearance, similar to the one in normal group
(Figure 5). These results revealed that HSA inhibited expressions of fibrotic protein expression in liver.

Collagen-1

Normal

Negative
control
h -

Figure 5. HSA inhibited expressions of fibrotic protein expression in liver of mice. Representative
images of immunostaining for TGF-31, TIMP-1, and Collagen I in 7-week-infected drug-untreated
(Negative control) and drug-treated mice (HSA) or uninfected mice (Normal). Target protein positive

staining is yellow, brownish-yellow or snuff. Original magnification 100x. The histogram shows
integral optical densities of target proteins. TGF-31: Transforming growth factor-beta 1; TIMP-1: tissue
inhibitor of metalloproteinase 1; Collagen I: collagen type I

2.7. The Inhibition of S. japonicum NTS by HSA Is Partially Due to the Tequmental Disruption

Based on in vivo results, HSA exhibits the highly anti-parasite activity on 1-day-old juvenile
S. japonicum. Next, we wished to detect the effect of HSA on NTS of S. japonicum in vitro. Figure 6A
showed that the positive control praziquantel at a concentration of 96.03 uM (30 pug-mL~!) killed
70.98% parasites within 48 h; artesunate at a concentration of 78.04 uM (30 pg-mL_l) killed 94.59%
parasites within 48 h whereas the survival rate of worms belonging to the negative (maintenance
medium) control groups was 80.98%. HSA at a concentration of 8.93 uM (8 pg-mL~!) killed 100% of
parasites after 48 h of incubation. Scanning electron microscopical examination revealed that the dorsal
surface of S. japonicum NTS worms cultured in negative control medium (maintenance medium) was
provided with numerous large tubercles bearing spines after 4 h, while the positive control (96.03 uM
praziquantel or 78.04 uM artesunate) had a moderate tegumental alteration in the worms. Interestingly,
worm treated with 8.93 uM HSA caused the most serious morphological alterations in the tegument of
NTS, especially extensive tegumental disruption such as sloughing and erosion (Figure 6B). These data
indicated that the morphological changes in the tegument of the worms induced by HSA might be the
antischistosomal mechanism.
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Figure 6. Effects of HSA, praziquantel, and artesunate on NTS S. japonicum in vitro. (A) Effects of
0-8.93 uM HSA, 96.03 uM praziquantel and 78.04 pM artesunate on NTS S. japonicum in vitro.
Each point represents the mean + SD. (B) Scanning electron micrograph showing tegument of
non-treated NTS S. japonicum, 8.93 uM HSA-treated NTS S. japonicum, 96.03 uM praziquantel-treated
NTS S. japonicum and 78.04 uM artesunate-treated NTS S. japonicum.

3. Discussion

Many plants reported to have anthelmintic properties actually contain compounds which are
secondary metabolites, such as saponins, alkaloids, non-protein amino acids, tannins and other
polyphenols, lignin, glycolides that are directly active against parasites [27-30]. The gifts from
traditional Chinese medicine, artemisinin and its derivatives, were selected for schistosomiasis
control [18]. In this study, we discovered the new antischistosomal activity of HSA, a natural product
extracted from the Pulsatilla chinensis (Bunge) Regel. The data showed that HSA was highly active
against less than 11 days old juvenile S. japonicum harbored in mice (total and female worm burden
reductions ranged between 89.5% and 97.2%. HSA also achieved worm burden reductions from
88.6 to 80.7% in mice harboring less than 11 days old juvenile S. mansoni, respectively. It is reported
that the relative resistance of the larval stages of S. mansoni to schistosomicidal drugs might be a result
in a therapeutic failure because of the presence of migrating, drug-resistant, immature forms of the
parasite [31]. In this regard, HSA may be a potential drug of choice for the prevention and treatment
of S. japonicum and S. mansoni infections.

The reduction in the female worm recovery and egg load in treated mice was considered as a strong
evidence of the efficiency of antischistosomal drugs. Indeed, the significant improvement parameters
after treatment of mice at days 1-5 post-infection of S. japonicum with 8 mg-kg~! HSA resulted in the
significant reduction in female worm burdens (94.7%) accompanied with a significant decrease in the
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percentage of ova load (99.3%) compared with the control group. Moreover, the increase in the relative
liver weight may be attributed to both egg deposition by worms and several metabolites released
by S. mansoni, which affect the host hepatic tissue [32]. In this study, intraperitoneal administration
of HSA at the single doses 8 mg-kg~! to 1-day, 7-day, 14-day and 21-day S. japonicum post-infected
mice showed a dramatic decrease in the liver index, comparing with the untreated mice. Moreover,
HSA achieved lower liver index in mice harboring 1-day-old juvenile S. japonicum than praziquantel
or artesunate administration.

Chronic morbidity during infection with S. japonicum and S. mansoni develops as a result of
schistosome eggs that lodge in the liver, gut and other organs, which causes extensive tissue damage,
such as granulomatous inflammation and tissue fibrosis [8]. Therefore, reducing egg counts in
the tissues can significantly relieve the symptoms of schistosomiasis [33,34]. On histopathological
examination of the liver of HSA-treated mice, there were either active small granulomas or healed
granulomas. By administration of 8 mg-kg ! HSA on 1-5 days post infected mice, mature granuloma
could hardly be detected and the hepatic lobular architecture restored its normal organization and
most hepatocytes showed normal appearance. The reduction degree of liver disease burden (displayed
as mean granuloma diameter) in S. japonicum-infected mice after HSA treatment was consistent with
the above results. 8 mg-kg~! HSA treated 1-5 days post-infected mice could dramatically reduce
the granuloma diameter, from 0.92 mm in control group to 0.09 mm in the HSA-treated group.
These results suggested that HSA has a considerable effect on Schistosoma pathological changes in
the liver. This could be attributed partly to the reduction in the number of eggs trapped in the
hepatic tissues and the modulation of serum levels of some cytokines, which are incriminated in the
development of Schistosoma granuloma.

Indeed, granuloma formation is dependent on CD4" Th cell response. Schistosoma antigens
manifest a striking shift from a moderate Th1 to a robust Th2-dominated response with the onset
of egg lying around 5-6 weeks [26,35,36]. In order to confirm the ameliorating effect of HSA on
hepatic granuloma size, the serum levels of Th1/Th2/Th17 cytokines, which have been involved
in Schistosoma granuloma formation, were measured. We found that the levels of TNF-«, IL-4,
and IL-17a were significantly decreased in HSA 1-day-treated group, compared with the untreated
group. Importantly, the levels of TNF-« and IL-17a in HSA treated groups were lower than
praziquantel and artesunate-treated group. These results demonstrated HSA treatment promoted a
significant and high decrease in granuloma formation as well as in the immune response that underlies
granuloma development.

Previous investigate showed that prolonged Th2 [37] and Th17 [38] responses contributed to
the development of hepatic granulomatous inflammation and hepatic fibrosis. The mechanism of
resulting liver fibrosis is the same that is the activation of Hepatic stellate cells (HSCs) and subsequent
extracellular matrix deposition. HSCs, one of the main sources of collagen in the liver, play a crucial role
in schistosome-induced fibrogenesis [39]. Chemokines associated with HSCs recruitment and activity,
these activated HSCs localized to the granulomas, thus serve as an indicator of collagen deposition in
hepatic schistosomiasis [40]. Deposition of collagen, imbalance of matrix metalloproteinase/tissue
inhibitor of metalloproteinase (TIMP) and secretion of profibrotic cytokines caused by activated
HSCs were described previously in schistosomiasis [41,42]. In additional, TGF-f31 promotes collagen
synthesis in activated HSCs via pSmad2/3 pathways [43]. To investigate the anti-fibrosis activity of
HSA, we detected the expressions of the fibrosis-related marker, collagen I, TGF-31 and TIMP-1 in
infected mice. There was no fibrosis-related marker in the HSA-treated group. Therefore, these results
demonstrated that hepatic fibrosis was hardly detected in S. japonicum-infected mice after HSA
anti-parasite therapy. In our experiments, the anti-fibrosis effect of HSA might be partly due to
its anti-parasite activity, and the anti-inflammation property of HSA would study further.

Based on in vivo results, HSA exhibits the significant anti-parasite effect on 1-day-old S. japonicum,
we wonder to detect the effect of HSA on NTS of S. japonicum in vitro. In the present study,
HSA at a concentration of 8.93 uM killed 100% of N'IS S. japonicum worms after 48 h of incubation;
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however, the 100% lethal concentration for positive control, praziquantel, and artesunate, in the same
culture time was higher. The tegument of schistosomes is an important target for antischistosomal
drugs [44]. Various antischistosomal drugs such as praziquantel [45], artemether and artesunate [46,47],
mefloquine [48], miltefosine [49], epiisopiloturine [50] and piplartine [51] have been documented for
alterations in the tegument of schistosoma species. In the absence of the drug, NTS of S. japonicum
showed normal viability without any tegumental changes for 4 h. In the presence of HSA at
concentrations of 8.93 uM, extensive tegumental disruption such as sloughing and erosion was
observed by SEM examination, while the positive control (96.03 pM praziquantel or 78.04 uM
artesunate) had a moderate tegumental alteration in the worms. These in vitro results were consistent
with the antischistosomal activity of HSA on 1-day-old juveniles chistosomes harbored in mice.

In all, our data demonstrated for the first time that HSA, the natural product isolated from the
Pulsatilla chinensis (Bunge) Regel, exhibits antischistosomal properties in vivo against S. japonicum and
S. mansoni. The antischistosomal activity is higher than positive drugs, praziquantel, and artesunate
against 1-day-old juvenileschistosomes. In addition, 8 mg-kg~! HSA ameliorate the pathological
parameters, such as granuloma formation, granulomatous inflammation and liver fibrosis in the
S. japonicum infected mice. Furthermore, the antischistosomal activity of HSA on NTS confirmed the
in vivo results. Further in vitro and in vivo studies would be launched to elucidate the possible
mechanism of action and to study the effect of HSA on schistosomes and other trematodes.
These results suggest that HSA may have the possibility to be a useful antischistosomal agent for
therapy in human schistosomiasis and provide a basis for future clinical trials.

4. Materials and Methods

4.1. Animals

ICR mice of similar age and weight (2025 g) were used for this study. They were purchased
from the Experimental Animal Center of Soochow University (Suzhou, China) and were housed under
specific pathogen-free conditions. The animal room was controlled under temperature (22 & 2 °C),
light (12 h light/dark cycle) and humidity (50 & 10%). All laboratory feed pellets and bedding was
autoclaved. The mice were anesthetized using diethyl ether and blood samples were withdrawn
from the tail vein of mice. The animal study proposal was approved by the Institutional Animal
Care and Use Committee of the Soochow University. Experimental procedures involving animals
were performed in accordance with the Regulations for the Administration of Affairs Concerning
Experimental Animals approved by the State Council of People’s Republic of China.

4.2. Compounds

HSA (2.5 g) was prepared in our lab, and the structure (Figure 1) was identified by comparison its
spectroscopic data with those of HSA, which are in agreement with those of Pulsatilla saponin B7 [52].
The purity of HSA was determined as 95.2% by analytical HPLC with PDA detection.

4.3. In Vivo Studies with S. japonicum

Mouse (eight per group) was infected percutaneously with ~65 S. japonicum cercariae.
To investigate the dose-response relationship of HSA against both the juvenile and adult S. japonicum,
4-8 mg/kg intraperitoneal doses were given to mice 14 days (pre-patent infection) and 35 days (patent
infection) post-infection for five consecutive days. To assess the efficacy of HSA against different
stages of S. japonicum, mice were intraperitoneally treated with a single dose of 8 mg-kg~! HSA daily
for 5 consecutive days. Different treatment groups started at either of day 1, 7, 14, 21, 28 and 35
post-infection. In each experiment, infected but untreated mice served as controls. For comparison,
praziquantel (300 mg-kg™') (Sigma-Aldrich Chemie GmbH, St. Louis, MO, USA) or artesunate
(300 mg-kg~!) (batch no. 20081213; 99.9% purity) were orally administered with infected mice as the
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positive control group. At 49 days post-infection, mice were killed and the worms were recovered
from the hepatic and port mesenteric veins by the perfusion technique [53].

4.4. In Vivo Studies with S. mansoni

Mouse (eight per group) was infected subcutaneously with ~80 S. mansoni cercariae. To study the
stage-specific susceptibility of S. mansoni, mice were treated intraperitoneal with a single 8 mg-kg ™!
dose of HSA for 5 consecutive days. Each group started treatment at either of day 1, 7, 21, 42 and
49 post-infection. For each experiment, infected but untreated mice served as negative control.
Praziquantel (300 mg-kg ') or artesunate (300 mg-kg~!) were orally administered with infected
mice as the positive control. At 56 days post-infection, worms were recovered from the hepatic
perfusion as described elsewhere [54,55].

The percentage of reduction in worm numbers after treatment was calculated according to
Tendler et al. [56] as follows: P = (C — V/C) x 100, where P = percentage of worm burden, C = mean
number of parasites recovered from infected but not treated animals, and V = mean number of parasites
recovered from the treated animals.

The animals were then sacrificed and their livers were separated. Egg count in the liver was
demonstrated by taking a weighted portion of the liver and each placed in a test tube containing 5 mL
of 5% KOH solution [57]. Eggs were counted after being spread on slides and the number of eggs per
tissues weight (gram) was calculated. The calculation of egg reduction rate was similar to the worm
burden rate.

4.5. Histology Analysis

All mice were weighed and sacrificed. Liver samples were weighted, fixed in 4% formalin,
paraffin embedded and sectioned (4 mm thick). All sections were stained with hematoxylin and
eosin to evaluate structural alterations of the hepatic parenchymal cells and to clarify the presence of
schistosome eggs and granuloma.

Liver disease burden (displayed as mean granuloma diameter) was measured for individual mice,
and the results were reported as the mean with standard deviation of the group. To measure these,
six random photographs (CX31, x 40 magnification, Olympus, Tokyo, Japan) were taken from each
of three randomly cut liver sections per mouse, the mean diameter (mm) was measured by image
analysis software (Image J, NIH, Bethesda, MD, USA). Counts for each photograph were averaged
over photographs within animals. The means and standard deviations were calculated for each group.

4.6. Immunological Analysis

Mice were anesthetized using diethyl ether after measured the weight of each mouse and then,
blood was collected from the sublingual vein. The animals were then sacrificed and their spleens were
separated. Blood was obtained from each mouse after sacrifice. Serum was collected from the clotted
blood samples after centrifugation at 400x g for 15 min at 4 °C, then divided into aliquots and stored
at —80 °C until use.

Cytokines interleukin (IL)-4, tumor necrosis factor (TNF)-« and IL-17a were measured in the sera
of mice by using sandwich ELISAs with anti-cytokine antibodies according to the manufacturer’s
instructions. BMS613 Mouse IL-4 platinum ELISA, BMS607/3 Mouse TNF-a platinum ELISA,
BMS6001 Mouse IL-17a platinum ELISA were purchased from eBiosience (San Diego, CA, USA).

4.7. Immunohistochemistry Analysis

Immunohistochemical staining was performed with an HRP-Polymer anti-Mouse/Rabbit IHC Kit
(GTX83398, Irvine, CA, USA) The sections were deparaffinized, washed in phosphate-buffered saline
(PBS, 0.01 mol-L 71, pH 7.2) 3 x 5 min, heated at 100 °C in a microwave oven 6 x 2 min, incubated in
3% H0, in deionized water for 10 min to block endogenous peroxides activity, and washed 3 x 5 min
with PBS. The sections were then incubated overnight at 4 °C with the following primary antibodies:



Molecules 2018, 23, 1431 13 of 16

anti-transforming growth factor-f 1 (TGF-p1) antibody (ab92486, Abcam, Cambridge, MA, USA, 1:500);
anti-tissue inhibitor of metalloproteinase-1 (TIMP-1) antibody (ab61224, Abcam, 1:200); anti-collagen I
antibody (ab34710, Abcam, 1:500). After washing 3 x 5 min with PBS, the appropriate HRP-polymer
anti-mouse/rabbit immunoglobulin G was added to the sections and incubated at 37 °C for 20 min.
The sections were then washed 3 x 5 min with PBS, and the color was developed with DAB for 3-5 min.
The nuclei were lightly counterstained with hematoxylin.

4.8. Cultivation of Newly Transformed Schistosomula (NTS-the Larval Stage) S. japonicum and Scanning
Electron Microscopy (SEM)

4.8.1. Collection of NTS S. japonicum

NTS were obtained using a transformation method described previously [58]. Briefly, the collected
cercarial suspension was cooled, centrifuged and pipetted, and vortexed vigorously in Hanks’s
balanced salt solution (HBSS) to remove the tails. The NTS suspension was adjusted to a concentration
of 100 NTS per 50 pL in NTS culture medium, the RPMI 1640 medium (Invitrogen, Carlsbad, CA,
USA) (maintenance medium) containing 10% fetal bovine serum, 100 U-mL~! penicillin, 100 ug~mL’l
streptomycin (Invitrogen). The NTS suspension was then incubated at 37 °C, 5% CO, in ambient air
for 12 h.

4.8.2. Schistosome Incubation In Vitro with Treatment

Twelve hours after NTS preparation, approximately 150 S. japonicum NTS per well were cultured
in 6 well plate with 4 mL maintenance medium. The S. japonicum were then treated with different
concentrations of HSA (0-8.93 uM), 96.03 uM praziquantel or 78.04 uM artesunate for 72 h.

4.8.3. SEM

The S. japonicum NTS were selected for SEM according to the morphology of worms.
Approximately 10 S. japonicum NTS were cultivated in maintenance medium containing 8.93 uM
HSA, 96.03 uM praziquantel or 78.04 uM artesunate for 4 h and then sequentially fixed in 10%
formaldehyde buffer at 4 °C for 4 h, osmium tetroxide phosphate buffer solution (1%) at 4 °C for 2 h.
After washing with phosphate buffer solution, the schistosomes were dehydrated in ascending grades
of alcohol and critical-point dried in liquid carbon dioxide. Finally, the samples were sputter-coated
with gold and examined by SEM (Quanta 250, FEI, Hillsboro, OR, USA).

4.9. Statistical Analysis

Means of multiple groups were compared using one-way ANOVA followed by Tukey’s multiple
comparisons test employing Prims software (GraphPad Software, La Jolla, CA, USA). Data were
expressed as mean =+ standard deviation (SD). The data were considered significant if p < 0.05.

Supplementary Materials: The following are available online.
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