SUPPLEMENTARY MATERIAL

Establishment and Phytochemical Analysis of a Callus Culture from *Ageratina pichinchensis* (Asteraceae) and Its Anti-Inflammatory Activity

Mariana Sánchez-Ramos ^{1,2}, Silvia Marquina Bahena ¹, Antonio Romero-Estrada ¹, Antonio Bernabé-Antonio ³, Francisco Cruz-Sosa ⁴, Judith González-Christen ⁵, Juan José Acevedo-Fernández ⁶, Irene Perea-Arango ² and Laura Alvarez ^{1,*}

- ¹ Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Chamilpa, Cuernavaca, Morelos 62209, México; marianasan_06@hotmail.com (M.S.-R.); smarquina@uaem.mx (S.M.B.); are@uaem.mx (A.R.-E.)
- ² Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Chamilpa, Cuernavaca, Morelos 62209, México; iperea@uaem.mx
- ³ Centro Universitario de Ciencias Exactas e Ingenierías, Departamento de Madera, Universidad de Guadalajara, Celulosa y Papel, Km. 15.5 Carretera Guadalajara-Nogales, Zapopan, Jalisco 45100, México; bernabe_aa@hotmail.com
- ⁴ Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Del. Iztapalapa, Ciudad de México 09340, México; cuhp@xanum.uam.mx
- ⁵ Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Chamilpa, Cuernavaca, Morelos 62209, México; judith.gonzalez@uaem.mx
- ⁶ Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Calle Leñeros s/n, Col. Los Volcanes, Cuernavaca, Morelos 62359, México; juan.acevedo@uaem.mx
- * Correspondence: lalvarez@uaem.mx

Abstract

A protocol was established to produce bioactive compounds in a callus culture of *Ageratina pichinchensis* by using 1 mg L⁻¹ NAA with 0.1 mg L⁻¹ KIN. The phytochemical study of the EtOAc extract obtained from the callus biomass, allowed the isolation and characterization of eleven secondary metabolites, of which dihydrobenzofuran (**5**) and 3-epilupeol (**7**), showed important anti-inflammatory activity. Compound **5** inhibits *in vitro* the secretion of NO (IC₅₀ = 36.96 ± 1.06 μ M), IL-6 (IC₅₀ = 73.71 ± 3.21 μ M), and TNF (IC₅₀ = 73.20 ± 5.99 μ M) in RAW 264.7 macrophages, as well as the activation of NF- κ B (40 % at 150 μ M) in RAW-blue macrophages, while compound **7** has been described that inhibit the *in vivo* TPA-induced ear edema, and the in vitro production of NO, and the PLA2 enzyme activity. In addition, quantitative GC-MS analysis showed that the anti-inflammatory metabolites **5** and **7** were not detected in the wild plant. Overall, our results indicated that *A. pichinchensis* can be used as an alternative biotechnological resource for obtaining anti-inflammatory compound **5** and its production in a callus culture of *A. pichinchensis*.

Keywords: *Ageratina pichinchensis*; dihydrobenzofuran; 3-epilupeol; callus culture; antiinflammatory.

List of content

Figure S1. GC-MS analyses of **5** in the EtOAc extract of callus ,identification of compounds was obtained by analysis of the peaks at $R_T = 20.67$ min.

Figure S2. GC-MS analyses of 7 in the EtOAc extract of callus ,identification of

compounds was obtained by analysis of the peaks at $R_T = 38.70$ min.

- Figure S3. GC-MS analysis of pure compound 5.
- Figure S4. GC-MS analysis of pure compound 7.
- Figure S5. GC-MS analysis of compound 5 in wild plant.
- Figure S6. GC-MS analysis of compound 7 in wild plant.
- Figure S7. ¹H NMR spectrum (400 MHz; CDCl₃) of compound **1**.
- Figure S8. ¹³C NMR spectrum (100 MHz, CDCl₃) of compound **1**.
- Figure S9. ¹H NMR spectrum (400 MHz; CDCl3) of compound **2**.
- Figure S10. ¹³C NMR spectrum (100 MHz, CDCl₃) of compound **2**.
- Figure S11. ¹H NMR spectrum (500 MHz; CDCl₃) of compound **5**.
- Figure S12. ¹³C NMR spectrum (125 MHz, CDCl₃) of compound **5**.
- Figure S13. ¹H NMR spectrum (400 MHz; CDCl₃) of compound **7**.
- Figure S14. ¹³C NMR spectrum (100 MHz, CDCl₃) of compound **7**.

Figure S1. GC-MS analyses of **5** in the EtOAc extract of callus, identification of compound was obtained by analysis of the peak at $R_T = 20.67$ min.

Figure S2. GC-MS analyses of 7 in the EtOAc extract of callus, identification of compound was obtained by analysis of the peak at $R_T = 38.7$ min.

Figure S3. GC-MS analysis of pure compound **5.**

Figure S4. GC-MS analysis of pure compound 7.

Figure S5. GC-MS analysis of compound 5 in wild plant.

Figure S6. GC-MS analysis of compound 7 in wild plant.

Figure S7. ¹H NMR spectrum (400 MHz; CDCl₃) of compound 1.

Figure S8. ¹³C NMR spectrum (100 MHz, CDCl₃) of compound **1.**

Figure S9. ¹H NMR spectrum (400 MHz; CDCl₃) of compound **2.**

Figure S10. ¹³C NMR spectrum (100 MHz, CDCl3) of compound **2.**

Figure S11. ¹H NMR spectrum (500 MHz; CDCl₃) of compound **5.**

Figure S12. ¹³C NMR spectrum (125 MHz, CDCl3) of compound **5.**

Figure S13. ¹H NMR spectrum (400 MHz; CDCl₃) of compound **7.**

Figure S14. ¹³C NMR spectrum (100 MHz, CDCl₃) of compound **7.**