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Abstract: In the last years, numerous protocols have been published using ball milling for organic
synthesis. Compared to other methods such as microwave or ultrasound irradiation and ionic liquids,
ball mill chemistry is an economical, and ecofriendly method in organic synthesis that is rather
underrepresented in the knowledge of organic chemists. The aim of this review is to explore the
advantages of the application of ball milling in synthesis of N-heterocyclic compounds.
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1. Introduction

The past decade has witnessed a sustainable and ever increasing interest in the reactivity of
N-heterocycles due to their importance in Nature, medicinal chemistry, living matter, drug design,
advanced materials, and natural product synthesis [1]. They constitute an important an important
class of compounds found in many natural products [2] with anticancer [3], cytotoxic [4], anti-HIV [5],
anti-malarial [6], anti-inflammatory [7], antimicrobial [8], anti-hyperglycemic and anti-dyslipidemic [9]
activity, in addition to anti-neurodegenerative disorder drugs targeting Alzheimer’s, Parkinson disease,
Huntington’s disease [10], and many more [11,12].

Many reviews involving the synthesis of N-heterocycles have been published, including cascade
synthetic reactions [13], the synthesis of six membered rings [14], the synthesis of spiro hetrocycles [15],
the microwave assisted synthesis of five-membered azaheterocyclic systems [16], synthesis of small
N-hetrocycles [17] and metalation [18].

Ball milling is a mechanical method broadly used to granulate minerals into very fine particles
and the preparation or alteration of inorganic solids, although its use in organic synthesis is relatively
uncommon [19–22].

The term mechanochemistry has been introduced in periodicals recently. According to IUPAC a
mechanochemical reaction is defined as “a chemical reaction that is induced by the direct absorption
of mechanical energy” [23]. However, the area is furthermore divided into: (i) mechanical activation of
solids; (ii) mechanical alloying and (iii) the reactive milling of solids [24–27] (Figure 1). Very recently,
ball milling has been used in synthesis of organic compounds. Several reviews describing the use of
ball milling in the synthesis and reactions of organic compounds have been published [28–32].
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Figure 1. Ball milling process. 

Recently, ball milling reactions have not been limited to simple organic reactions like 

condensations but have become widely used in more complex reactions like: 

 Metal-catalyzed organic reactions 

 nucleophilic reactions 

 cascade reactions 

 Diels–Alder reactions 

 Oxidation-reduction reactions 

 Halogenation and aminohalogenation reactions 

 Formation of calixarenes, rotaxanes and cage compounds 

 Transformation of biologically active compounds 

 Asymmetric synthesis 

This review is dedicated to the utilization of the ball-milling technique in the synthesis of 

heterocycles. 

2. Five Membered Rings  

2.1. Pyrrole Synthesis  

Zeng et al. [33] developed a mechanochemical and solvent free synthesis for preparing a series 

of 2,5-dimethylpyrrole-3,4-dicarboxylates and 3,4-diphenylpyrroles in moderate to excellent yields 

from various amines and acetoacetate or 2-phenylacetaldehyde, respectively, in the presence of 

Mn(OAc)3 as mediator (Scheme 1). 
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Scheme 1. Synthesis of 2,5-dimethylpyrrole-3,4-dicarboxylates and 3,4-diphenylpyrroles. 

Cascade mechanical milling reactions were reported for the first time by Kaupp et al. [34]. They 

investigated synthesis of pyrrole and indole products in quantitative yields by the reaction of 

trans-1,2 dibenzoylethene with primary, secondary enamine esters or enamine ketones in a ball mill 

(Scheme 2). The reactions took place through Michael addition of the enamine nitrogen followed by 

cyclization addition of the enamine double bond. The product is obtained by rearrangement to the 

enamine followed by elimination of water. 

Figure 1. Ball milling process.

Recently, ball milling reactions have not been limited to simple organic reactions like condensations
but have become widely used in more complex reactions like:

• Metal-catalyzed organic reactions
• nucleophilic reactions
• cascade reactions
• Diels–Alder reactions
• Oxidation-reduction reactions
• Halogenation and aminohalogenation reactions
• Formation of calixarenes, rotaxanes and cage compounds
• Transformation of biologically active compounds
• Asymmetric synthesis

This review is dedicated to the utilization of the ball-milling technique in the synthesis
of heterocycles.

2. Five Membered Rings

2.1. Pyrrole Synthesis

Zeng et al. [33] developed a mechanochemical and solvent free synthesis for preparing a series of
2,5-dimethylpyrrole-3,4-dicarboxylates and 3,4-diphenylpyrroles in moderate to excellent yields from
various amines and acetoacetate or 2-phenylacetaldehyde, respectively, in the presence of Mn(OAc)3

as mediator (Scheme 1).
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Scheme 1. Synthesis of 2,5-dimethylpyrrole-3,4-dicarboxylates and 3,4-diphenylpyrroles.

Cascade mechanical milling reactions were reported for the first time by Kaupp et al. [34]. They
investigated synthesis of pyrrole and indole products in quantitative yields by the reaction of trans-1,2
dibenzoylethene with primary, secondary enamine esters or enamine ketones in a ball mill (Scheme 2).
The reactions took place through Michael addition of the enamine nitrogen followed by cyclization
addition of the enamine double bond. The product is obtained by rearrangement to the enamine
followed by elimination of water.
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Zille et al. [35] reported a good Sonogashira reaction method under solvent free conditions 

involving the reaction of o-iodoaniline and terminal alkynes using ZnBr2 as catalyst to afford 

2-alkynylanilines in a planetary ball mill at 800 rpm for 30 min (Scheme 3). 
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Scheme 2. Reaction of trans-1,2 dibenzoylethene with primary, secondary enamine esters or
enamine ketones.

2.2. Indole Synthesis.

Zille et al. [35] reported a good Sonogashira reaction method under solvent free conditions
involving the reaction of o-iodoaniline and terminal alkynes using ZnBr2 as catalyst to afford
2-alkynylanilines in a planetary ball mill at 800 rpm for 30 min (Scheme 3).
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Scheme 3. Sonogashira reaction for synthesis of indoles.

Rhodium (III)-catalyzed oxidative cyclization of acetanilides and non-terminal alkynes using
dioxygen as a oxidant in the absence of a solvent, under mechanochemical conditions afforded
10 differently substituted indole in moderate to good yields [36] (Scheme 4).
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Scheme 4. Oxidative cyclization of acetanilides and non-terminal alkynes.

Under solvent-free and milling reaction conditions, 2-carbonylindoles were synthesized by
cyclization of their corresponding enaminone using molecular iodine as a mediator for the annulation
process. The enaminone precursors were prepared by mechanochemical reaction of aniline derivatives
with alpha-haloketone to afford arylaminomethylenecarbonyl derivative then by subsequent thermal
condensation with N,N′-dimethylformamide dimethyl acetal [37] (Scheme 5).
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Recently, Vadivelu et al. reported solvent-free ball milling of three components—malimide,
N-propargyl isatin and an alkyl or aryl azide—along with DABCO and CuO nanoparticles as a
recyclable heterogeneous catalyst to afford N-triazolylmethyloxindole [38] (Scheme 6).
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2.3. Indeno[1,2-b]pyrrole Synthesis

Synthesis of N-heterocyclic compounds with α-hydroxyketone and N=O-semiaminal
functionalities had been reported by Kaupp et al. [39]. The reaction proceeded via a three-cascade
reactions vinylogous substitution, cyclization, and 1,3-hydrogen shift by reaction of ninhydrin and
enamino ester (Scheme 7).
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2.4. Pyrazole Synthesis

Paveglio et al. [40] studied the mechanical parameters for the best conversion and selectivity for
synthesis of 1H-pyrazole derivatives in a ball mill (Scheme 8.) The optimum conditions were 450 rpm,
five balls (10 mm), and the use of 10% of para-toluenesulfonic acid (p-TSA) as catalyst for 3 min.
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A solid-solid ball milling reaction of chalcone and phenylhydrazine catalyzed by NaHSO4·H2O
(0.5 equivalents) was reported by Zhu and coworkers [41]. The reaction proceeded effectively using a
high-speed ball mill at 1290 rpm to give 1,3,5-triaryl-2-pyrazoline in good yields (up to 93%) (Scheme 9).
The reaction was extended by using thiosemicarbazides and aliphatic enones to give 2-pyrazoline
derivatives [28].
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Ze et al. [42] developed a one-pot and solvent-free protocol for the synthesis in excellent yields
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persulfate as the oxidant (Scheme 10) followed by a very simple work-up procedure.
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Scheme 10. Synthesis of 3,5-diphenyl-1H-pyrazoles.

Twelve diflourinated pyrazolones were synthesized via a solventless one-pot, two-step
mechanochemical reaction. The first step is the condensation between a β-ketoester and
phenylhydrazine to give the corresponding pyrazoline, which is flourinated in the next step to afford
the fluorinated pyrazolones [43] (Scheme 11).
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Scheme 11. Condensation of a β-ketoester and phenylhydrazine.

Bondock and coworkers [44], synthesized a series of pyrazolylthiosemicarbazones by reaction
of thiosemicarbazide and appropriate aldehydes using sodium carbonate and 1 h ball milling.
The reaction of phenacyl bromide with pyrazolylthiosemicarbazones afforded the corresponding
2-(arylidenehydrazino)-4-phenylthiazoles in high yield (up to 98%) (Scheme 12).
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2.5. Imidazole Synthesis

Lamaty et al. [45] investigated a solvent-free ball milling one-pot two-step synthesis of
N-heterocyclic carbenes directly from anilines. This strategy allowed a significant improvement
of the yields compared to conventional procedures. Synthesis of IPrMe·HCl of was selected as a
model reaction. The optimum reaction conditions were 2:1 molar equivalents of 2,6-diisopropyl-
phenylamine:2,3-butanedione at 500 rpm for two hours. Variable carbon sources were used
(formaldehyde, chloromethylethylether, 1,3,5-trioxane and paraformaldehyde), and the best results
were obtained with paraformaldehyde and HCl (4M) in dioxane as a solvent to afford the product
in 49% yield over the two steps. Under the optimium conditions, the scope of the reaction was
studied for many products (IPr·HCl, IMes·HCl, Io-Tol·HCl and ICy·HCl), and the reaction proceeded
effectively to afford NCH in high yield (up to 100%) for all substrates except a highly hindered
2,6-diphenylmethyl-4-methylphenyl substrate (Scheme 13).

Molecules 2018, 23, x 6 of 21 

 

 

Scheme 12. Synthesized of 2-(arylidenehydrazino)-4-phenylthiazoles. 

2.5. Imidazole Synthesis 

Lamaty et al. [45] investigated a solvent-free ball milling one-pot two-step synthesis of 

N-heterocyclic carbenes directly from anilines. This strategy allowed a significant improvement of 

the yields compared to conventional procedures. Synthesis of IPrMe·HCl of was selected as a model 

reaction. The optimum reaction conditions were 2:1 molar equivalents of 2,6-diisopropyl- 

phenylamine:2,3-butanedione at 500 rpm for two hours. Variable carbon sources were used 

(formaldehyde, chloromethylethylether, 1,3,5-trioxane and paraformaldehyde), and the best results 

were obtained with paraformaldehyde and HCl (4M) in dioxane as a solvent to afford the product in 

49% yield over the two steps. Under the optimium conditions, the scope of the reaction was studied 

for many products (IPr·HCl, IMes·HCl, Io-Tol·HCl and ICy·HCl), and the reaction proceeded 

effectively to afford NCH in high yield (up to 100%) for all substrates except a highly hindered 

2,6-diphenylmethyl-4-methylphenyl substrate (Scheme 13). 

 

Scheme 13. Synthesis of N-heterocyclic carbenes directly from anilines. Scheme 13. Synthesis of N-heterocyclic carbenes directly from anilines.



Molecules 2018, 23, 1348 7 of 21

2.6. Benzimidazole Synthesis

Recyclable ionic liquid-coated ZnO-nanoparticles (ZnO-NPs, catalyst 5) were employed as a
catalyst in the green synthesis of 1,2-disubstituted benzimidazoles derivatives by a ball milling
technique which produced high yields with high selectivity [46] (Scheme 14).
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At room temperature, 1 h ball milling afforded 100% yield of substituted (anilino-thiocarbonyl)-
benzimidazolidine-2-thiones by reaction of aniline derivatives and o-phenylenediisothiocyanate
(Scheme 15) [44].
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Recently, our research group [47] reported a high yielding ball milling synthetic method
for a series of benzimidazol-2-ones or benzimidazol-2-thiones under solvent-free conditions by
reaction of o-phenylenediamine and benzaldehydes or benzoic acids. Several reaction parameters
were investigated such as milling ball weight, frequency and milling time. This method shows
effectiveness for the reaction of different carboxylic acids, aldehydes, urea, ammonium thiocyanate or
thiourea with o-phenylenediamine (Schemes 16 and 17). Moreover; alkylation of benzimidazolone or
benzimidazolthione by ethyl chloroacetate was also studied (Scheme 18).
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Scheme 18. Alkylation of benzimidazolone or benzimidazolthione.

Reaction of anilines, CS2, and 2-aminophenol or thiophenol under solvent-free ball milling
conditions leads to a series of 2-anilinobenzoxazoles or thiazoles, respectively, in good to excellent
yields (Scheme 19) [48].
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2.7. Indeno[2,1-d]imidazole Synthesis

Kaupp et al. reported a good reaction of ninhydrin with ureas/thioureas to afford heterocyclic
bis-semi acetals by substitution and addition cascade reactions under ball milling technique
conditions [39] (Scheme 20).
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2.8. Thiazole and Oxazole Synthesis

Solvent and catalyst-free reactions of α-haloketones with thiosemicarbazones to give the
corresponding 4-substituted 2-(arylidenehydrazino)thiazoles in a ball milling reactor were reported by
Abdel-Latif and coworkers [49] (Scheme 21).
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Nagarajaiah et al. [50] reported an efficient chlorination method to give α-chloroketones by
the reaction of ketones with trichloroisocyanuric acid in the presence of p-TSA under ball-milling
conditions. Then these α-chloroketones reacted with thiosemicarbazides and thiourea to afford
2-hydrazinylthiazoles and 2-aminothiazoles, respectively, in good yields (Scheme 22).

Molecules 2018, 23, x 9 of 21 

 

2.8. Thiazole and Oxazole Synthesis 

Solvent and catalyst-free reactions of α-haloketones with thiosemicarbazones to give the 

corresponding 4-substituted 2-(arylidenehydrazino)thiazoles in a ball milling reactor were reported 

by Abdel-Latif and coworkers [49] (Scheme 21). 

 

Scheme 21. Synthesis of 4-substituted-2-(arylidenehydrazino)thiazoles. 

Nagarajaiah et al. [50] reported an efficient chlorination method to give α-chloroketones by the 

reaction of ketones with trichloroisocyanuric acid in the presence of p-TSA under ball-milling 

conditions. Then these α-chloroketones reacted with thiosemicarbazides and thiourea to afford 

2-hydrazinylthiazoles and 2-aminothiazoles, respectively, in good yields (Scheme 22). 

 

Scheme 22. Synthesis of 2-hydrazinylthiazoles and 2-aminothiazoles. 

Phung et al. [49] showed the importance of the ball milling technique in dry ice for 

regioselective conversion of an unactivated 2-aryl aziridine or 2-alkyl into an oxazolidinone (Scheme 

23). 

 

Scheme 23. Conversion of aziridine into an oxazolidinone. 

Scheme 22. Synthesis of 2-hydrazinylthiazoles and 2-aminothiazoles.

Phung et al. [49] showed the importance of the ball milling technique in dry ice for regioselective
conversion of an unactivated 2-aryl aziridine or 2-alkyl into an oxazolidinone (Scheme 23).
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2.9. Triazole Synthesis

A series of 1,4-substituted-1H-1,2,3-triazoles were synthesized in high yields (up to 99%) by
1,3-dipolar cycloaddition of alkynes with decylazide and a catalytic amount of Cu(OAc)2 using a
ball-mill at 800 rpm rotation speed (13.3 Hz) for 10 min [51] (Scheme 24).
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Under mechanical milling, synthesis of 1,2,3-triazole derivatives occurred by a coupling of
terminal alkynes, alkyl halides or aryl boronic acids and sodium azide over copper(II) sulfate supported
on alumina (Cu/Al2O3) in the absence of any solvent (Scheme 25) [52].
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Thorwirth and coworkers [51] have reported polymerization of 1,12-diazidododecane and
bisethynyl compounds in a ball mill without destroying the polymer backbone (Scheme 26).
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Ranu et al. [52] reported Cu/Al2O3 as a catalyst for the synthesis of 1,4-disubstituted-1,2,3-triazoles
by the reaction of terminal alkynes, alkyl halide/aryl boronic acid and sodium azide under solvent free
and ball milling conditions. This method averts the use of hazardous organo- azides to afford arylalkyl-
and arylaryl-substituted 1,2,3-triazoles in excellent yield (Scheme 27).
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3. Six Membered Rings

3.1. Pyridine Synthesis

Zhang et al. [53] reported an effective method for the synthesis of pyridyl isothiocyanates (ITCs)
from the corresponding amines, where aqueous iron(III) chloride promotes desulfurization of a
dithiocarbamate salt that is generated in situ from the amine and carbon disulfide in the presence of
DABCO or sodium hydride under ball-milling conditions ( Scheme 28). Use of this protocol gives
good yields.
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3.2. Quinoline Synthesis

Yu et al. [54] reported a high yield (up to 99%) synthetic method for quinoline derivatives by
the reaction of N-formyldihydroquinoline on a solid base such as sodium hydroxide (NaOH) under
high-speed ball milling conditions with a catalytic amount of polyethylene glycol 2000 (PEG 2000) as
catalyst (Scheme 29).

Molecules 2018, 23, x 11 of 21 

 

Scheme 27. Synthesis of 1,4-disubstituted-1,2,3-triazoles from aryl boronic acid. 

3. Six Membered Rings 

3.1. Pyridine Synthesis  

Zhang et al. [53] reported an effective method for the synthesis of pyridyl isothiocyanates (ITCs) 

from the corresponding amines, where aqueous iron(III) chloride promotes desulfurization of a 

dithiocarbamate salt that is generated in situ from the amine and carbon disulfide in the presence of 

DABCO or sodium hydride under ball-milling conditions ( Scheme 28). Use of this protocol gives 

good yields.  

 

Scheme 28. Synthesis of pyridyl isothiocyanates. 

3.2. Quinoline Synthesis 

Yu et al. [54] reported a high yield (up to 99%) synthetic method for quinoline derivatives by the 

reaction of N-formyldihydroquinoline on a solid base such as sodium hydroxide (NaOH) under 

high-speed ball milling conditions with a catalytic amount of polyethylene glycol 2000 (PEG 2000) as 

catalyst (Scheme 29). 

 

Scheme 29. Deformylation of N-formyldihydroquinoline. 

Under solvent-free high-speed ball milling styrene and N-aryl aldimines generated in situ are 

used for the synthesis of cis-2,4-diphenyltetrahydroquinolines in good yield via Diels–Alder 

cycloaddition reactions  in presence of FeCl3 (Scheme 30). This method is a very efficient and green 

alternative to conventional methods for synthesis for these types of heterocyclic skeletons. The 

advantages of this method are a short reaction time, easy availability of the required reagents, 

solvent free conditions and a nontoxic catalyst [53]. 

Scheme 29. Deformylation of N-formyldihydroquinoline.

Under solvent-free high-speed ball milling styrene and N-aryl aldimines generated in situ are used
for the synthesis of cis-2,4-diphenyltetrahydroquinolines in good yield via Diels–Alder cycloaddition
reactions in presence of FeCl3 (Scheme 30). This method is a very efficient and green alternative to
conventional methods for synthesis for these types of heterocyclic skeletons. The advantages of this
method are a short reaction time, easy availability of the required reagents, solvent free conditions and
a nontoxic catalyst [53].
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3.3. Imidazo[1,2-a]pyridine Synthesis

One pot Ugi-multicomponent reactions between 2-amioazines, aldehydes and isonitriles were
conducted under solvent-free mechanochemical ball-milling conditions to afford 3-aminoimidazo
[1,2-a]pyridine derivatives in good to excellent yields at room temperature [55]. The reaction has been
shown to display good functional group tolerance (Scheme 31).
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A series of 2,3-substituted imidazo[1,2-a]pyridines were obtained by reaction of 2-amino-
pyridines with methyl ketones or 1,3-dicarbonyl compounds by I2-enhanced condensation/ cyclization
via ball milling under solvent-free conditions. This method gives good functional group and broad
molecular diversity with good product yields [56] (Scheme 32).
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3.4. Chromeno[3,4-b]pyridine Synthesis

Recently, Kausar et al. described a synthesis of sixteen different pyridocoumarins in excellent
yield by solvent free ball milling of 3-aminocoumarin, aldehydes and phenylacetylene along with
CuI-Zn(OAc)2 as a catalyst for activation and functionalization of C(sp2)-H of 3-aminocoumarin [57]
(Scheme 33).

Molecules 2018, 23, x 12 of 21 

 

 

Scheme 30. Diels–Alder synthesis of cis-2,4-diphenyltetrahydroquinolines. 

3.3. Imidazo[1,2-a]pyridine Synthesis 

One pot Ugi-multicomponent reactions between 2-amioazines, aldehydes and isonitriles were 

conducted under solvent-free mechanochemical ball-milling conditions to afford 

3-aminoimidazo[1,2-a]pyridine derivatives in good to excellent yields at room temperature [55]. The 

reaction has been shown to display good functional group tolerance (Scheme 31). 

 

Scheme 31. Ugi-multi-component reaction. 

A series of 2,3-substituted imidazo[1,2-a]pyridines were obtained by reaction of 2-amino- 

pyridines with methyl ketones or 1,3-dicarbonyl compounds by I2-enhanced condensation/ 

cyclization via ball milling under solvent-free conditions. This method gives good functional group 

and broad molecular diversity with good product yields [56] (Scheme 32). 

 

Scheme 32. Synthesis of 2,3-substituted imidazo[1,2-a]pyridines. 

3.4. Chromeno[3,4-b]pyridine Synthesis 

Recently, Kausar et al. described a synthesis of sixteen different pyridocoumarins in excellent 

yield by solvent free ball milling of 3-aminocoumarin, aldehydes and phenylacetylene along with 

CuI-Zn(OAc)2 as a catalyst for activation and functionalization of C(sp2)-H of 3-aminocoumarin [57] 

(Scheme 33). 

 

Scheme 33. Synthesis of pyridocoumarins. Scheme 33. Synthesis of pyridocoumarins.



Molecules 2018, 23, 1348 13 of 21

3.5. Pyrimidine Synthesis

Under mechanochemical solvent-free conditions, a multicomponent Biginelli reaction was
reported to give dihydropyrimidones [58]. The starting aldehydes were prepared within the same
reaction pot by Br+ catalyzed oxidation of their corresponding primary alcohols which results in
formation of byproducts. The acid was used as catalyst in the cascade transformation leading to
dihydropyrimidones (Scheme 34).
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On the other hands, Sachdeva et al. reported the formation of dihydropyrimidones using a
mechanochemical Biginelli reaction in presence of SnCl4·5H2O as a catalyst instead of the free acid [59]
(Scheme 35).
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Ould et al. [28] showed that the condensation reaction of an equimolar amount of an
aldehyde, malononitrile and thiourea/urea by ball milling in 40 min gives 2-thioxo or 2-oxo-1,2,3,4-
tetrahydropyrimidine-5-carbonitrile derivatives (Scheme 36). The reactions proceed effectively without
the aid of any catalyst or solvent to give the products in excellent yields (up to 98%).
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Ould et al. [28] showed that the condensation reaction of an equimolar amount of an aldehyde, 
malononitrile and thiourea/urea by ball milling in 40 min gives 2-thioxo or 
2-oxo-1,2,3,4-tetrahydropyrimidine-5-carbonitrile derivatives (Scheme 36). The reactions proceed 
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3.6. Pyrano[2,3-d]pyrimidine Synthesis

Mashkouri et al. [22] used aromatic aldehydes, malononitrile, and barbituric acid (Scheme 37) to
synthesize pyrano[2,3-d]pyrimidine-2,4(1H,3H)-diones in good yield (up to 94%) under a ball milling
technique in circulating warm water to heat the reaction for 55 min milling.
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3.7. Diazine and Diazepine Synthesis

Kaupp et al. [39] studied the condensation of o-phenylene diamines with various 1,2-dicarbonyl
compounds under ball milling conditions to afford a series of heterocycles. The condensation
reaction of substituted o-phenylenediamines and benzil gave quinoxaline derivatives within 1 h
(Scheme 38). Moreover, was benzo[a]phenazin-5-ol obtained by a condensation reaction between
2-hydroxy1,4-naphthoquinone and o-phenylenediamine within 15 min at 70 ◦C.
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Substituted benzo[a]phenazin-5-ols were produced in 100% yield by milling of 2-hydroxy-
1,4-naphthoquinone and o-phenylenediamines for 15 min via a four cascade reaction (two additions
two and eliminations, Scheme 39).
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Ball milling conditions were successfully was used in the condensation reactions between
o-diaminoarenes with 1,2-dicarbonyl compounds to afford a variety of differently substituted
quinoxalines or pyrido[2,3-b]pyrazines [60,61] (Scheme 40).
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3-Oxo-3,4-dihydroquinoxaline was produced in 90% yield by milling of 2-oxoglutaric acid and
o-phenylenediamine for 10 min (Scheme 41). Four-cascade reactions consisting of substitution,
elimination, cyclization and ring opening of o-phenylenediamines with alloxane hydrate and
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3-oxo-3,4-dihydroquinoxaline-2-carbonylureas produced 3-oxo-3,4-dihydroquinoxaline-2-carbonyl-
ureas [39] (Scheme 42).
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Kaupp et al. [62] described cascade mechanochemical reactions of solid-state ninhydrin and
o-phenylenediamines, o-mercaptoaniline, urea/thiourea and methyl 3-aminocrotonate in a ball mill at
20–25 Hz to give indenoquinoxaline ketones (Scheme 43).
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Nagarajaiah et al. [50] reported an efficient ball-milling reaction of α-chloroketones with
o-phenylenediamine to give quinoxalines (Scheme 44).
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Carlier et al. [63] described catalyst- and solvent-free mechanochemical reactions of diamines
and 1,2- or 1,3-dicarbonyls to give dibenzophenazines and dibenzopyridoquinoxaline derivatives,
respectively, in good yield (Scheme 45).
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3.8. Thiazine Synthesis

Sharifi et al. [65] reported that the use of KF–Al2O3 solid support in a solvent-free ball milling
procedure involving the reaction of 2-aminothiophenols with 2-bromoalkanoates (Scheme 47) led to a
green and efficient synthesis of a series of benzothiazinone in excellent yield.



Molecules 2018, 23, 1348 17 of 21

Molecules 2018, 23, x 16 of 21 

 

Nagarajaiah et al. [50] reported an efficient ball-milling reaction of α-chloroketones with 

o-phenylenediamine to give quinoxalines (Scheme 44). 

 

Scheme 44. Reaction of α-chloroketones with o-phenylenediamine to quinoxalines. 

Carlier et al. [63] described catalyst- and solvent-free mechanochemical reactions of diamines 

and 1,2- or 1,3-dicarbonyls to give dibenzophenazines and dibenzopyridoquinoxaline derivatives, 

respectively, in good yield (Scheme 45). 

 

Scheme 45. Synthesis of dibenzophenazines and dibenzopyridoquinoxaline. 

Etman, et al. [64] reported an efficient reaction without the aid of any catalyst or solvent, of 

ninhydrin with o-phenylenediamine under ball milling conditions (Scheme 46). Using the 

conventional method gave only 60% yields of the same product by heating of ninhydrin with 

o-phenylenediamine in EtOH/AcOH (7:3). 

 

Scheme 46. Reaction of ninhydrin with o-phenylenediamine. 

3.8. Thiazine Synthesis 

Sharifi et al. [65] reported that the use of KF–Al2O3 solid support in a solvent-free ball milling 

procedure involving the reaction of 2-aminothiophenols with 2-bromoalkanoates (Scheme 47) led to 

a green and efficient synthesis of a series of benzothiazinone in excellent yield.  

 

Scheme 47. Synthesis of benzothiazinone. Scheme 47. Synthesis of benzothiazinone.

Moreover, hydroxyindeno[2,1-b]benzo[1,4]thiazine was produced by the reaction of ninhydrin
with o-mercaptoaniline hydrochloride in a in three-reaction cascade (substitution, cyclization and
elimination, Scheme 48).
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3.9. Azaborinine Synthesis

The six membered heterocyclic diazaborinine and O, B, N six-membered heteroborinone could be
obtained by mixing of 1,8-diaminonaphthalene or anthranilic acid and phenylboronic acid in a ball
mill without solvent for 1 h followed by heating in a vacuum [30] (Scheme 49).
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4. Higher Membered Heterocycles

Kaupp et al. [66] studied the transformation of N-arylmethyleneiminium salts to Tröger’s bases in
the presence of water vapor or MgSO4·7H2O. after milling for 5–10 min. The products were formed
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via a three-reaction cascade involving a double arylaminomethylation and methylenation of the
tetrahydro-1,5-diazocine intermediate (Scheme 50).Molecules 2018, 23, x 18 of 21 
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5. Conclusions

Herein, we have reviewed the use of mechanochemical technique for synthesis of variety of
N-heterocyles. As discussed, the ball milling technique is becoming a more promising green tool for
the synthesis of various N-heterocycles, including condensation reactions, multicomponent cascade
reactions, metal catalyzed synthesis, etc.
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