Electron-transporting Thiazole-based polymer synthesized through direct (hetero)arylation polymerization

Patricia Chávez¹, Ibrahim Bulut¹, Sadiara Fall², Olzhas Ibraikulov², Christos L. Chochos³, Jérémy Bartringer², Thomas Heiser², Patrick Lévêque² and Nicolas Leclerc¹,*

- ¹ ICPEES UMR 7515, Université de Strasbourg-CNRS, 25 rue Becquerel, 67087 Strasbourg, France; leclercn@unistra.fr
- ² ICube UMR 7357, Université de Strasbourg-CNRS, 23 rue du Loess, 67037 Strasbourg, France; patrick.leveque@unistra.fr
- ³ Advent Technologies SA, Patras Science Park, Stadiou Street, Platani-Rio, 26504, Patra, Greece; chochos@eie.gr

*Correspondence: leclercn@unistra.fr; Tel.: +33-368-852-709

Supplementary Information.

1. Polymer ¹H NMR traces

Figure S1. ¹H NMR spectrum of the P(TzDPP-Th) batch B1 in CDCl₃

Figure S2. ¹H NMR spectrum of the P(TzDPP-Th) batch B2 in CDCl₃

Figure S3. ¹H NMR spectrum of the P(TzDPP-Th) batch B3 in C₂D₂Cl₄

Figure S4. ¹H NMR spectrum of the P(TzDPP-Th) batch B4 in C₂D₂Cl₄

2. Polymer SEC chromatograms

Figure S5. SEC chromatogram of the P(TzDPP-Th) batch B1

Figure S6. SEC chromatogram of the P(TzDPP-Th) batch B2

Figure S7. SEC chromatogram of the P(TzDPP-Th) batch B3

Figure S8. SEC chromatogram of the P(TzDPP-Th) batch B4

3. Cyclic voltammogram

Figure S9. Cyclic voltammogram of P(TzDPP-Th) reference in thin-film recorded in acetonitrile + 0.2 M [NBu₄][PF₆]. Cyclic voltammogram of ferrocene vs SCE. Platinum working electrode, sweep-rate: 100 mV.s⁻¹.

4. OFET output and transfer characteristic

Figure **S10**. Output characteristics of the OFETs whose channel is **B2** (a), **B3** (b) and **B4** (c). Ids is the drain-source current, Vds the voltage difference between drain and source and V_{gs} the voltage difference between gate and source.

Figure **S11**. Transfer characteristics measured on the same **B2**, **B3** and **B4** OFETs at a drain-source voltage difference (V_{ds}) of 80 V. The electron mobility is directly proportional to the slope of the square-root of I_{ds} as a function of V_{gs} using the standard formalism of OFETs in the saturation regime.