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Abstract: Cyclodextrins (CDs) are a family of cyclic oligosaccharides that constitute one of the most
widely used molecular hosts in supramolecular chemistry. Encapsulation in the hydrophobic cavity
of CDs positively affects the physical and chemical characteristics of the guests upon the formation of
inclusion complexes. Such a property is interestingly employed to retain volatile guests and reduce
their volatility. Within this scope, the starting crucial point for a suitable and careful characterization
of an inclusion complex is to assess the value of the formation constant (Kf), also called stability
or binding constant. This task requires the application of the appropriate analytical method and
technique. Thus, the aim of the present paper is to give a general overview of the main analytical tools
used for the determination of Kf values for CD/volatile inclusion complexes. This review emphasizes
on the advantages, inconvenients and limits of each applied method. A special attention is also
dedicated to the improvement of the current methods and to the development of new techniques.
Further, the applicability of each technique is illustrated by a summary of data obtained from
the literature.

Keywords: cyclodextrin; fluorescence; formation constant; HPLC; ITC; NMR; phase solubility;
SH-GC; TOC; UV-Visible; volatiles

1. Introduction

The field of supramolecular encapsulation using cyclodextrins (CDs) continues to grow [1].
The use of CD is particularly interesting with volatile compounds [2–6]. Indeed, encapsulation in
CDs represents a feasible and efficient tool to retain and modulate the release of the encapsulated
volatiles [7–10]. The volatile guests include mainly volatile organic compounds (VOCs), aroma and
flavors, anesthetics, etc.

The main feature of CDs is the formation of inclusion complexes with the guests (Figure 1).
The most fundamental parameter in the quantitative analysis of the binding strength between the CD
and guest is the determination of the formation constant (Kf) of each inclusion complex. Kf values
are determined mainly to answer two different types of questions. The first one, which deals with
the encapsulation in an absolute mean, is, can a CD encapsulate the guest? The second question is a
comparative one, that is, what is the binding strength? Which inclusion complex is more stable?
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approaches suitable for low soluble compounds, such as volatiles, have been also developed, in 
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Figure 1. Schematic illustration of the formation of an inclusion complex between a cyclodextrin (host)
and a guest.

Although a wide number of analytical methods are available for the characterization of inclusion
complexes in solution and a large progress in analytical methodologies has been accomplished [3,11],
few could be applied to CD/volatile inclusion complexes. This is mainly due to the low aqueous
solubility of most of the volatile compounds.

In general, the applied methods can be divided into four main groups: spectroscopic methods:
UV-Visible (UV-Vis) spectroscopy [12–14], fluorescence spectroscopy [15,16] and nuclear magnetic
resonance spectroscopy (NMR) [2]; chromatographic methods: static headspace coupled to the gas
chromatography (SH-GC) [7–9,17–21] and high-performance liquid chromatography (HPLC) [22],
calorimetric methods: isothermal titration calorimetry (ITC) [23–25] and solubility studies [10,26–35].
Lately, a new Total Organic Carbon (TOC) method was also developed [36].

The aim of this paper is to provide an overview of the research that has explored the assessment
of Kf values for CD/volatile guest inclusion complexes. The experimental procedures and the obtained
data are outlined in more detail. Finally, the advantages and limitations of the applied methods are
critically discussed.

2. Characterization of Cyclodextrin Inclusion Complexes

The initial step in the characterization of an inclusion complex is the determination of the
stoichiometry and formation constant (Kf) values. If various stoichiometries could be observed
in the literature (Figure 2), most of the inclusion complexes present a 1:1 (CD:guest) stoichiometry [2].
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Figure 2. Schematic representation of the main stoichiometries of the inclusion complexes.

All the inclusion complexes described in this review possess a 1:1 stoichiometry. In this case,
the Kf could be expressed as:

Kf =
[Inclusion complex]

[Host][Guest] = [CD/G]
[CD][G]

= [CD/G]
([CD]T−[CD/G])([G]T−[CD/G])

= [CD/G]

[CD]T[G]T−[CD]T[CD/G]−[CD/G][G]T+[CD/G]2
(1)

with [G]T the initial guest concentration and [G] the free guest concentration. [CD]T the initial CD
concentration and [CD] the free CD concentration.
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Various treatments could be used for the resolution of this equation. These treatments will be
described in the corresponding sections of the analytical techniques.

Titration experiments using a constant concentration of a species (titrate) and increasing amounts
of the other species (titrant) are generally employed. Nevertheless, some alternative approaches
suitable for low soluble compounds, such as volatiles, have been also developed, in particular
competitive methods and phase solubility studies.

2.1. Volatilization Method

The first method used for the determination of Kf between a CD and a volatile guest was based on
the fact that volatile compounds could be driven out from an aqueous solution to gaseous phase by an
inert gas bubbling at a constant flow rate in the aqueous solution [37–39]. The volatilization rate of the
guest is supposed to be decreased in the presence of the CD. This decrease will depend on the strength
of the association with the CD. This method was applied firstly to determine the Kf for iodine and
then of aliphatic, cyclic or aromatic hydrocarbons [38,39]. The obtained results are listed in Table 1.

Table 1. Formation constants (Kf, M−1) for benzene and alkylbenzenes [38].

Guest α-CD β-CD γ-CD

Benzene 17 120 12
Toluene 33 140 20

Ethylbenzene 110 330 36
o-Xylene 22 300 34
m-Xylene 40 160 27
p-Xylene 72 240 8

This technique, developed by Sanemasa’s group, has used home-made device and was no longer
used after the 1990s. From this time, Sanemasa’s group has worked on the developement of static
headspace-gas chromatography (SH-GC) methods.

2.2. Chromatographic Methods

2.2.1. Static Headspace-Gas Chromatography

Static headspace coupled to gas chromatography (SH-GC) is widely employed to analyze volatile
compounds in various fields [40,41]. This technique allows the quantification of a volatile present
in a gaseous phase in contact and equilibrium with a condensed phase (liquid or solid) in a closed
vial [42]. Although this technique has been used firstly at the end of the 1980s for the determination
of Kf values for volatiles with CD [43], its development really began at the end of the 1990s with the
work of Sanemasa and Saito [44,45]. Afterwards, this technique has been widely applied to determine
Kf values for CD/aroma inclusion complexes [8,9,17].

Different treatments were successively developed for the determination of Kf values. The first
SH-GC methods required a calibration curve to evaluate the concentration of the free guest in the
presence of CD. The method developed by Saito [45] used a fixed CD concentration and various
concentrations of the volatile guest.

[G] =
[G]T

1 + Kf [CD]
(2)

with [G]T the initial guest concentration and [G] the free guest concentration. [G]T is known and [G]
could be obtained from the calibration curve.

In the meantime, Sanemasa’s group [46] developed a method using a fixed guest concentration
and different CD concentrations. The plot of A0/ACD versus [CD] gives a straight line, the slope of
which corresponds to the Kf value:
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[CD] = [CD]T −
(A0−ACD)

K′
(3)

where [CD]T is the initial CD concentration, [CD] is the free CD concentration, A0 is the chromatographic
peak area of the volatile guest in water (absence of CD), ACD stands for the peak area in the presence of
CD and K’ is the slope of the calibration curve.

In 2007, Fourmentin et al. [47] proposed a method that did not require a calibration curve.
In this method, a fixed guest concentration and different CD concentrations are used. An algorithmic
treatment based on the Equation (4) is used to calculate the Kf value from the experimental data [48]:

[CD/G] = −1
2

√√√√[( 1
Kf

+ [CD]T + [G]T

)2
− 4[CD]T[G]T

]
+

1
2

(
1

Kf
+ [CD]T + [G]T

)
(4)

The use of gas chromatography allows the quantification but also the separation of volatile
compounds. To take benefit from this property, authors have developed methods for the determination
of simultaneous Kf values. Saito reported the simultaneous determination of the Kf of four aromas [49]
and six alkanols [50]. This method is based on Equation (2). The guest’s concentration and a calibration
curve are required. More recently, Fourmentin et al. [51] have developed a method that precludes the
knowledge of the guest’s concentration based on the following equation:

Kf =
(A0−ACD)− 1

[CD]T
(5)

where A0 and ACD are the chromatographic peak areas of each guest in the absence and the presence
of CD, respectively and [CD]T is the initial CD concentration.

This method finds particular usefulness in the determination of Kf values of individual
components in a complex mixture where the concentration of each component is not known. This is for
example the case of essential oils. Kfoury et al. successfully applied this method for the determination
of the Kf values of aroma compounds with different CD in a wide variety of essential oils [9,52]. Table 2
represents the data collected from the literature on the determination of Kf values using SH-GC.

Table 2. Formation constants (Kf, M−1) for CD inclusion complexes with volatile guests obtained by
static headspace-gas chromatography (SH-GC).

Guest α-CD β-CD γ-CD CRYSMEB RAMEB HP-β-CD SBE-β-CD

trans-Anethole 710 a

1163 a

497 a

630 a

1040 a
96 a 877 a

740 a
1110 a

1553 a
981 a

1042 a -

Benzene 19 b

20 c
128 d

111 c 9 c - 110 c
139 e

94 d

99 c
-

Benzyl acetate - - - - - 230 f 124 g

Benzyl alcohol 52 h 64 h 56 h 53 h 63 h 12 g

1-Butanol
73 i

74 j

81 k
14 k 2 k - - - -

iso-Butylbenzene - - - - - 7665 l -

tert-Butylbenzene - 9503 d - - - 8224 l

1863 d -

tert-Butylcyclohexane - 4092 d - - - 2036 d -

Camphene 598 a 4825 a 360 a 6625 a 6057 a 3033 a -

n-Butylbenzene - - - - - 3410 l -
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Table 2. Cont.

Camphor 184 a 2058 a 1048 a 1901 a 1194 a 1280 a

Carbon
tetrachloride 40 m 164 m - 215 m 238 m 218 m -

β-Caryophyllene - 28,674 a 4004 a 11,488 a 14,274 a 4960 a -

Chloroform 34 m 60 m - 55 m 93 m 61 m -

Cinnamaldehyde 236 h 450 h - 595 h 1696 h 969 h -

Citronellol 223 h 3141 h - 3290 h 4048 h 3290 f

2578 h -

Cyclohexane 164 c 468 c

341 d <10 c - 474 c 363 c

227 d -

p-Cymene 140 a 2505 a 88 a 2549 a 3543 a 2213 a -

Dichloromethane 21 m 9 m - 9 m 12 m 10 m -

Ethylbenzene 131 c 392 d

289 c 125 c - 320 c 303 d

248 c -

Ethylcyclohexane 2017 c 646 c 8 c - 738 c 630 c -

Eucalyptol 13 a 615 a 742 a 688 a 673 a 334 a -

Eugenol 94 h 264 h - 454 h 568 h 270 f

462 h -

Estragole 478 a 939 a - 1661 a 1761 a 1581 a -

Geraniol 90 h 528 h - 977 h 1100 h 1340 f

712 h -

1-Heptanol
1493 j

1586 n

2460 k
985 k 37 k - - - -

1-Hexanol
935 j

509 n

860 k
260 k 13 k - - - -

Isoeugenol 85 a 225 a - 263 a 514 a 441 a -

cis-Jasmone - - - - - 1020 f -

Lilial 4387 a 56,567 a - 147,617 a 166,338 a 112,205 a -

Limonene 1289 o 3162 o 116 o

70 p 3668 o 4386 o
4630 f

5630 q

2787 o
4125 p

Linalool 32 o 366 o 138 o 816 o 833 o 940 f

596 o -

Linalyl acetate - - - - - 1330 f -

Menthol 82 a 1731 a 105 a 2396 a 1928 a 1079 a -

Menthone 35 a 656 a 83 a 989 a 748 a 664 a -

Methylcyclohexane 141 c 332 c

295 d 9 c - 374 c 253 c

202 d -

Methyl heptine
carbonate 2905 a 226 a - 539 a 485 a 325 a -

α-iso-Methylionone 71 h 9869 h - 15,632 h 13,176 h 5750 f

9789 h -

Myrcene 212 o 1431 o 138 o

126 p 959 o 1286 o
1290 f

1360 q

575 o
1116 p

1-Nonanol 13,400 k 4900 k 141 k - - - -

cis-Ocimene 42 a 432 a 20 a 622 a 593 a 538 a -

trans-Ocimene 46 a 538 a 26 a 789 a 640 a 627 a -



Molecules 2018, 23, 1204 6 of 23

Table 2. Cont.

1-Octanol 2532 j

4820 k 1910 k 67 k - - - -

1-Pentanol

302 i

286 k

188 n

291 k

61 k 3 k - - - -

2-Pentanol 115 k 25 k 3 k - - - -

α-Pinene 1778 o 2588 o 214 o

217 p 2999 o 2395 o
5400 f

4750 q

1637 o
1892 p

β-Pinene 1018 o 4587 o 633 o

404 p 5141 o 4450 o
6650 f

7070 q

3151 o
4904 p

Pulegone 30 a 332 a 82 a 1025 a 796 a 676 a -

Sabinene hydrate 108 a 2108 a 708 a 1308 a 1882 a 772 a -

Sevoflurane 18 r 150 r 9 r - - 163 r -

γ-Terpinene 37 a 1309 a 40 a 1950 a 2066 a 1488 a -

α-Terpineol 126 a 1143 a 89 a 1223 a 1287 a 761 a -

Thymol - - - - - 806 a -

Toluene
36 b

38 s

29 c

142 s

158 d

172 c
33 c - 171 s

144 c

182 e

163 s

131 d

170 c

-

o-Xylene 18 b

10 c 184 c 57 c - 225 c 263 e

187 c -

m-Xylene 60 b

36 c 100 c 18 c - 216 c 222 e

167 c -

p-Xylene 124 b

132 c 218 c 32 c - 300 c 323 e

236 c -

CD: cyclodextrin; CRYSMEB: low methylated-β-cyclodextrin; RAMEB: randomly methylated-β-cyclodextrin;
HP-β-CD: 2-hydroxypropyl-β-cyclodextrin; SBE-β-CD: sulfobutylether-β-cyclodextrin. a [2], b [45], c [53], d [51],
e [54], f [55], g [43], h [49], i [56], j [57], k [44], l [58], m [47], n [50], o [17], p [52], q [49], r [59], s [60].

2.2.2. High-Performance Liquid Chromatography

The stability of inclusion complexes is also studied by high-performance liquid chromatography
(HPLC). The application of HPLC to evaluate Kf values requires the modification of the system.
Generally the mobile phase is modified with CD [61]. This implies that the adsorption of CD on
the stationary phase is very weak and, thus, it does not influence its properties. The guest molecule
is injected in the system. It is adsorbed at the surface of the stationary phase and encapsulated
by CD in the mobile phase. The obtained inclusion complexes are not adsorbed on the stationary
phase. The guest that forms the most stable inclusion complex with CD is firstly eluted from the
HPLC column [61,62]. The retention factor (R) of the guest is determined as a function of the CD
concentration. Then, the Kf value is obtained as follows:

R =
R0

1 + Kf[CD]
(6)

where R and R0 are the retention factor observed in the system with and without the CD, respectively.
Kf is the formation constant of the inclusion complex and [CD] is the concentration of CD in the
mobile phase.
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The Kf value of the β-CD/camphor inclusion complex was successfully determined using HPLC
and was equal to 350 M−1 [61]. Kf values for β-CD inclusion complexes with geraniol, (+)-terpineol
and (−)-terpineol were also assessed. They were equal to 334, 413 and 399 M−1, respectively [62].

2.3. Spectroscopic Methods

2.3.1. UV-Visible Spectroscopy

The common approach to determine Kf, using UV-Visible spectroscopy, is the direct titration
method. One component of the complex (generally the CD) is gradually added to a fixed concentration
of the other component of the system (the guest). Meanwhile, the variation in the absorbance peak
of the guest is monitored. The CD are silent (they do not absorb). This reduces the complexity of
the analysis. The obtained experimental results (absorbance values) are then compared and fitted to
binding models to calculate the Kf value. Many researchers still make assumptions based on outdated
linear regression methods to determine Kf. These include Benesi-Hildebrand, Scott and Scatchard
plots (Table 3). The assessment of a Kf value is based on the examination of the slope and intercept of
these plots.

Table 3. Summary of the equations of linear regression methods.

Method Equation

Benesi-Hildebrand a 1
∆i

= 1
Kf×∆max×[CD]i

+ 1
∆max

Scott b [CD]i
∆i

= 1
Kf

+ [CD]i
Scatchard c ∆i

[CD]i
= −Kf × ∆i + Kf × ∆max

a [63], b [64], c [65]. ∆i stands for the experimental variation of the guest
absorbance upon CD addition. ∆max is the experimental variation of the guest
absorbance when it is totally encapsulated. [G] is the concentration of the guest.
[CD]i is the concentration of CD at each titration point.

The Benesi-Hildebrand plot was also used in the literature to calculate Kf values for several
inclusion complexes with volatile guests (Table 4). However, these linear regression approaches
frequently involve assumptions. They mainly presume the concentration of CD at equilibrium to be
equal to its initial concentration. It is also assumed that the variations in the absorbance are proportional
to the complex concentration and that the complex is fully formed (all guest is encapsulated) at the end
of titration (high CD concentrations). Thus, typically when performing a direct titration experiment a
starting molar ratio of [CD]/[guest] equal to 100 is required to perform accurate evaluation of Kf [66].

Some Kf values are much higher or lower than the range of most Kf. This could be related
to the wrong application of linear equations [67], the use of low CD concentrations and thus not
respecting the experimental conditions of linear regression approaches [68] or the incautious choice
of the correct wavelength leading to diffraction phenomena [69]. Also, the inclusion of the guest
in the CD cavity might be associated with a bathochromic or a hypsochromic shift of its maximum
absorbance wavelength. Thus, the measurements should occur at a precise and unique wavelength for
all the spectra.

These linear transformations are now being less exploited in the profit of the non-linear regression.
This approach is readily achieved by the power of computer software equipped with an algorithm.
The algorithm postulates a Kf value and an intrinsic response for the fully complexed species, e.g.,
absorbance values, and compares them to the experimental results. Kf and intrinsic response are varied
until the best fit is obtained.
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Table 4. Formation constant (Kf, M−1) values of CD/volatile guest inclusion complexes determined by
UV-Visible spectroscopy.

Guest Method α-CD β-CD γ-CD CRYSMEB RAMEB HP-β-CD

Acetophenone BH 140 a 188 a - - - -

Allyl isothiocyanate SD - 36 b - - - -

trans-Anethole SD 927 c 542 d - 1039 c 1815 c 845 d

Anisole BH - 209 a - - - -

Anisyl alcohol SD - 107 e - 130 e 125 e 156 e

Benzaldehyde BH 102 a 150 a - - - -

Benzene BH 29 a 194 a - - - -

Benzoic acid BH - 120 f - - - -

Benzonitrile BH 78 a 170 a - - - -

Benzyl alcohol BH 96 a 143 a - - - -

SD 63 e - 57 e 55 e 54 e

Benzyl chloride BH 204 a 280 a - - - -

Bromobenzene BH 540 a 322 a - - - -

Camphor - 3 g 19 g - - - -

Carvacrol SD 454 h 2620 h 999 h 2421 h 3564 h 2154 h

Chlorobenzene BH 112 a 196 a - - - -

Cineole - 6 g 29 g - - - -

Citral - 8 g 31 g - - - -

3,4-Dimethoxy
benzaldehyde BH 98 i 157 i - - - -

N,N-Dimethylaniline BH 172 a 252 a - - - -

Estragole SD 335 j 987 j 52 j 1584 j 1916 j 1508 j

Ethyl benzoate BH 361 a 539 a - - - -

Ethyl phenyl ether BH 171 a 308 a - - - -

N-Ethyl aniline BH 128 a 217 a - - - -

Ethylbenzene BH 104 a 389 a - - - -

Eugenol
BH 4.95 × 104 k

10,633 l 3.96 × 105 k 1.47 × 105 k - - 4555 l

- 5 g 23 g - - - -
SD 350 c 322 e - 401 e 521 e 445 e

Fluorobenzene BH 39 a 91 a - - - -

Furaneol - 1.1 g 7 g - - - -

Geraniol
BH 51 m - - - -

- 9 g 44 g - - - -

4-Hydroxy-3,5-dimethoxy
benzaldehyde BH 269 i 372 i - - - -

p-Hydroxybenzaldehyde BH 72 n - - - -

Iodobenzene BH 1200 a 846 a - - - -

Isoeugenol SD 178 c 304 e - 240 e 547 e 452 e

Limonene - 14 g 55 g - - - -

Menthol - 10 g 35 g - - - -

N-Methylaniline BH 83 a 131 a - - - -

Methyl benzoate BH 213 a 317 a - - - -

Methyl cinnamate - 4 g 20 g - - - -

Nerol BH - 26 m - - -

Nerolidol SD - - - - 8168 o
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Table 4. Cont.

Nitrobenzene BH 89 a 279 a - - - -

Nootkatone - 7 g 32 g - - - -

N-Phenylacetamide BH 103 a 157 a - - - -

Phenol BH 40 a 95 a - - - -

Phenylacetylene BH 86 a 230 a - - - -

Phenylamine BH 15 a 86 a - - - -

Sabinene hydrate SD 108 p 2108 p 708 p 1308 p 1882 p 772 p

α-Terpineol SD 126 p 1143 p 89 p 1223 p 1287 p 761 p

Thymol SD 107 h 1467 h 233 h 2386 h 3337 h 488 h

Toluene BH 36 a 214 a - - - -

o-Vanillin BH 105 i 250 i - - - -

Vanillin
BH 163 i 100 n

296 i - - - -

- 1.6 g 17 g - - - -

p-Vinyl guaiacol - 2 g 17 g - - - -

CD: cyclodextrin; CRYSMEB: low methylated-β-cyclodextrin; RAMEB: randomly methylated-β-cyclodextrin;
HP-β-CD: 2-hydroxypropyl-β-cyclodextrin; SBE-β-CD: sulfobutylether-β-cyclodextrin; BH: Benesi-Hildebrand; SD;
spectral displacement. a [73], b [74], c [75], d [20], e [13], f [76], g [67], h [77], i [78], j [52], k [69], l [68], m [79], n [14], o

[80], p [81].

Moreover, a distinguished analytical improvement of the determination of Kf values was
established by Landy et al. [48]. Authors have used the derivatives of the spectra instead of the
absorption curves to calculate the Kf value. This avoids the difficulties related to experimental errors,
to small spectral variations and to the optical presence of CD. CD could, occasionally, result in very
weak values of absorbance.

The development of these algorithmic treatments solved the problems related to making
assumptions. However, it cannot beat the experimental pitfalls for the application of titration
experiments for CD/volatile guest inclusion complexes; (a) the loss of the volatile compound by
evaporation while collecting a large number of experimental points; the constancy of the guest
concentration is an essential point when measuring the variations in the absorbance, (b) the potential
influences of impurities, (c) the very poor chromophore of volatile compounds and (d) the very poor
solubility of the volatile guests, though the concentration chosen must lie within the region where the
absorption peak is within the limits of the Beer–Lambert Law.

Thus, alternative methodologies that can yield more reliable results were developed. Many studies
focused on the determination of Kf values for CD/guest inclusion complexes by competition with
dyes [70]. The competition is monitored by UV-Visible spectroscopy. This method is also called the
spectral displacement method. It is not restricted to be applied with a precise dye or CD. Though,
the competitive system should be optimized before application. Mainly, the stability (Kf value)
of the CD/competitor (via a direct titration) should be evaluated. Moreover, to obtain accurate
measurements, the selected indicator dye should possess an equal, or higher, Kf with CD than that the
competing guest [71,72]. The most used dyes, employed as competitors, are the phenolphthalein and
the methyl orange. CD reduce the purple phenolphthalein and orange methyl orange solutions upon
encapsulation. The addition of the colorless competing guest leads to the restoration of the color by
expelling the dye from the CD cavity (Figure 3).

The data collected from the differences between the absorbance values allow the evaluation of Kf,
using an algorithmic treatment. The spectral displacement approach seems to be the method of choice
for volatile hydrophobic guests that could not be studied by direct method; (a) the concentration of
the guest may be lower than with the titration method, (b) it may be applied to chromophore-less
guests, and (c) it reduces the loss by volatilization, since the guest is directly added to the competition
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system containing the CD, which allows its solubilization and its retention in solution due to its
inclusion in the cavity. Therefore, this method has been further applied for CD/volatile guest inclusion
complexes. Table 4 summarizes the Kf values determined by UV-Visible spectroscopy and collected
from the literature.

Molecules 2018, 23, x FOR PEER REVIEW  8 of 22 

 

and the methyl orange. CD reduce the purple phenolphthalein and orange methyl orange solutions 

upon encapsulation. The addition of the colorless competing guest leads to the restoration of the color 

by expelling the dye from the CD cavity (Figure 3). 

 

Figure 3. Schematic representation of the spectral displacement method. 

The data collected from the differences between the absorbance values allow the evaluation of 

Kf, using an algorithmic treatment. The spectral displacement approach seems to be the method of 

choice for volatile hydrophobic guests that could not be studied by direct method; (a) the 

concentration of the guest may be lower than with the titration method, (b) it may be applied to 

chromophore-less guests, and (c) it reduces the loss by volatilization, since the guest is directly added 

to the competition system containing the CD, which allows its solubilization and its retention in 

solution due to its inclusion in the cavity. Therefore, this method has been further applied for 

CD/volatile guest inclusion complexes. Table 4 summarizes the Kf values determined by UV-Visible 

spectroscopy and collected from the literature. 

Table 4. Formation constant (Kf, M−1) values of CD/volatile guest inclusion complexes determined by 

UV-Visible spectroscopy. 

Guest Method α-CD β-CD γ-CD CRYSMEB RAMEB HP-β-CD 

Acetophenone BH 140 a 188 a - - - - 

Allyl isothiocyanate SD - 36 b - - - - 

trans-Anethole SD 927 c 542 d - 1039 c 1815 c 845 d 

Anisole BH - 209 a - - - - 

Anisyl alcohol SD - 107 e - 130 e 125 e 156 e 

Benzaldehyde BH 102 a 150 a - - - - 

Benzene BH 29 a 194 a - - - - 

Benzoic acid BH - 120 f - - - - 

Benzonitrile BH 78 a 170 a - - - - 

Benzyl alcohol 
BH 96 a 143 a - - - - 

SD  63 e - 57 e 55 e 54 e 

Benzyl chloride BH 204 a 280 a - - - - 

Bromobenzene BH 540 a 322 a - - - - 

Camphor - 3 g 19 g - - - - 

Carvacrol SD 454 h 2620 h 999 h 2421 h 3564 h 2154 h 

Chlorobenzene BH 112 a 196 a - - - - 

Cineole - 6 g 29 g - - - - 

Citral - 8 g 31 g - - - - 

3,4-Dimethoxy benzaldehyde BH 98 i 157 i - - - - 

N,N-Dimethylaniline BH 172 a 252 a - - - - 

Estragole SD 335 j 987 j 52 j 1584 j 1916 j 1508 j 

Ethyl benzoate BH 361 a 539 a - - - - 

Figure 3. Schematic representation of the spectral displacement method.

2.3.2. Fluorescence Spectroscopy

Fluorescence spectroscopy is a useful technique for studying the formation of CD inclusion
complexes with fluorescent guests in solution. Due to its high sensitivity, fluorescence spectroscopy
allows working with very low guest concentrations [11,82,83]. The CD-induced fluorescence variation
allows monitoring encapsulation and quantification of binding strength (Kf value) with the fluorescent
guest [82].

Generally, titration experiments are carried out. The object is to follow the variation (commonly
enhancement) in the fluorescence intensity of the guest as a function of the CD concentration. As in
the case of the UV-Visible spectroscopy, the next point is to set an equation that relates the measured
fluorescence signal to the total concentration of the CD and the guest. Also, the equations are mostly
simplified or transformed to linear equations: Benesi-Hildebrand, Scott or Scatchard.

In addition, any treatment should be only applied at very low absorbance values where the values
of the fluorescence intensity vary linearly with the binding magnitude.

The first observation of fluorescence enhancement of volatile guests upon inclusion in CD
was reported by Hoshino et al. 1981 [84]. Authors have calculated Kf values for β-CD inclusion
complexes with benzene, phenol, ethoxybenzene, aniline, N-methylaniline, N,N-dimethyl-aniline,
and N,N-diethylaniline (Table 5). Application of fluorimetric studies has been extended to a wide
variety of CD/volatile inclusion complexes. The results are listed in Table 5.

Fluorescence spectroscopy could be considered as a suitable alternative to UV-Visible spectroscopy
due to its lower detection limit. Moreover, the fluorescence intensity enhancement upon CD
encapsulation results in lowering the limits of detection of poorly fluorescent guests [86,87].

Although fluorescence spectroscopy is fast and very sensitive, the preparation of samples is tricky
because a strict cautious is required to avoid any interferences [11,83].

Still, most technologically interesting CD/guest inclusion complexes are themselves
non-fluorescent. Thus, competitive methods are being developed to enlarge the application of
fluorescence spectroscopy, mainly for fluorophore-free guests. CD are able to enhance the fluorescence
of 8-anilinonaphthalene-1-sulfonic acid (ANS) and 2-p-toluidinylnaphthalene-6-sulfonate (TNS) upon
encapsulation due to the variation of the polarity of the environment of these dyes [88,89]. The addition
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of a competitive guest to CD/ANS or CD/TNS solutions results in a decrease in the fluorescence as
the fluorophore is moved out of the cavity [90]. This variation in the fluorescence intensity allows the
determination of the Kf value of CD/fluorophore-free guest inclusion complex.

Table 5. Formation constant (Kf, M−1) values for cyclodextrin/volatile guest inclusion complexes
determined by fluorescence spectroscopy.

Guest Method α-CD β-CD HP-β-CD

Aniline SC - 50 a -

Benzene SC - 196 a -

Cinnamaldehyde BH - - 928 b

3,4-Dimethoxybenzaldehyde BH 124 c 343 c -

N,N-Diethylaniline SC - 862 a -

N,N-Dimethylaniline SC - 217 a -

Ethoxybenzene SC - 286 a -

Eucalyptol BH - - 1200 d

SC - - 1112 d

Eugenol BH - 357 e 420 e

Geraniol
BH - - 1320 d

SC - - 1064 d

4-Hydroxy-3,5-dimethoxy
benzaldehyde BH 373 c 493 c -

Limonene
BH - - 1667 d

SC - - 1700 d

Linalool
BH - - 1500 d

SC - - 1260 d

N-Methylaniline SC - 53 a -

Phenol SC - 40 a -

α-Pinene
BH - - 2000 d

SC - - 1842 d

β-Pinene
BH - - 1667 d

SC - - 1671 d

Pulegone BH - - 867 d

SC - - 798 d

Thymol BH - - 1400 d

SC - - 1313 d

Vanillin BH 295 c 384 c -

o-Vanillin BH 183 c 320 c -

CD: cyclodextrin; HP-β-CD: 2-hydroxypropyl-β-cyclodextrin; BH: Benesi-Hildebrand; SC: Scatrchard.
a [84], b [15], c [77], d [19], e [85].

Finally, one must be careful in interpreting and comparing Kf values determined using various
techniques, especially those evaluated by fluorescence spectroscopy. When applying fluorescence
technique, new species, excited state guest, are involved. The latter can bind to CD in a different
strength due to the modification of the electrostatic interactions in the complex. This could result in
incoherent Kf values as compared to other techniques [91].
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2.3.3. Nuclear Magnetic Resonance

Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool and is becoming a routine
method for the characterisation of CD inclusion complexes. It is mainly employed for the elucidation
of the geometric accommodation of the guest inside the CD cavity but also for the determination of the
Kf value [92]. NMR provides a direct evidence on the inclusion of the guest in the CD. This is based
on the fact that, if the guest is encapsulated, then the physical or chemical environment of the guest
and cavity hydrogens (H3 and H5 of the CD) will be affected leading to a modification of the NMR
spectra [93].

The NMR shift titrations are one of the most used methods to evaluate the Kf value. They are
based on the measurements of the chemical shift (δ) changes upon varying concentrations of the CD
and/or the guest. Interestingly, the concentration of the species responsible for the signal has to remain
strictly constant [48]. Landy et al. have calculated the Kf values for the inclusion complexes of β-CD
and four phenol derivatives, using an algorithmic treatment applied to the chemical shifts variations
of the inner hydrogens of β-CD [48]. The Kf values of the inclusion complexes of benzoic acid [94]
and fenchone [95] with native CD or derivatives were studied using 1H NMR. The dependences of
chemical shift variation of the guests’ protons versus CD concentration were used for the Kf calculation.
Also, DOSY titrations were performed and resulted in a Kf value equal to 9.8 M−1 for β-CD/vanillin
inclusion complex [96]. The DOSY titrations relies on the observation of the variantion in the diffusion
coefficients (D) of the guest’s protons. The obtained Kf values for inclusion complexes studied with
NMR spectroscopy are listed in Table 6.

Table 6. Formation constant (Kf, M−1) values of cyclodextrin/volatile guest inclusion complexes
determined by NMR spectroscopy.

Guest Observed Signal α-CD β-CD γ-CD HP-α-CD HP-β-CD HP-γ-CD

Benzoic
acid δ 842 a 306 a - 731 a 447 a 551 a

Carvacrol δ + D - 1736 b - - - -
m-Cresol δ 48 c 125 c 97 c - 130 c -

(+)-Fenchone δ - 550 d - - - -
(−)-Fenchone δ - 523 d - - - -
Nootkatone δ + D - 5750 e - - - -

Phenol δ 19 c 60 c 3 c - - -
Thymol δ + D - 1344 b - - - -
Vanillin D - 9.8 f - - - -

CD: cyclodextrin; HP-α-CD: 2-hydroxypropyl-α-cyclodextrin; HP-β-CD: 2-hydroxypropyl-β-cyclodextrin;
HP-γ-CD: 2-hydroxypropyl-γ-cyclodextrin; δ: chemical shift; D: diffusion coefficient. a [94], b [77], c [97], d

[95], e [14], f [96].

Lately, a new NMR method has been developed and validated. It consists on an algorithmic
treatment and a global analysis to determine the Kf value [77]. This analysis explores, at the same time,
the variation of several signals of the guest’s protons e.g., the chemical shifts (δ) and the diffusion
coefficients (D) [14,77]. Furthermore, it combines simultaneously the responses of numerous protons
of the guest. Authors, have applied this method successfully for the inclusion complexes with different
aromas: carvacrol, thymol and nootkatone (Table 6).

One of the most important advantages of the NMR titrations is that the detected variations
reveal at the same time the conformation of the obtained inclusion complex, which is impossible to
extract from other spectroscopic, chromatographic or calorimetric methods [92]. However, the NMR
spectroscopy experiences also some drawbacks. The Kf values obtained in the deuterated solvents
e.g., D2O are slightly different than in water. Also, deuterated solvents are generally provided in small
amount, leading to errors in the concentration calculations when compared to water [48].
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2.4. Isothermal Titration Calorimetry

Isothermal Titration Calorimetry (ITC) is the only technique which gives access to both Kf values
and additional thermodynamic data, in a simultaneous way [98]. Indeed, the injection of one of
the CD/guest partners on the other induces a heat release (or more rarely, a heat consumption)
which is directly proportional to both inclusion stability and enthalpy (∆H). As a result, recording
the time dependence of the differential power applied to the measuring cell leads to a thermogram,
from which a binding isotherm can be extracted. This isotherm corresponds to the heat as a function of
species concentrations, generally expressed as a molar ratio. A full algorithmic treatment can then be
employed to minimize the difference between experimental and theoretical isotherms, affording
the most probable values of Kf and ∆H, according to the postulated binding model. It is then
straightforward to derive binding free enthalpy (∆G) and entropy (∆S). Within this scope, it is
noteworthy to mention that thermodynamic data derived from linear van’t Hoff plots (ln Kf versus
l/T) are generally biased [99], since heat capacity variations of CD complexes are usually different from
zero, thus leading to a temperature dependence of both inclusion enthalpy and entropy. In this respect,
calorimetric approaches should be considered as the only tool able to afford a reliable thermodynamic
picture of inclusion complexes. Finally, non-conventional ITC experiments might be used when
classical titrations failed to afford accurate results [100].

Kf values, inclusion enthalpy and entropy obtained for the complexes formed between volatile
guests and native α-CD or β-CD are summarized in Table 7. If most complexes correspond to 1:1
stoichiometry, linear chains with more than 7 carbons or bulky molecules like camphor can also involve
2:1 inclusion complexes, especially with α-CD [101,102].

If a wide range of enthalpy and entropy variation is observed, the mean values of ∆H and
−T∆S are respectively equal to −19.1 and 4.4 kJ/mol for α-CD, and to −9.1 and −8.3 kJ/mol for
β-CD. Accordingly, on an averaged point of view, while enthalpy and entropy positively and equally
contribute to β-CD complexation, inclusion within α-CD is essentially enthalpy driven, entropy being
weakly disfavorable. Such results could be anticipated from the respective size of α-CD and β-CD:
the narrower α-CD should lead to more constrained inclusion structures, which imply stronger
interactions between CD and guest but also less freedom between the two partners. Within this scope,
if no enthalpy/entropy compensation can be established for all guests included in Table 7, such trend
clearly appears for guests with homogeneous structures, as pointed out by [103,104]. For instance,
the complexation occurring between α-CD and linear alkanols is characterized by a strong correlation
between the ∆H and−T∆S components (R2 equal to 0.84, if the values of Fujisawa, which are unusually
high, are excluded), thus reasserting the opposite character of interaction and freedom upon inclusion.

Table 7. Formation constants (Kf, M−1), inclusion enthalpy (∆H, kJ/mol) and entropy (−T∆S,
kJ/mol). obtained for the complexes formed between volatiles and native α-CD or β-CD determined
by calorimetry.

Guest
α-CD β-CD

Kf ∆H −T∆S Kf ∆H −T∆S

Benzene - - - 107 a −3.5 −8.1

(−)-Borneol - - - 19,750 b −23.2 −1.3

(+)-Borneol - - - 18,640 b −20.9 −3.5

4-Bromophenol 708 c −25.6 9.2 851 c −12.2 −4.5

1-Butanol

83 d −10.7 −0.2 - - -
100 e −9.9 −1.5 - - -
80 f −10.9 0.1 - - -

9153 g −7.9 −14.7 1430 g 3.0 −21.0
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Table 7. Cont.

4-Chlorophenol 295 c −20.1 6 407 c −11.9 −3.0

Cyclobutanol 63 e −5.5 −4.8 - - -
30 i −11.5 3 14 i 3.7 −10.2

Cycloheptanol

- - - 2344 b −11.6 −7.6
25 e −32 24 - - -

- - - 2200 f −12.4 −6.7
68 i −12.5 2 2197 i −12.4 −6.7

Cyclohexanol
- - - 707 b −6.1 −10.2
- - - 701 f −6.3 −9.9

62 j −12.8 2.7 776 j −6.6 −9.8

Cyclooctanol
- - - 4425 b −15.7 −5.1

28 e −40 32 - - -
235 i −3.9 −9.5 4405 i −16.4 −4.4

Cyclopentanol

- - - 168 b −3.9 −8.8
- - - 175 f −4.6 −8.2

83 e −8.8 −2.1 - - -
36 i −11.5 2.6 172 i −4.6 −8.2

Ethanol
7 e −2.5 −2.2 - - -

7184 g −0.9 −21.0 1319 g 1.1 −18.9

1-Heptanol

1168 d −22.8 5.3 - - -
377 e −20.6 5.9 - - -

24,113 g −34.6 9.6 17,459 g −7.9 −16.3
1503 k −28.6 10.4 - - -

1-Hexanol

705 d −18.2 1.9 - - -
523 e −13.9 −1.6 - - -
840 f −17.5 0.8 - - -

7788 g −29.1 6.9 5871 g 0.6 −22.1
906 k −21.3 4.5 - - -

4-Iodophenol 881 l −26.3 9.5 955 l −16.1 −0.9

Methanol 0 g - - 0 g - -

4-Methylphenol 37 c −17.7 8.6 251 c −12.5 −1.2

4-Nitrophenol 104 l −23 11.5 296 l −10.2 −3.9
219 c −25.8 12.5 347 c −12.0 −2.4

1-Nonanol 480 e −36.2 20.9 - - -

Nootkatone - - - 5801 m −14.4 −7.1

1-Octanol 220 e −22.0 9.0 - - -

1-Pentanol

246 d −14.9 1.3 - - -
287 f −14.7 0.7 - - -
275 e −11.8 −2.1 - - -

18,927 g −13.9 −10.4 9153 g 2.2 −24.8
428 k −13.8 −1.2 - - -

Phenol 37 c −10.2 0.6 93 c −12.2 1.2

1-Propanol
23 d −6.8 −1.0 - - -
27 e −6.1 −2.1 - - -

1319 g −6.6 −11.2 1168 g 1.9 −19.4
a [105], b [106], c [107], d [101], e [108], f [109], g [110], h [102], i [103], j [111], k [112], l [113], m [14].

In addition, the negative ∆H values recorded for most complexes may constitute a valuable proof
of the prominent influence of direct interactions (van der Waals, hydrogen bonds) on the complex
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stability. The fact that entropy may also favor the inclusion process demonstrates that hydrophobic
forces also represent a part of the inclusion stabilization.

Many articles [101,102,105] demonstrated that inclusion complexes are characterized by significant
negative heat capacity variations (∆Cp), which substantiates the strong influence of solvatophobic
effects. The observed increase in affinity and in favorable entropy when moving from H2O to D2O also
pleads in favor of the solvent organization as a driving force for inclusion [102,104]. Finally, analogous
conclusions can be drawn from the salt effect [108,114].

2.5. Phase Solubility Studies

Solubility measurements are performed according to the method developed by Higuchi and
Connors, 1965 [115]. Excess amounts of guest are added to aqueous solutions containing various
concentrations of CD and agitated until equilibrium. Thereafter, the solutions are filtered and the
amount of the solubilized guest could be determined using various analytical methods (HPLC,
UV-Visible, SH-GC, etc.). Phase solubility diagrams (Figure 4) are obtained by plotting the solubility of
the guest as a function of the CD concentration.
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Connors [115].

The Kf values could be obtained from the linear part of the phase solubility diagram.

Kf =
slope

S0(1− slope)
(7)

where S0 is the solubility of the guest in the absence of CD, slope is the slope of the phase solubility
diagram.

This method is widely used for the determination of the Kf of CD/guest inclusion complexes.
In the case of volatile guests, it was mainly applied to fragrance materials and in a lesser extend to
anesthetics and organic volatile compounds. Table 8 gathers some Kf values obtained with HP-β-CD
for different guests and using different analytical methods.
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Table 8. Formation constant (Kf, M−1) values of HP-β-CD/volatile guest inclusion complexes
determined by phase solubility studies using various techniques.

Guest HPLC SH-GC UV-Visible Sodium Thiosulfate Titration

trans-Anethole - - 1510 a -
Benzene - - 121 b -

Benzyl acetate 306 c

275 d - - -

Carvacrol - - 2123 e -
Citral 1560 c - - -

Citronellol 3740 c - - -
Estragole - - 1412 a -

Ethylbenzene - - 435 b -
Eugenol - - 445 a -
Iodine - - - 38 f

Isoeugenol - - 449 a -
(+)-Limonene 3350 c 4730 g - -

Linalool 1610 c

720 d 940 g - -

Linalyl acetate 137 c - - -
α-iso-Methylionone 29,500 c - - -

Myrcene - 1240 g - -
Nootkatone - - 3700 h -
(−)α-Pinene - 5780 g - -
(−)-β-Pinene - 7360 g - -

Propofol - - 3972 i -
Thymol - - 1282 e -
Toluene - - 287 b -
o-Xylene - - 305 b -
m-Xylene - - 210 b -
p-Xylene - - 353 b -

a [75], b [116], c [117], d [118], e [77], f [119], g [21], h [14], i [120].

The fact that the presence of CD has an impact on the physicochemical properties of the guest (e.g.,
absorption, volatility) results in the necessity to dilute the solutions obtained after filtration to cancel
this effect and determine the accurate guest concentration. This dilution is often omitted in the phase
solubility studies or conducted using an inappropriate solvent leading to wrong Kf determination.

2.6. Total Organic Carbon

Total organic carbon (TOC) is mainly used in monitoring water quality or cleanliness of
pharmaceutical manufacturing equipment [121]. Recently, a new TOC method was developed and
applied for studying CD inclusion complexes [36]. Authors have performed TOC measurements to
determine the amount of solubilized guest in the filtrates of phase solubility studies. No significant
differences were observed for Kf values obtained for HP-β-CD/eugenol inclusion complex using
UV-Visible spectroscopy (416 M−1) [75] and TOC measurements (481 M−1) [36]. Authors have also
conducted successfully phase solubility studies for eleven essential oils.

The TOC method is interesting for volatiles that generally do not possess a chromophore or a
fluorophore moiety because it is non-specific. This technique can be also applied to any molecule
that cannot be studied by conventional techniques, making it a universal method for any compound
or mixture of compounds. However, this cannot lead to the determination of Kf values in the case
of mixtures.

2.7. Comparison of Formation Constants Obtained with Differents Methods

Some of the volatile guests were studied with various methods. Table 9 gathered some of the
Kf values obtained for their inclusion complexes using various techniques. As can be seen, for some
of the guests (e.g., benzene and toluene) there is a good correlation between the data even though
values were obtained with a gap of 20 years. However, for eugenol, we can notice a 104 factor between
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values obtained with UV-Visible spectroscopy. If we compare values obtained with different methods
we can conclude that the Kf value for β-CD/eugenol inclusion complex is in the order of 102 M−1.
This order of magnitude is in good agreement with values for other aromatic derivatives. Therefore,
there is a need to determine Kf values with accurate analytical protocols in order to obtain reliable
results. Moreover, the order of magnitude of some well-known structure (aromatic ring, adamantane
derivatives, cyclic compounds) should be a reference for authors.

Table 9. Example of formation constant (Kf, M−1) values obtained with different methods for some
selected guest.

Guest SH-GC UV-Visible Fluorescence HPLC ITC NMR Phase Solubility

trans-Anethole
630 a

1040 a

497 a
542 b - - - - 537 c

Benzene 128 d

111 e 194 f 196 g - 107 h - -

Camphor 2058 a 19 i - 350 j - - -

Eugenol 264 k
3.96 × 105 l

23 i

322 m
357 n - - - 513 c

Limonene 3162 a

2230 a 55 i - - - - -

Phenol - 95 f 40 g - 93 o 120 p -

Thymol - 1467 q 1400 r - - 1344 q 1150 q

Toluene
142 s

158 d

172 e
214 f - - - - -

Vanillin -
100 t

296 u

17 i
384 u - - 9.8 v -

a [2], b [20], c [75], d [51], e [53], f [73], g [84], h [105], i [67], j [61], k [49], l [69], m [13], n [85], o [107], p [48],
q [77], r [19], s [60], t [14], u [78], v [96].

Concerning the various analytical methods used for the determination of Kf values of volatile
guests, SH-GC seems to be the method of choice, because it analyses directly the signal of the guest
without any interference of the CD signal.

3. Conclusions

CD are one of the most appropriate encapsulation materials for volatile guests. The great interest
and the advantages of the use of CD inclusion complexes have been widely discussed and documented
in the literature. The analytical characterization of the inclusion complex is crucial to best exploit
the potential offered by CDs to the encapsulated volatile guests. A careful determination of the Kf
value of a CD inclusion complex represents the basic fundamental step. This allows the extraction of
valuable information concerning CD/guest interactions and strength of binding. However, for some
compounds the literature data show very different results. These errors are mainly related to the misuse
of the analytical methods and the non-respect of analytical conditions. Therefore, the determination of
Kf values with different methods or the comparison of the literature data could give a good estimation
of the order of magnitude of these Kf values.

Spectroscopic, chromatographic and calorimetric techniques have played and still play an
important role for this purpose. Titration experiments are usually carried out using linear methods
and this apparently simple method seems to be the main source of error. Therefore, one has to be
careful when determining Kf value because this step is more complex that it seems to be.
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This review presented an overview of the analytical techniques and methods applied for
the determination of Kf values for CD/volatile guest inclusion complexes. It has focused on the
advantages, pitfalls and obtained results of each. It also emphasized the search for improving these
available methods and developing new techniques in order to have a panel fitting quite all the
experimental cases.
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