Supporting information

Aromaticity as a Guiding Concept for Spectroscopic Features and Nonlinear Optical Properties of Porphyrinoids

Tatiana Woller,^a Paul Geerlings,^a Frank De Proft,^a Benoît Champagne^b and Mercedes Alonso^{a*}

^a Eenheid Algemene Chemie (ALGC), Vrije Universiteit Brussel (VUB). Pleinlaan 2, 1050 Brussels (Belgium)

^b University of Namur, Laboratoire de Chimie Théorique, Unité de Chimie Physique Théorique et Structurale, rue de Bruxelles 61,B-5000 Namur, Belgium

E-mail : mercedes.alonso.giner@vub.be

This PDF files includes :

- I. Aromaticity descriptors for the Hückel porphyrinoids
- II. Geometry and tautomerism of neutral unsubstituted sapphyrin
- III. Aromaticity of porphycene
- IV. Photophysical properties of unsubstituted porphyrinoids
- V. Frequency dispersion of the nonlinear optical properties of unsubstituted porphyrinoids
- VI. Cartesian coordinates of M06/6-31G(d,p) optimized geometries

I. Aromaticity descriptors for the Hückel porphyrinoids

Table S1. Energetic, reactivity, magnetic, structural and electronic properties of unsubstituted porphyrinoids.^{*a*}

π e	ISE	$ISE_{\scriptscriptstyle corr}$	$\Delta \eta$	Λ	NICS(0)	NICS(1)	$NICS_{x}(1)$	HOMA	П	Φ_{P}	ΔE_{HL^d}	AV1245.	$AV_{\tt min^{\ell}}$
16N	20.8	12.4	-3.0	78.8	23.1	18.9	62.3	0.610	0.44	31.7	3.76	1.262	0.136
16P	10.4	0.7	-11.9	27.5	9.4	7.6	29.2	0.634	0.74	20.2	4.15	0.732	0.294
18P	27.9	11.1	9.2	-175.8	-14.9	-13.7	-38.5	0.880	1.00	0.0	4.75	2.139	1.271
18Py	30.9	-0.6	9.8	-147.0	-13.3	-12.5	-13.9	0.878	0.99	0.0	4.07	2.114	1.399
20P	12.3	-5.2	-17.8	156.3	18.7	16.7	52.4	0.641	0.93	2.8	3.71	1.226	0.856
200	19.1	17.4	-13.9	128.6	16.3	14.0	44.6	0.780	1.00	0.0	3.27	1.352	0.267
22S	40.8	17.2	2.2	-140.6	-9.6	-9.2	-24.6	0.892	0.88	10.3	4.25	2.066	0.794
22Sp	25.1	-18.6	13.7	-249.6	-14.3	-13.4	-37.7	0.882	1.00	0.0	4.03	2.124	1.137
22I	23.6	6.2	1.9	-249.1	-13.6	-12.8	-35.7	0.901	0.91	8.8	3.85	2.435	0.963

^{*a*} ISE, ISE_{corr} and $\Delta \eta$ are given in kcal mol⁻¹, Λ in ppm cgs and NICS indices in ppm. ^{*b*} Number of π electrons along the classical conjugation pathway. ^{*c*}The large flexibility induces large structural changes in the dihydrogen derivative of the methylene adducts during the optimization. ^{*d*} HOMO-LUMO energy difference (in eV) evaluated from the CAM-B3LYP single-point calculations. ^{*e*}The electronic aromaticity indices were computed along the annulene conjugation pathway.

II. Geometry and tautomerism of neutral unsubstituted sapphyrin

Figure S1. M06/6-311+G(d,p)/M06/6-31G(d,p) relative energies for the convex and concave conformations of neutral unsubstituted sapphyrin (**22Sp**). Two different tautomers for each conformation were considered.

III. Aromaticity of porphycene

Figure S2. AICD plot of porphycene. The large arrow denotes the direction of the induced ring current: clockwise for diatropic ring currents (isosurface value 0.03 a.u.).

IV. Photophysical properties of unsubstituted porphyrinoids

Table	S2.	Symmetry	y of	the	involved	orbitals,	associated	electronic	dipole	transition	moments	of th	ne main
electro	nic	transitions	of [16]n	orcorrole	(16N) ca	lculated at	the TDDF1	Г/САМ-	-B3LYP le	evel of theo	ry u	sing the
IEFPC	M S	cheme (So	olven	t = 0	CH ₂ Cl ₂) or	n ground	state geome	tries optim	ized in	vacuum.			

excitation	transition	contribution (%)	Irreps initial	Irreps final	μх	μу	μz	polarization	FMO
1	H -> L	98.69	А	А	0.00	0.00	0.01	Z	$\Delta k=0$
2	H-4 -> L-4	6.96	А	А	0.93	0.47	0.00	Z	∆k>1
	H-2 -> L+1	3.33	Α	В				x,y	∆k>1
	H-1-> L	84.53	В	А				x,y	$\Delta k=1$
3	H-7 -> L	5.70	В	А	0.00	0.00	0.00	x,y	∆k>1
	H-2 -> L	85.09	А	А				Z	∆k>1
	H-1 -> L+1	4.69	В	В				Z	∆k>1
4	H-4 ->L	2.11	Α	А	2.26	-0.32	0.00	Z	∆k>1
	H->L+2	94.22	А	А				Z	∆k>1
5	H-5 -> L+2	2.51	В	А	-0.04	-0.37	0.00	x,y	∆k>1
	H-4->L	2.36	Α	А				Z	∆k>1
	H-3 -> L	90.21	В	А				x,y	∆k>1
7	H -> L+4	41.38	Α	А	-1.80	-0.37	-0.00	Z	∆k>1
10	H-4 -> L	81.08	А	A	1.11	-1.60	0.00	Z	∆k>1
13	H -> L+4	81.19	A	A	-0.03	2.00	0.00	z	∆k>1

Table S3. Symmetry of the involved orbitals, associated electronic dipole transition moments of the main electronic transitions of [18]porphyrin (**18P**) calculated at the TDDFT/CAM-B3LYP level of theory using the IEFPCM Scheme (Solvent = CH_2Cl_2) on ground state geometries optimized in vacuum.

Excitation	transition	contribution (%)	Irreps initial	Irreps final	μх	μу	μz	polarization	FMO
1	H-1 -> L	47.52	Au	B3g	0.12	0	0	Х	$\Delta k=1$
	$H \to L+1$	52.62	B1u	B2g				Х	$\Delta k = 1$
2	H-1 -> L+1	51.15	Au	B2g	0	-0.18	0	у	$\Delta k = 1$

	H -> L	48.60	B1u	B3g				У	$\Delta k = 1$
3	H-4 -> L+1	12.58	B1u	B2g	3.27	0	0	х	$\Delta k \ge 1$
	H-1 -> L	48.22	Au	B3g				х	$\Delta k = 1$
	H -> L+1	39.86	B1u	B2g				Х	$\Delta k = 1$
	L+1 -> H	2.46	B2g	Blu				х	$\Delta k = 1$
4	H-1 -> L+1	49.12	Au	B2g	0	-3.65	0	у	$\Delta k = 1$
	H -> L	52.30	B1u	B3g				у	$\Delta k = 1$
5	H-3 -> L+2	4.98	B2g	Au				/	$\Delta k = 1$
	H-2 -> L+1	91.50	B3g	B2g				/	$\Delta k = 1$
	H -> L+2	2.08	Au	A1u	-0.01	0.00	0.00	Z	$\Delta k \ge 1$
6	H-5 -> L	80.03	B3g	B2g				у	$\Delta k \ge 1$
16	H-5 -> L	85.33	B1u	Au				у	$\Delta k \ge 1$
18	H-4 -> L	96.34	Blu	B3g	0.46	2.10	0	х	$\Delta k \ge 1$

Table S4. Symmetry of the involved orbitals, associated electronic dipole transition moments of the main electronic transitions of [20]orangarin (**200**) calculated at the TDDFT/CAM-B3LYP level of theory using the IEFPCM Scheme (Solvent = CH_2Cl_2) on ground state geometries optimized in vacuum.

ccitation	transition	contribution	Irreps	Irreps	μх	μγ	μz	polarization	FMO
		(%)	initial	final					
1	H -> L	97.55	A2	B1	0.00	0.47	0.00	у	$\Delta k=0$
2	H-1 -> L+1	98.45	A2	A2	0.00	0.00	-2.89	Z	$\Delta k=1$
3	H-1 -> L	6.86	A2	B1	0.00	1.54	0.00	у	$\Delta k=1$
	H-4 -> L	83.88	A2	B1				У	$\Delta k=1$
4	H-3 -> L	-42.60	B1	B1	0.00	0.00	1.32	Z	∆k>1
	H-2 -> L	28.92	B1	B1				Z	$\Delta k=1$
5	H-3 -> L	27.26	B1	B1	0.00	0.00	2.00	Z	∆k>1
	H-2 -> L	66.51	B1	B1				Z	$\Delta k=1$
6	H-4 -> L	67.52	A2	B1	0.00	-1.81	0.00	у	∆k>1
12	H -> L+2	93.84	A2	B1	0.00	-2.40	0.00	у	∆k>1

Table S5. Associated electronic dipole transition moments of the main electronic transitions of [22]smaragdryin (**22S**) calculated at the TDDFT/CAM-B3LYP level of theory using the IEFPCM Scheme (Solvent = CH_2Cl_2) on ground state geometries optimized in vacuum.

excitation	transition	contribution	μх	μγ	μz	polarization	FMO
		(%)					
1	H-1 -> L	52.81	0.16	-0.35	-0.00	У	$\Delta k=1$
	H -> L+1	42.44					$\Delta k=1$
2	H-1 -> L+1	27.12	0.97	-0.18	0.10	Х	$\Delta k=1$
	H -> L	68.23					$\Delta k=1$
3	H-1 -> L	44.57	0.25	4.18	0.01	у	$\Delta k=1$
	H -> L+1	55.86					$\Delta k=1$
4	H-1 -> L+1	69.40	3.73	-0.23	-0.02	Х	$\Delta k=1$
	H -> L	28.69					$\Delta k=1$
5	H-3 -> L	9.47	-0.90	-0.09	-0.00	Х	∆k>1
	H-2 -> L	77.50					∆k>1
8	H -> L+3	61.17	-0.91	-0.04	-0.01	Х	∆k>1
	H-1 -> L+6	9.28					∆k>1
11	H-5 -> L	24.76	0.51	0.37	-0.07	Х	∆k>1
	H-2 -> L+1	11.93					∆k>1
	H-9 -> L	9.68					$\Delta k>1$
	H-1 -> L+4	15.21					∆k>1

Table S6. Symmetry of the involved orbitals, associated electronic dipole transition moments of the main electronic transitions of [22]isosmaragdyrin (**22I**) calculated at the TDDFT/CAM-B3LYP level of theory using the IEFPCM Scheme (Solvent = CH_2Cl_2) on ground state geometries optimized in vacuum.

excitation	transition	contribution	Irreps	Irreps	μх	μγ	μz	polarization	FMO
		(%)	initial	final					
1	H-1 -> L+1	28.61	A''	A'	0.00	0.00	-1.50	Z	$\Delta k=1$
	H -> L	70.93	A'	A''				Z	$\Delta k=1$
2	H-1 -> L	72.54	A''	A''	1.42	0.01	0.00	x,y	$\Delta k=1$
	H -> L+1	26.94	A'	A'				x,y	$\Delta k=1$
3	H-1 -> L	28.57	A''	A''	-4.04	-0.04	0.00	x,y	$\Delta k=1$
	H -> L+1	73.62	A'	A'				x,y	$\Delta k=1$
4	H-1 -> L+1	69.35	A''	A'	0.00	0.00	-3.81	Z	$\Delta k=1$
	H -> L	28.97	A'	A''				Z	$\Delta k=1$
5	H-2 -> L	93.02	A'	A''	0.00	0.00	-1.38	Z	∆k>1
	H-1 -> L+1	2.46	A''	A'				Z	$\Delta k=1$
9	H-4 -> L	29.11	A'	A''	0.00	0.00	1.04	Z	∆k>1
	H-4 -> L+4	29.54	A'	A'				x,y	∆k>1
	H-4 -> L+5	14.13	A'	A'				x,y	∆k>1
12	H-8 -> L	9.18	A'	A''	0.00	0.00	0.72	Z	∆k>1
	H-6 -> L	38.48	A'	A''				Z	$\Delta k>1$

Table S7. Properties of the main electronic transitions of neutral unsubstituted [22]sapphyrin (**22Sp**) calculated at the TDDFT/CAM-B3LYP level of theory using the IEFPCM Scheme (Solvent = CH_2Cl_2) on ground state geometries optimized in vacuum.

excitation	transition	contribution(%)	λ^{a}	$f_{\infty}{}^{b}$	E ^c	polarization	assignement
1	$H \rightarrow L$	31.19	648.88	0.008	1.91	у	Q
	$H \rightarrow L+1$	24.82					
	$H-1 \rightarrow L$	23.46					
	$H-1 \rightarrow L+1$	20.93					
2	$H \rightarrow L$	29.26	609.01	0.013	2.04	Х	Q
	$H-1 \rightarrow L$	26.15					
	$H \rightarrow L+1$	25.86					
	$H-1 \rightarrow L+1$	18.74					
3	$H-1 \rightarrow L$	51.41	379.57	1.468	3.27	у	В
	$H \rightarrow L+1$	49.66					
4	$H-2 \rightarrow L$	59.72	369.48	1.625	3.36	Х	В
	$H \to \Gamma$	39.73					
5	$H-3 \rightarrow L$	37.76	311.63	0.160	3.98	Х	
	$H-2 \rightarrow L$	31.88					
	$H-3 \rightarrow L+1$	8.98					
6	$H-2 \rightarrow L+1$	51.32	306.47	0.070	4.05	У	
	$H-2 \rightarrow L$	15.45					
	$H-3 \rightarrow L+1$	13.04					
8	$H-2 \rightarrow L$	29.13	279.85	0.067	4.43	Х	
	$H \rightarrow L+2$	19.33					
	$H-3 \rightarrow L$	15.57					
	$\text{H-2} \rightarrow \text{L+1}$	13.21					

^{*a*} Absorption wavelength (λ in nm). ^{*b*} Oscillator strength (f_{osc}).^{*c*} Vertical transition energies (*E* in eV).

Table S8. Properties of the main electronic transitions of neutral unsubstituted [18]porphycene (**18Py**) calculated at the TDDFT/CAM-B3LYP level of theory using the IEFPCM Scheme (Solvent = CH_2Cl_2) on ground state geometries optimized in vacuum.

excitation	transition	contribution(%)	λ^{a}	$f_{\circ x}{}^{b}$	E^{c}	polarization	assignement	FMO
1	$H \rightarrow L$	79.76	570.98	0.161	2.17	Х	Q	$\Delta k=1$
	$H \rightarrow L+1$	17.70						$\Delta k=1$
2	$H-1 \rightarrow L+1$	83.93	542.80	0.237	2.28	У	Q	$\Delta k=1$
	$H \to L$	14.16						$\Delta k=1$
3	$H-2 \rightarrow L$	96.45	351.00	0.000	3.53	Х		∆k>1
4	$H-2 \rightarrow L$	80.48	350.13	0.027	3.54	Х		∆k>1
	$H \rightarrow L+1$	15.71						$\Delta k=1$
5	$\text{H-1} \rightarrow \text{L+1}$	64.68	315.98	0.785	3.92	У	В	$\Delta k=1$
	$\mathrm{H} \to \mathrm{L}$	15.46						$\Delta k=1$
	$H \rightarrow L+1$	10.96						$\Delta k=1$
6	$H \rightarrow L+1$	44.79	309.66	0.877	4.00	Х	В	$\Delta k=1$
	$H-1 \rightarrow L+1$	15.45						$\Delta k=1$
	$H-4 \rightarrow L+1$	14.89						$\Delta k>1$
9	$H-4 \rightarrow L$	80.87	286.46	0.420	4.33	X		∆k>1
	$H-1 \rightarrow L+1$	6.08						$\Delta k=1$

^{*a*} Absorption wavelength (λ in nm). ^{*b*} Oscillator strength (f_{osc}).^{*c*} Vertical transition energies (*E* in eV).

Table S9. Properties of the main electronic transitions of neutral unsubstituted [16]porphyrin (**16P**) calculated at the TDDFT/CAM-B3LYP level of theory using the IEFPCM Scheme (Solvent = CH_2Cl_2) on ground state geometries optimized in vacuum.

excitation	transition	contribution(%)	λ^{a}	$f_{\circ \infty}{}^{b}$	E^{c}	polarization	assignement	FMO
1	$H \rightarrow L$	97.77	761.93	0.000	1.63	/	Q	$\Delta k=0$
2	H-1→ L	84.33	527.32	0.000	2.35	/		$\Delta k=1$
	$H-5 \rightarrow L$	7.40						$\Delta k>1$
3	$H-7 \rightarrow L$	43.29	418.24	0.008	2.96	х		∆k>1
	$H-2 \rightarrow L$	21.64						$\Delta k=1$
	$H-3 \rightarrow L$	11.77						$\Delta k=1$
4	H-6→ L	43.32	418.24	0.008	2.96	У		∆k>1
	$H-3 \rightarrow L$	21.61						$\Delta k=1$
	$H-2 \rightarrow L$	11.77						$\Delta k=1$
5	H-4→ L	89.62	415.69	0.000	2.98	Z		∆k>1
	$H-3 \rightarrow L+2$	3.12						∆k>1
	$H-2 \rightarrow L+1$	3.12						∆k>1
10/11 ^d	$H \rightarrow L+1$	75.85	316.08	0.166	3.92	y/x		$\Delta k=1$
	H -8 \rightarrow L	16.54						∆k>1
12/13 ^d	$H-8 \rightarrow L$	58.04	293.76	0.677	4.22	y/x	В	∆k>1
	$H \rightarrow L+1$	9.85						$\Delta k=1$
	$H-2 \rightarrow L$	6.95						$\Delta k=1$
18/19 ^d	H-4→ L+1	62.97	248.08	0.176	4.99	x/y		∆k>1
	$H-4 \rightarrow L+2$	7.67						∆k>1
	$H-2 \rightarrow L+3$	6.48						∆k>1

^{*a*} Absorption wavelength (λ in nm). ^{*b*} Oscillator strength (f_{osc}).^{*c*} Vertical transition energies (*E* in eV). ^{*d*} Due to the S4 symmetry, there are degenerated orbitals and thus some electronic transition with the same excitation energy, wavelength and oscillator strength.

Table	e S10.	Propertie	es of the	e main	electronic	transit	ions	of neutral	unsubstituted	[20]po	rphyrin (2	20P)	calculat	ed at
the T	DDF	Г/САМ-Е	B3LYP	level	of theory	using	the	IEFPCM	Scheme (Sol	vent =	CH ₂ Cl ₂)	on	ground	state
geom	etries	optimize	d in vao	cuum.										

excitation	transition	contribution(%)	λ^{a}	$f_{\infty}{}^{b}$	E^{c}	polarization	assignement	FMO
1	$H \rightarrow L$	98.22	928.99	0.000	1.33	/	Q	$\Delta k=0$
2	$H \rightarrow L+1$	94.59	361.36	0.466	3.43	Х		$\Delta k=1$
	$H-2 \rightarrow L$	3.74						$\Delta k=1$
3	$H \rightarrow L+2$	88.83	340.02	0.000	3.66	/		∆k>1
	${\rm H} ightarrow {\rm L+8}$	3.81						∆k>1
4	$H-1 \rightarrow L$	81.74	326.41	0.231	3.80	У		$\Delta k=1$
	$H \rightarrow L+3$	9.92						∆k>1
5	$H-2 \rightarrow L$	93.97	306.21	0.964	4.05	Х	В	$\Delta k=1$
	$H \rightarrow L+1$	3.98						$\Delta k=1$
6	$H \rightarrow L+3$	71.42	302.43	0.518	4.10	У		∆k>1
	$\text{H-1} \rightarrow \text{L}$	13.52						$\Delta k=1$
	$H \rightarrow L+4$	5.45						∆k>1
7	$H-4 \rightarrow L$	79.78	285.29	0.264	4.35	У		$\Delta k=1$
	$H \rightarrow L+3$	5.37						∆k>1
	$H-2 \rightarrow L+2$	3.52						∆k>1

^{*a*} Absorption wavelength (λ in nm). ^{*b*} Oscillator strength (f_{osc}).^{*c*} Vertical transition energies (*E* in eV).

V. Frequency dispersion of the nonlinear optical properties of unsubstituted porphyrinoids

Figure S3. Frequency dispersion of β_{HRS} in 16N.

Figure S4. Frequency dispersion of β_{HRS} in 16P.

Figure S5. Frequency dispersion of β_{HRS} in 18P.

Figure S6. Frequency dispersion of β_{HRS} in **20P**.

Figure S7. Frequency dispersion of β_{HRS} in 18Py.

Figure S5. Frequency dispersion of β_{HRS} in 200.

Figure S6. Frequency dispersion of β_{HRS} in 22S.

Figure S7. Frequency dispersion of β_{HRS} in 22I.

Figure S8. Frequency dispersion of β_{HRS} in 22Sp.

Table S11.	$\beta_{\text{\tiny HRS}}$ and	depolarization	ratio (DR) of	unsubstituted	Hückel	porphyrinoids	computed	at	different
wavelength u	sing CA	M-B3LYP/6-31	1+g(d,p) i	n ga	s-phase and in	(solvent).			

	β _{HRS} (-2ω,ω,ω)					D	R		
ω	0	0.413	0.583	0.653	0	0.413	0.583	0.653	
16N (C ₂)	115.1	124.1	214.0	119.5	1.53	1.52	0.96	1.15	
	(211.1)	(190.2)	(296.5)	(225.6)	(1.54)	(1.59)	(1.07)	(1.18)	
16 D (S.)	118	123	130	134	1.50	1.50	1.50	1.50	
101 (34)	(198)	(176)	(222)	(229)	(1.50)	(1.50)	(1.50)	(1.50)	
$19D(D_{e1})$	0.0	0.0	0.0	0.0	а	а	а	а	
10Γ (D_{2h})	(0.0)	(0.0)	(0.0)	(0.0)	-	-	-	-	
$19D_{\rm W}(C_{\rm eff})$	1	1	2	2	а	а	а	а	
10Fy(C2h)	(3)	(4)	(5)	(6)	-	-	-	-	
20D (C)	0	0	0	2	а	а	а	а	
$20\Gamma(Ci)$	(0)	(0)	(1)	(3)	-	-	-	-	
$200(C_{2})$	1307.9	1744.7	3309.4	23375.9	3.67	3.70	3.22	1.73	
200 (C_{2v})	(2981.7)	(4021.7)	(7804.9)	(86032.0)	(3.89)	(3.93)	(3.34)	(1.65)	
228 (C.)	1280.5	1498.4	1782.5	1967.1	6.22	6.20	6.19	6.18	
225 (CI)	(3846.3)	(4607.9)	(5628.5)	(6306.6)	(6.15)	(6.19)	(6.25)	(6.29)	
221 (C)	1149.9	1419.8	1871.9	2255.3	3.41	4.12	4.22	3.83	
$\mathbf{ZZI}\left(\mathbf{Cs}\right)$	(3002.2)	(3830.5)	(5304.1)	(6628.6)	(2.77)	(3.26)	(3.23)	(2.90)	
22Sn(C)	516	553	596	623	1.66	1.71	1.76	1.77	
$\mathbf{22Sp}\left(C_{s}\right)$	(1279)	(1400)	(1551)	(1652)	(1.78)	(1.89)	(2.03)	(2.11)	

^{*a*} DR is not reported since β_{HRS} equals 0.

	β//(-2ω,ω,ω)					γ _{//} (-2	ω,ω,ω,0)	
System	0	0.413	0.583	0.653	0	0.413	0.583	0.653
$16N(C_{\rm e})$	24.8	24.6	9.96	-28.9	111	136	447	25
$16N(C_2)$	(-52.8)	(-68.9)	(-42.9)	(-59.28)	(247)	(287)	(1021)	(-1)
16D (S.)	0	0	0	0	162	175	192	204
IOF (54)	(0)	(0)	(0)	(0)	(355)	(321)	(430)	(461)
19D (D.,)	0.0	0.0	0.0	0.0	89	95	99	102
101 (D_{2h})	(0.0)	(0.0)	(0.0)	(0.0)	(20)	(195)	(207)	(240)
$19D_{\rm eff}(C_{\rm eff})$	0	2	2	1	-34	-51	-76	-94
$\mathbf{lory}(\mathbb{C}_{2h})$	(4)	(5)	(7)	(8)	(-246)	(-326)	(-444)	(-528)
$\mathbf{DD}(C)$	0	0	0	0	199	230	306	728
$20P(C_i)$	(0)	(0)	(0)	(1)	(499)	(586)	(798)	(1722)
$200(C_{1})$	-1691.9	-2188.9	-3828.1	-22466.4	254	330	608	5087^{c}
200 (C _{2v})	(-3956.3)	(-5181.1)	(-9208.8)	(-81579.9)	(649)	(883)	(1796)	(37351)
225(C)	-1937.5	-2258.7	-2676.3	-2946.8	322	372	435	476
$225(C_1)$	(-5762.1)	(-6880.7)	(-8379.1)	(-9372.9)	(976)	(1168)	(1426)	(1601)
221(C)	-1368.9	-1747.8	-2329.2	-2783.1	78	79	73	65
$\mathbf{Z}\mathbf{Z}\mathbf{I}\left(\mathbf{C}_{s}\right)$	(-3200.9)	(-4283.6)	(-6047.1)	(-1067.0)	(61)	(29)	(-48)	(-122)
225-(C)	-231	-260	-293	230	168	188	213	230
$225p(C_s)$	(-686)	(-806)	(-961)	(-1061)	(475)	(554)	(660)	(735)

Table S12. Longitudinal component of first and second hyperpolarizability of unsubstituted Hückel porphyrinoids computed at different wavelength using CAM-B3LYP/6-311+g(d,p) in gas-phase and in (solvent).

III. Cartesian coordinates of optimized structures at M06/6-31G(d,p) level of theory

1) Unsubstituted [16]norcorrole

С	-2.65066	-2.81561	-0.42107
Н	-2.99782	-3.75725	-0.82865
С	2.43604	-3.03841	-0.2866
Н	2.71145	-4.03831	-0.60296
С	3.23234	-1.92455	-0.28021
Н	4.26849	-1.85386	-0.58918
С	-2.43587	3.03801	-0.28741
Н	-2.71087	4.0377	-0.60478
С	-2.52428	-0.63211	0.16723
С	-3.36779	-1.60281	-0.39186
Н	-4.36835	-1.43795	-0.77085
С	0.10671	3.23914	0.0052
С	2.65081	2.81597	-0.42063
Н	2.99803	3.7578	-0.82772
С	3.36799	1.60325	-0.39169
Н	4.36859	1.43863	-0.77065
С	-1.12079	2.61506	0.14864
С	-1.37189	-2.56838	0.11372
С	-0.10693	-3.23919	0.00492
С	-2.39573	0.8368	0.18181
С	-3.232	1.92405	-0.28125
Н	-4.26777	1.85287	-0.59137

1.1206	-2.61503	0.14772
2.5244	0.63214	0.1666
2.39573	-0.83683	0.18113
1.37181	2.56844	0.11352
1.19008	-1.27063	0.47547
1.38982	1.26843	0.51928
-1.38997	-1.26863	0.52038
-1.19055	1.27096	0.47758
0.51443	0.80759	0.76436
-0.51429	-0.80761	0.76423
-0.11983	-4.26729	-0.35485
0.11939	4.26701	-0.35523
	1.1206 2.5244 2.39573 1.37181 1.19008 1.38982 -1.38997 -1.19055 0.51443 -0.51429 -0.11983 0.11939	1.1206 -2.61503 2.5244 0.63214 2.39573 -0.83683 1.37181 2.56844 1.19008 -1.27063 1.38982 1.26843 -1.38997 -1.26863 -1.19055 1.27096 0.51443 0.80759 -0.51429 -0.80761 -0.11983 -4.26729 0.11939 4.26701

2) Unsubstituted [18]porphyrin

	0 00001000 0 00001000	1 10074000
H		1.102/4000
H		-1.102/4000
С	-0.00004900 -4.25641000	0.6/80/000
С	-0.00004900 -4.25641000	-0.6/80/000
N	0.0000000 0.00001000	-2.11720000
Ν	0.0000000 0.00001000	2.11720000
Ν	0.0000000 2.02784000	0.0000000
С	-0.00005900 -2.85394000	1.08463000
С	-0.00005900 -2.85394000	-1.08463000
Ν	0.00002100 -2.02784000	0.0000000
С	-0.00003900 -2.44007000	-2.42189000
С	-0.00003900 -2.44007000	2.42189000
С	0.00000000 -1.12951000	-2.89620000
С	0.00000000 -1.12951000	2.89620000
С	0.00004100 -0.68602000	-4.26071000
С	0.00004100 -0.68602000	4.26071000
С	0.00005100 0.68601000	-4.26072000
С	0.00005100 0.68601000	4.26072000
С	0.00002100 1.12952000	-2.89623000
С	0.00002100 1.12952000	2.89623000
С	0.00001100 2.44007000	-2.42189000
С	0.00001100 2.44007000	2.42189000
С	0.0000000 2.85393000	-1.08463000
С	0.0000000 2.85393000	1.08463000
С	0.0000000 4.25640000	-0.67807000
С	0.0000000 4.25640000	0.67807000
Н	0.00001100 -3.21846000	-3.17876000
Н	0.00001100 -3.21846000	3.17876000
Н	0.00006100 -1.34686000	-5.11658000
Н	0.00006100 -1.34686000	5.11658000
Н	-0.00006900 -5.10404000	1.35146000
Н	-0.00006900 -5.10404000	-1.35146000
Н	0.00007100 1.34684000	-5.11661000
Н	0.00007100 1.34684000	5.11661000
Н	0.00002100 3.21847000	-3.17875000
Н	0.00002100 3.21847000	3.17875000
Н	0.0000000 5.10404000	-1.35145000
Н	0.0000000 5.10404000	1.35145000

3) Unsubstituted [20]orangarin

С	0.	0.72133	-2.92667
С	0.	-0.72133	-2.92667
С	0.	-1.62376	-3.99572
С	0.	-2.91491	-3.45848
С	0.	-2.79875	-2.0637
С	0.	-3.79086	-1.04497
С	0.	-3.54236	0.30576
N	0.	-2.25051	0.80966
С	0.	-2.35989	2.1276
С	0.	-1.12612	2.88854
С	0.	-0.70778	4.21781
С	0.	0.70778	4.21781
С	0.	1.12612	2.88854
С	0.	2.35989	2.1276
N	0.	2.25051	0.80966
С	0.	3.54236	0.30576
С	0.	3.79086	-1.04497
С	0.	2.79875	-2.0637
С	0.	2.91491	-3.45848
С	0.	1.62376	-3.99572
Ν	0.	1.45121	-1.77996
С	0.	-4.48258	1.40373
С	0.	-3.74285	2.54939
N	0.	-1.45121	-1.77996
N	0.	0.	2.13314
С	0.	3.74285	2.54939
С	0.	4.48258	1.40373
Н	0.	4.82683	-1.38088
Н	0.	-4.82683	-1.38088
Н	0.	-1.16706	-0.79903
Н	0.	-5.56276	1.31052
Н	0.	-4.09708	3.5734
Н	0.	-1.35257	5.08766
Н	0.	1.35257	5.08766
Н	0.	4.09708	3.5734
Н	0.	5.56276	1.31052
Н	0.	3.84948	-4.00554
Н	0.	1.35068	-5.04308
Н	0.	-1.35068	-5.04308
Н	0.	-3.84948	-4.00554
Н	0.	1.16706	-0.79903
Н	0.	0.	1.1265

4) Unsubstituted [22]smaragdyrin

N	-2.05256	1.32949	-0.0623
С	-1.79564	2.63669	0.05432
С	-0.46702	3.1241	0.14911
С	0.03854	4.41248	0.35364
С	1.42634	4.33467	0.32444
С	1.78975	2.99542	0.10134
С	3.08595	2.46357	-0.04455

С	3.48494	1.15407	-0.14659
С	4.80997	0.69582	-0.41098
С	4.8202	-0.66667	-0.39237
С	3.50113	-1.1355	-0.11661
С	3.11544	-2.44635	0.01746
С	1.81998	-2.98241	0.15765
С	1.45369	-4.30757	0.42819
С	0.0646	-4.39245	0.40875
С	-0.44123	-3.12282	0.12523
С	-1.78068	-2.68407	0.00007
С	-2.97276	-3.43301	-0.08142
С	-4.02418	-2.53854	-0.20331
С	-3.48856	-1.2343	-0.19348
С	-4.10399	0.02398	-0.22479
С	-3.42539	1.23008	-0.14522
С	-4.02395	2.5399	-0.08702
Н	-5.08746	2.7466	-0.13384
С	-2.99987	3.4282	0.04672
Н	-3.05508	4.50803	0.12165
Н	-0.56402	5.29635	0.52072
Н	2.13367	5.14335	0.46199
Н	-0.5409	-5.26688	0.61174
Н	5.64203	1.35944	-0.61464
Н	5.66165	-1.32354	-0.5782
Н	2.15616	-5.10511	0.63615
Н	-3.02736	-4.51426	-0.06958
Н	-5.07748	-2.77424	-0.29228
N	0.61345	2.28063	0.02886
Н	0.51518	1.34556	-0.33953
N	0.64187	-2.26661	0.01379
Н	0.6095	-1.39595	-0.50096
N	-2.12264	-1.36929	-0.08249
Н	-1.56261	-0.51827	0.02549
N	2.67781	0.00461	-0.02385
Н	1.95101	0.00594	0.68502
Н	3.88572	3.20004	-0.09113
Н	3.92129	-3.1772	0.00139
Н	-5.19031	0.04669	-0.28553

5) Unsubstituted [22]isosmaragdyrin

С	0.00337	-0.57312	3.65982
С	-0.16382	-1.71804	4.47775
С	-0.13457	-2.84381	3.67152
С	0.05893	-2.41423	2.34298
С	0.11739	-3.03308	1.07535
N	0.19487	-2.21822	0.
С	0.11739	-3.03308	-1.07535
С	0.05893	-2.41423	-2.34298
С	-0.13457	-2.84381	-3.67152
С	-0.16382	-1.71804	-4.47775
С	0.00337	-0.57312	-3.65982
С	-0.01484	0.7778	-4.00082
С	-0.01439	1.88123	-3.15819
С	0.097	3.23384	-3.56178
С	0.06401	4.0295	-2.44706

С	-0.07165	3.20739	-1.2966
С	-0.10228	3.71801	0.
С	-0.07165	3.20739	1.2966
С	0.06401	4.0295	2.44706
С	0.097	3.23384	3.56178
С	-0.01439	1.88123	3.15819
С	-0.01484	0.7778	4.00082
N	0.13474	-1.04826	2.37625
N	0.13474	-1.04826	-2.37625
N	-0.08926	1.89534	-1.75771
N	-0.08926	1.89534	1.75771
С	0.0133	-4.40653	0.6871
С	0.0133	-4.40653	-0.6871
Н	-0.03485	1.00672	-5.06426
Н	-0.08031	4.80733	0.
Н	-0.03485	1.00672	5.06426
Н	0.45434	-0.55536	1.55436
Н	0.45434	-0.55536	-1.55436
Н	-0.53496	1.14549	-1.2486
Н	-0.53496	1.14549	1.2486
Н	0.22362	3.54386	4.59196
Н	0.15596	5.10794	2.40222
Н	-0.32364	-1.6836	5.54871
Н	-0.25943	-3.87415	3.97939
Н	-0.06274	-5.26011	1.35123
Н	-0.06274	-5.26011	-1.35123
Н	-0.25943	-3.87415	-3.97939
Н	-0.32364	-1.6836	-5.54871
Н	0.22362	3.54386	-4.59196
Н	0.15596	5.10794	-2.40222

6) Bis(pentafluorophenyl)-[16]nocorrole

С	-7.57527	0.01013	0.0256
С	2.95571	-2.34355	-1.02992
Н	3.94009	-2.56426	-1.42521
С	-6.86842	-0.93561	0.75633
С	7.57547	-0.012	-0.01768
С	-5.48088	-0.94412	0.71118
С	2.97579	2.47627	0.87039
Н	3.98615	2.79894	1.09461
С	1.828	3.19922	1.0534
Н	1.74658	4.21294	1.42691
С	6.88819	-0.94406	0.74935
С	-6.89102	0.94216	-0.74418
С	-2.97638	-2.47602	-0.87288
Н	-3.98703	-2.7998	-1.09417
С	6.87148	0.93483	-0.74977
С	5.48381	0.94438	-0.70874
С	-5.50388	0.9218	-0.77409
С	0.73234	-2.41346	-0.61128
С	5.501	-0.92262	0.77522
С	-4.76132	-0.02123	-0.05496
С	1.77867	-3.08094	-1.26268
H	1.68982	-3.97338	-1.86841

С	4 76121	0 02147	0 05457
C	-3 28791	-0.01408	-0.0831
C	-2 95513	2 34355	1 02666
н	-3 93899	2 5631	1 42387
C	-1 77805	3 0811	1 2588
е н	-1 6886	3 97259	1 86586
C	-2 57771	-1 17795	-0 36323
C	2.57771	-1 22435	-0 24929
C	3 28777	0 01533	0.24929
C	-0 73904	-2 33916	-0 63683
C	-1 82864	-3 19901	-1 05611
ч	-1 7/758	-1 21371	-1 /2701
C	2 5775	1 17957	0 35692
C	2.J77J _0 73247	2 /1503	0.55092
C	0 72006	2.41303	0.00403
C	0.73000	2.34070	0.03013
L NI	-2.0129	1.22302	0.24303
IN N	1.20313	1.1011/	0.22385
N	-1.29135	1.36966	-0.04303
N	1.290/4	-1.36/18	0.03546
N	-1.20304	-1.1/854	-0.23324
H	-0.74091	0.60454	-0.42527
H _	0.74009	-0.60149	0.41616
F,	-4.85145	-1.84582	1.45006
F	-7.52027	-1.81536	1.5005
F	-8.89515	0.02204	0.06036
F	-7.56498	1.83579	-1.45082
F	-4.89237	1.81106	-1.54163
F	4.85735	1.84712	-1.44886
F	7.52618	1.81467	-1.49135
F	8.89542	-0.02494	-0.04854
F	7.55934	-1.83874	1.45735
F	4.88667	-1.81191	1.54047

7) Tetrakis(pentafluorophenyl)-[18]porphyrin

9	4 00700	0 (7(0))	
C	-4.23/22	0.6/606	-0.14655
C	-4.2378	-0.67238	-0.1468
N	-0.00089	-2.0926	0.00011
Ν	0.00102	2.09261	0.00032
Ν	2.01604	-0.00084	0.01968
С	-2.84323	1.07778	-0.0642
С	-2.84418	-1.07535	-0.06445
Ν	-2.01589	0.00085	-0.01959
С	-1.12362	-2.87467	-0.02146
С	-1.12106	2.8756	-0.02122
С	-0.68372	-4.23251	-0.01005
С	-0.68003	4.23308	-0.01006
С	0.68019	-4.23307	0.01032
С	0.68386	4.23252	0.01011
С	1.12118	-2.87558	0.02162
С	1.12375	2.87466	0.02158
С	2.84336	-1.07777	0.06444
С	2.84432	1.07534	0.06447
С	4.23737	-0.67605	0.1468
С	4.23797	0.67238	0.14672

-2.44084	2.42208	-0.05385
-2 44314	2.41999	-0 05439
2 44098	-2.41990 -2.42205	0.05430
-1,33967	-5.09291	-0.01306
-1.33529	5.09401	-0.01319
-5.08897	1.34155	-0.21047
-5.09014	-1.3371	-0.21095
1.33543	-5.09401	0.0135
1.33983	5.09292	0.01311
5.08912	-1.34155	0.21081
5.09032	1.33712	0.21071
0.00061	1.0/5/5	0.0001/
-0 00047	-1 07575	-0 00025
3 73206	4 23656	-0.00023 1 22053
4.30919	3.70633	-1.0271
4.72044	5.21178	1.25737
5.30875	4.67042	-1.01098
5.51218	5.42643	0.13653
-3.49821	3.46723	-0.08256
-4.30601	3.70978	1.02762
-3.72807	4.24013	-1.21978
-5.30478	4.6/469	1.UI161 -1.25651
-5 50739	5 43119	-1.23031 -0.13573
-3.50131	-3.46414	-0.08343
-4.30925	-3.70641	1.02672
-3.73195	-4.2364	-1.22092
-5.30887	-4.67043	1.01041
-4.7204	-5.21154	-1.25796
-5.51224	-5.4263	-0.1372
3.49020	-3.40714	1 2203
4.30578	-3.70994	-1.02727
4.71575	-5.21614	1.25692
5.30441	-4.675	-1.01138
5.50721	-5.43139	0.13599
-4.91674	-5.93004	-2.35278
-2.99534	-4.05278	-2.30893
-6.45/64	-6.34933	-0.16245
-6.00102 -4.13842	-3 00263	2.07955
-4.13589	3.0054	2.13791
-6.05744	4.88278	2.08074
-6.45196	6.35508	-0.16068
-4.91126	5.93528	-2.35106
-2.99149	4.05634	-2.30779
4.13548	-3.00573	-2.13764
6.U56/4 6.45165	-4.88331 -6 3557	-2.U8U/ 0 16092
0.4J10J 4 91149	-5,93514	2,35152
2.99198	-4.05595	2.30845
2.99548	4.05306	2.30858
4.91681	5.93043	2.35209
6.45753	6.34952	0.16157

ООООНННННННННОПОООООООООООООООООООООПАНАННННННАЧАААААААА

F	6.0614	4.87817	-2.08019
F	4.1383	3.00243	-2.13758

8) Bis(pentafluorophenyl)-[20]orangarin

N	1.40726500	-0.74450500	-0.09952300
С	0.76224900	-1.89359500	-0.19751800
С	-0.68208600	-1.92274100	-0.29329900
С	-1.56438900	-2.91587500	-0.69195100
С	-2.85825500	-2.36951300	-0.65994900
С	-2.76144900	-1.04402800	-0.24344500
С	-3.80883900	-0.06072800	-0.10071200
С	-3.57915600	1.29351100	-0.10168800
С	-4.43998900	2.39732600	0.25535300
С	-3.70260200	3.54345300	0.27736200
C	-2.34733700	3.20297100	-0.06459200
C	-1.12002400	3.86250800	-0.06682200
N	-0.02746600	3,03923600	-0.20627100
C	1,03446700	3,81901500	-0.05609900
C	2 32049300	3 14883900	-0 03142900
C	3 66517200	3 53990500	0 03734800
C	4 43478100	2 37318800	0.05235900
C	3 55263400	1 27769600	0.00131300
C	3 77076100	-0.12588700	-0.01012300
C	2 75975600	-1 07/52600	-0.06351700
N	2.75975000	1 80063900	-0.00331700
N C	_0 71138000	5 21296100	0.051/4000
N	-2.24280000	J.21290100	-0.22701400
IN C	-2.34380000	1.00/J0400 5 10050200	-0.32791400
N	1 41652000	0.70662000	0.13344100
N Q	-1.41655800	-0.79663900	-0.03290100
C	1.65329500	-3.02666600	-0.21959300
C II	2.91002300	-2.50/81200	-0.1268/800
H	-1.01110500	-0.0084/400	0.456/3/00
н	-5.48568800	2.29178800	0.51/35300
H	-4.03976500	4.53572300	0.54/44300
H	-1.35/52/00	6.07215600	0.29320100
H	1.33885400	6.02411400	0.30819600
H	4.02567200	4.55995900	0.06564100
H	5.51532200	2.309/5500	0.09295600
H	3.84749000	-3.05113500	-0.10309500
H	1.36324900	-4.06889200	-0.28033300
H	-1.285/0400	-3.91300700	-1.00718300
Н	-3.//86/500	-2.86152600	-0.94899000
Н	1.45299800	1.21980900	-0.10312800
Н	-1.50737600	1.43895100	-0.70226500
С	5.18301400	-0.58032600	0.01616400
С	5.77869200	-1.16635600	-1.09958700
С	5.97225500	-0.41665800	1.15359200
С	7.10448300	-1.58006800	-1.08715900
С	7.29991700	-0.82248400	1.18675800
С	7.86637600	-1.40575500	0.06073500
С	-5.19169800	-0.55701100	0.03088800
С	-5.54955100	-1.45020500	1.04617800
С	-6.19854000	-0.17785200	-0.86155700
С	-6.84032300	-1.94374900	1.16983500

С	-7.49728700	-0.65735400	-0.75154100
С	-7.81821100	-1.54474300	0.26695900
F	8.02552700	-0.66318600	2.28319500
F	5.45774700	0.12678500	2.24805900
F	9.12921000	-1.79577200	0.08267600
F	7.64700900	-2.13152000	-2.16219400
F	5.08447800	-1.33567100	-2.21613300
F	-5.93195600	0.65109700	-1.86269000
F	-8.42623600	-0.28314100	-1.61761200
F	-9.05109700	-2.00501600	0.38024700
F	-7.14971300	-2.77736700	2.15054400
F	-4.65328700	-1.83232300	1.94369500

9) Tris(pentafluorophenyl)-[22]smaragdyrin

N	2.73888	1.29661	-0.11418
С	2.45335	2.59741	-0.22644
С	1.1206	3.06964	-0.29791
С	0.62243	4.34659	-0.57688
С	-0.76182	4.28757	-0.51044
С	-1.13369	2.97183	-0.17792
С	-2.43613	2.4714	0.06824
С	-2.81375	1.14857	0.23119
С	-4.08852	0.68584	0.66543
С	-4.09838	-0.6764	0.63884
С	-2.83061	-1.13866	0.18488
С	-2.46944	-2.45756	-0.03515
С	-1.16993	-2.95834	-0.29947
С	-0.80575	-4.24568	-0.72048
С	0.58096	-4.31926	-0.7586
С	1.08882	-3.07953	-0.36822
С	2.4334	-2.65812	-0.25696
С	3.61644	-3.42544	-0.26094
С	4.68219	-2.55226	-0.13017
С	4.16217	-1.24203	-0.05188
С	4.80634	0.01145	-0.0178
С	4.11295	1.22093	-0.06457
С	9.099	-0.0139	0.08691
С	8.43522	0.44344	-1.04379
С	7.04654	0.44709	-1.07025
С	6.28754	0.01295	0.01664
С	6.98383	-0.44212	1.13645
С	8.37156	-0.46034	1.18243
С	4.68505	2.54524	-0.12317
Н	5.74115	2.78438	-0.08312
С	3.6425	3.41144	-0.24007
Н	3.67804	4.4922	-0.30802
Н	1.22788	5.20791	-0.8281
Н	-1.45787	5.09506	-0.69794
С	-3.51686	3.48558	0.14437
С	-3.57601	4.42226	1.17765
С	-4.57585	5.38424	1.24124
С	-5.55571	5.42132	0.25722
Н	1.18258	-5.16192	-1.07443

С	-5.52742	4.50132	-0.78244
С	-4.51374	3.55342	-0.83024
Н	-4.88882	1.33541	0.99623
Н	-4.90775	-1.32738	0.94374
С	-3.55465	-3.46762	0.00729
С	-3.59649	-4.45318	0.9955
С	-4.59578	-5.4165	1.03226
С	-5.59441	-5.40572	0.06668
С	-5.58494	-4.43627	-0.92748
С	-4.57093	-3.48737	-0.94967
Н	-1.50548	-5.02578	-0.9916
Н	3.65743	-4.50483	-0.33147
Н	5.73378	-2.80856	-0.10037
N	0.03572	2.24627	-0.09217
Н	0.12799	1.33903	0.34215
N	0.0074	-2.24712	-0.13288
Н	0.05806	-1.42694	0.45763
N	2.79328	-1.3548	-0.11042
Н	2.24341	-0.49111	-0.18436
N	-2.02684	0.00304	0.0097
Н	-1.35576	0.0113	-0.752
F	9.00383	-0.89278	2.26341
F	6.32082	-0.869	2.2035
F	10.42082	-0.02492	0.12009
F	9.12918	0.86041	-2.09252
F	6.44942	0.87255	-2.17544
F	-2.6663	4.40733	2.14222
F	-4.60892	6.25672	2.23755
F	-6.5144	6.3299	0.31133
F	-6.45832	4.53979	-1.72408
F	-4.51347	2.69964	-1.8455
F	-2.66967	-4.48475	1.94348
F	-4.61066	-6.33542	1.98635
F	-6.55287	-6.31564	0.0954
F	-6.53348	-4.42946	-1.85211
F	-4.58867	-2.58616	-1.92284

10) Tris(pentafluorophenyl)-[22]isosmaragdyrin

N	-2.78404600	-1.35794600	0.08455100
С	-2.41805900	-2.65678100	0.37880400
С	-1.08695700	-3.08542200	0.31388300
С	-0.59457800	-4.40649700	0.33047400
С	0.77268900	-4.35141900	0.18964300
С	1.15591000	-2.98876500	0.10553300
С	2.44560800	-2.44818900	0.04946800
С	2.79564700	-1.08750400	0.04018000
С	4.18398800	-0.67766300	0.11193900
С	4.18377500	0.67025000	0.12510800
С	2.79662400	1.08120200	0.04294000
С	2.44633500	2.44049100	-0.00704200
С	1.15844900	2.97658600	-0.12224500
С	0.77942000	4.33449200	-0.27290200
С	-0.58578700	4.38491000	-0.43465700
С	-1.08027800	3.06599600	-0.37225400
С	-2.41075500	2.63696900	-0.44583900

С	-3.56823900	3.30841400	-0.87670200
С	-4.63266300	2.42883300	-0.78993200
C	-4.15860000	1.19372800	-0.29914900
C	-4.83477400	-0.00736800	-0.03512600
C	-4 16180400	-1 20929000	0 23300600
C	-9 12849200	-0 00915900	-0.06737600
C	-8 /2/85900	-0.84854900	-0.92118300
C	-7 03670100	-0.835//900	-0 90732200
C	-6 30990800	-0 00777100	-0.04649100
C	-7 05012300	0.00777100	0.040401700
C	-8 43838600	0.01002000	0.00201700
C	-4 64345800	-2 /5138200	0.79059200
U U	-5 67083600	-2.45150200	0.09050400
п С	-3 58162300	-2.04307100	0.97907400
	-3.38102300	-3.33433400	1 14025000
п 	-3.01010200	-4.33307000	1.14023900
п 	-1.21420000	-5.29146700	0.40095200
H C	1.45/32/00	-5.18816500	0.14421800
	3.548/6900	-3.44633900	0.03469000
C	3.89322000	-4.1/159300	1.1/422900
C	4.91563700	-5.11189000	1.16/22800
C	5.62908100	-5.33816200	-0.00254500
H	-1.20231700	5.26685700	-0.55352300
C	5.31347300	-4.62824200	-1.153/4300
C	4.28149900	-3.69900000	-1.12421900
H	5.038/9400	-1.33963800	0.16935500
H	5.03865100	1.33126600	0.19054300
	3.54130400	3.44/00900	0.02954300
C	3.76184500	4.23230100	1.16001500
	4.76786800	5.18902400	1.20/24400
	5.58/24300	5.3/516500	0.10165900
	5.39243100	4.60950000	-1.04063900
	4.3/3/8200	3.66558900	-1.06/24300
H	1.46622300	5.1/0/3500	-0.26692000
H	-3.59122500	4.32059100	-1.26035700
H	-5.65588700	2.61954000	-1.08828700
N	-0.00262400	-2.24907800	0.15513600
H	0.04822700	-1.23863000	0.24519200
N	0.00043000	2.23548300	-0.16344400
H	0.05577500	1.22291200	-0.22/93400
N	-2.78285700	1.34404500	-0.13260300
H	-2.29686500	0.82046800	0.58572800
N	1.95999800	-0.00308900	0.00433200
E'	-9.10//1200	1.62436400	1.619/1800
F.	-6.43133500	1.62029700	1.66142900
F.	-10.45022900	-0.01000400	-0.07704900
F.	-9.08109300	-1.64231800	-1.75423600
F	-6.40482200	-1.63480400	-1./5/35900
E.	3.2368/900	-3.9/61/600	2.31119000
F.	5.21908800	-5./8663000	2.26685500
F.	6.60699100	-6.22866400	-0.02072000
F.	5.99235700	-4.84/49000	-2.27038300
F.	4.00618500	-3.0388/900	-2.24094300
F.	2.995/2400	4.08168000	2.23320400
F.	4.95367400	5.91934400	2.29/42100
F	6.55056600	6.28096800	0.13587300
F.	6.17066500	4./9195100	-2.09753600

F	4.21152600	2.95713800	-2.17673200
Н	-2.28/2/500	-0.82240100	-0.61/48500
11) [16]porphyrin			
С	2.85188700	-0.96679200	0.02911000
Ν	2.05046300	0.05369000	-0.14461700
С	2.82395300	1.17528300	0.13869000
С	2.34232700	2.44618200	0.16004300
С	0.96678800	2.85187000	-0.02911100
N	-0.05369400	2.05045300	0.14463900
C	-1 17528500	2 82394400	-0 13868400
C	-2 44618800	2 34232900	-0 16003400
C	-2.44010000	2.34232900	-0.10003400
C N	-2.05100000	0.96679200	0.02911000
N	-2.05046300	-0.05369000	-0.14461700
C	-2.82395300	-1.1/528300	0.13869000
C	-2.34232700	-2.44618200	0.16004200
C	-0.96678800	-2.85187000	-0.02911100
Ν	0.05369400	-2.05045300	0.14463900
С	1.17528500	-2.82394400	-0.13868400
С	2.44618800	-2.34232900	-0.16003400
С	4.21904100	-0.56168200	0.39311600
С	4.19950300	0.78621600	0.44500700
С	0.56168500	4.21902700	-0.39310700
С	-0.78621200	4.19948100	-0.44504700
С	-4.21904100	0.56168200	0.39311400
С	-4.19950300	-0.78621600	0.44500800
С	-0.56168500	-4.21902700	-0.39310700
С	0.78621200	-4.19948100	-0.44504700
Н	-5.05229900	1.23141000	0.57736400
Н	-5.00494400	-1.46613800	0.69867000
Н	-3.06366400	-3.24744000	0.32962100
Н	-1.23141900	-5.05228100	-0.57735900
Н	1.46612900	-5.00491700	-0.69873700
н	3 24744000	-3 06367600	-0 32960600
н	5 05229800	-1 23141100	0 57736700
н Н	5 00494500	1 46613800	0.69866700
п п	3 06366400	3 24744000	0.32962100
п	1 221/1000	5 05229100	-0.57725000
п	1.23141900	J.UJZZ0IUU 5.00401700	-0.57755900
п	-1.40012900	3.00491700	-0.09873700
Н	-3.24/43900	3.06367600	-0.32960700
12) [20]porphyrin			
C	-2 96630800	1 09285400	0 04858200
C	-4 28369400	0 64799000	0.03208600
C	-4 26536700	-0.75533500	-0 03065900
C	-2 93690500	-1 16577600	-0.04963600
C	-2.93090500	-1.10377000	-0.04903000
C	-2.40900000 -1 11500200	-2.49/33/00	-0.04090400
	-1.11300300	-2.09344/00	-0.0/094300
	-0.62214/00	-4.23803300	0.12220900
	U./28491UU	-4.22133600	0.12384500
	1.18861500	-2.00/25300	-0.06998400
C	2.4/299/00	-2.43/41800	-0.04529900
C	2.96635700	-1.09289400	-0.04840300
С	4.28372700	-0.64799400	-0.03229600

С	4.26537000	0.75535500	0.03009700
С	2.93691500	1.16576400	0.04928600
С	2.40964900	2.49730600	0.04660500
С	1.11509100	2.89545200	0.07077800
С	0.62212000	4.23805200	-0.12315400
С	-0.72851500	4.22159900	-0.12343900
С	-1.18866800	2.86732600	0.07027800
С	-2.47300700	2.43739100	0.04573300
N	-2.16694800	-0.02624000	-0.00109700
N	0.02655900	-2.04323500	-0.20688800
N	2.16696500	0.02617900	0.00132200
N	-0.02656000	2.04320900	0.20695000
Н	5.11706900	1.42396600	0.04876800
Н	-5.15254600	1.29407900	0.05309600
Н	-1.39721000	5.05694500	-0.29692100
Н	1.27032400	5.08947100	-0.29629900
Н	-5.11706800	-1.42393700	-0.04960500
Н	-1.27038500	-5.08943500	0.29630300
Н	1.39720400	-5.05681400	0.29758000
Н	5.15261000	-1.29404000	-0.05332700
Н	-1.15865500	-0.01234400	-0.00388600
Н	0.02057400	-1.50912200	-1.07379500
Н	1.15867200	0.01231000	0.00388800
Н	-0.02040200	1.50927900	1.07397600
Н	-3.23670700	3.20953800	-0.02735900
Н	-3.15387300	-3.28832300	0.02591100
Н	3.23659800	-3.20963200	0.02805700
Н	3.15384800	3.28827800	-0.02659300

13) [18]porphycene

С	2.91824700	-1.33876200	0.0000700
С	3.19170900	-2.74045600	-0.00008900
С	1.98896900	-3.40476100	0.00004200
С	0.95975600	-2.42144100	0.00014100
С	-0.44244800	-2.54124400	0.00003000
Ν	-1.22593200	-1.44542300	-0.00026700
С	-2.50676800	-1.88777900	-0.00017000
С	-3.66612700	-1.08946800	-0.00026500
С	-3.84615900	0.28679100	-0.00019500
С	-2.91824600	1.33879000	-0.00015800
С	-3.19173500	2.74041200	0.00023300
С	-1.98897000	3.40473800	0.00038800
С	-0.95977400	2.42145100	-0.00009000
С	0.44243600	2.54122100	0.00001000
Ν	1.22594300	1.44539600	0.00002400
С	2.50682800	1.88778700	-0.00003100
С	3.66613700	1.08953700	-0.00007700
С	3.84613500	-0.28676800	-0.00005300
Ν	1.56304100	-1.20413800	0.00016000
С	-1.23178900	-3.74758500	0.00034200
С	-2.52974800	-3.33673300	0.00014100
Ν	-1.56306500	1.20412300	-0.00031000
С	1.23181200	3.74760000	0.00008800
С	2.52975900	3.33673100	-0.00004300

Н	1.11682400	-0.26357800	0.00018800
Н	-0.84906400	-4.76157100	0.00063800
Н	1.82566500	-4.47526800	0.00006500
Н	-3.42457500	-3.94932800	0.00038800
Н	4.18539300	-3.17199700	-0.00021700
Н	-4.59003100	-1.66861800	-0.00018400
Н	4.88207100	-0.62462500	-0.00018400
Н	-4.88208400	0.62466200	-0.00001300
Н	4.59005100	1.66866600	-0.00018200
Н	-1.82569800	4.47524900	0.00067500
Н	0.84905600	4.76157200	0.00008700
Н	-4.18541300	3.17196100	0.00050100
Н	3.42461100	3.94928600	-0.00008300
Н	-1.11686300	0.26352400	-0.00044000

14) [22]sapphyrin

С	-0.79720000	-3.56946200	0.00000000
С	-1.73796000	-4.63907000	0.00000000
С	-3.00105800	-4.10920600	0.0000000
С	-2.87371600	-2.69963500	0.00000000
С	-3.88969400	-1.75244700	0.00000000
С	-3.72584700	-0.37460900	0.0000000
Ν	-2.51358800	0.26340100	0.00000000
С	-2.82131100	1.57077800	0.0000000
С	-1.87189100	2.61416800	0.0000000
С	-2.12332900	4.00671200	0.00000000
С	-0.90975100	4.65449800	0.0000000
С	0.10710000	3.67021500	0.0000000
С	1.48286900	3.87030800	0.0000000
С	2.49017300	2.91619100	0.0000000
Ν	2.33753000	1.55454200	0.0000000
С	3.60420100	1.07944500	0.0000000
С	4.03389100	-0.25451800	0.0000000
С	3.35258600	-1.45407700	0.00000000
С	3.99063600	-2.72905500	0.00000000
С	3.02589900	-3.68695000	0.00000000
С	1.74423900	-3.05105600	0.00000000
С	0.58041900	-3.80226300	0.00000000
С	-4.24801700	1.80103600	0.0000000
С	-4.81679700	0.56879800	0.0000000
Ν	-1.52501800	-2.40787700	0.00000000
Ν	-0.51759600	2.44732900	0.0000000
С	3.88608600	3.30080000	0.0000000
С	4.58799800	2.14673700	0.0000000
Ν	1.99006800	-1.69044600	0.0000000
Н	-1.45395500	-5.68437000	0.0000000
Н	-3.94676500	-4.63661000	0.0000000
Н	-4.74139700	2.76553900	0.0000000
Н	-5.86977800	0.31061600	0.00000000
Н	-4.90697100	-2.13989900	0.00000000
Н	-0.72587600	5.72169500	0.00000000
Н	-3.10773300	4.45591100	0.0000000
Н	1.80160300	4.91160200	0.0000000
Н	4.24991800	4.32219100	0.0000000

Н	5.66260300	2.00160300	0.00000000
Н	5.11618900	-0.38006700	0.0000000
Н	3.15236900	-4.76268700	0.0000000
Н	5.06551600	-2.86061200	0.0000000
Н	0.79973300	-4.86912500	0.0000000
Н	0.0000000	1.57464000	0.0000000
Н	1.32203600	-0.93222300	0.0000000
Н	-1.23442100	-1.43086900	0.00000000