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Abstract: Aconitum (Ranunculaceae) consists of approximately 400 species distributed in the
temperate regions of the northern hemisphere. Many species are well-known herbs, mainly used for
analgesia and anti-inflammatory purposes. This genus is well represented in China and has gained
widespread attention for its toxicity and detoxification properties. In southwestern China, several
Aconitum species, called ‘Dula’ in the Yi Nationality, were often used to control the poisonous effects
of other Aconitum plants. In this study, the complete chloroplast (cp) genomes of these species were
determined for the first time through Illumina paired-end sequencing. Our results indicate that their
cp genomes ranged from 151,214 bp (A. episcopale) to 155,769 bp (A. delavayi) in length. A total of
111–112 unique genes were identified, including 85 protein-coding genes, 36–37 tRNA genes and
eight ribosomal RNA genes (rRNA). We also analyzed codon usage, IR expansion or contraction and
simple sequence repeats in the cp genomes. Eight variable regions were identified and these may
potentially be useful as specific DNA barcodes for species identification of Aconitum. Phylogenetic
analysis revealed that all five studied species formed a new clade and were resolved with 100%
bootstrap support. This study will provide genomic resources and potential plastid markers for DNA
barcoding, further taxonomy and germplasm exploration of Aconitum.
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1. Introduction

Chloroplasts are an important semiautonomous organelle in plants, providing essential energy [1].
The chloroplast genome structure, gene content and gene order is often better conserved than the
nucleus and the mitochondria genome. It contains about 130 genes, with a typical circular quadripartite
structure comprising two identical copies of inverted repeats (IRs), separated by a large single-copy
region (LSC) and a small single-copy region (SSC). The chloroplast genome sizes of almost all land
plants range between 120–160 kb in length [2,3]. Generally, coding regions in the chloroplast genome
show lower polymorphism than non-coding regions [4]. With the rapid development of next generation
sequencing (NGS) technologies, an increasing number of studies have focused on plant chloroplast
genomes. Sequencing and phylogenetic analysis on the complete cp genome is a highly efficient and
relatively low-cost way for improving intrageneric classification and population analysis. Recently,
comparative analysis of the complete chloroplast (cp) genomes of several closely related species has
provided promising results for the study of phylogeny, species identification and evolution [3,5–9].
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Aconitum (Ranunculaceae) is a perennial or pseudoannual genus with an erect or twining stem
and blue, purple or yellow flowers. It is comprised of about 400 species distributed in the temperate
regions of the northern hemisphere and there are 211 species in China [10]. The genus is one of the
most important medicinal and poisonous plants in the world [10]. Aconitum species have been noted
for their toxicity from as early as mid-7 BC in Guoyu [11]. At present, many species are well-known
herbs and mainly used for analgesia and anti-inflammatory purposes [12]. To date, the cp genomes of
17 Aconitum species have been reported [13,14].

In southwestern China, some Aconitum species, which are called ‘Dula,’ are often used to control
the poisonous effects of other Aconitum plants; they are A. episcopale, A. vilmorinianum, A. contortum
and A. delavayi [15–19]. The first two species are twining, belonging to Aconitum subgen. Aconitum ser.
Volubilia; the last two species are erect and a member of ser. Stylosa and ser. Ambigua respectively [20].
The major medicinal and toxic compounds aconitine, hypaconitine and mesaconitine are not contained
in these species. However, the use of morphological and molecular markers for the identification
of Aconitum species is controversial or limited due to unmanageable phenotypic characteristics or
morphological similarity among species [21–24]. The coexistence of toxic species and species with
antidote properties in Aconitum may result in misuse during practical application. Therefore, providing
more genomic information is imperative for the understanding of these species and the safe and
effective utilization of ‘Dula.’

In this study, we used an Illumina Miseq Platform to assemble the cp genomes of five herbal
plants in Aconitum, four ‘Dula’ (A. episcopale, A. contortum, A. vilmorinianum, A. delavayi) and one,
A. hemsleyanum (ser. Volubilia), which is also twining and morphologically similar to A. vilmorinianum
and clustered with ‘Dula’ in previous analyses [23–25]. The aims of our study were: (1) to deepen
understanding of the structural patterns of Aconitum cp genomes; (2) to provide knowledge for species
identification of ‘Dula’; (3) and to reconstruct phylogenetic relationships among the Aconitum species
using the cp genome sequences.

2. Results and Discussion

2.1. Chloroplast Genome Features

We obtained cleaned reads of 8,783,602 bp to 24,899,740 bp from the five Aconitum species,
using the Illumina Miseq platform. Out of 1161–2540 de-novo assembled contigs, only 3–4 contigs
were used in the final cp genome assemblies (Table 1). The five Aconitum cp genomes ranged
from 151,214 bp (A. episcopale) to 155,769 bp (A. delavayi) in length and 56.4× to 159.9× coverage.
They had a typical quadripartite structure that was similar to the majority of cp genomes of land
plants, consisting of a pair of IRs (26,209 bp–26,240 bp), separated by the LSC (83,182 bp–86,394 bp)
and SSC (of 15,598 bp–16,949 bp) regions (Table 1 and Figure 1). Compared with other Aconitum
species, we discovered that the size of the cp genome in A. episcopale is the smallest [13,14]. These
five plastomes are highly conserved in gene content, gene order and intron number. The cp genomes
of A. vilmorinianum, A. delavayi, A. hemsleyanum and A. contortum had the same GC content of 38.1%,
A. episcopale showed a subtle difference (38.3%) compared with the others. The GC contents of the LSC
and SSC regions of the five species were lower than that of the IR regions due to the reduction of AT
nucleotides in the four duplicate rRNA genes [6,26].
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Table 1. The basic characteristics of chloroplast genomes of five Aconitum species.

Characteristics A. vil A. del A. epi A. hem A. con

Location Wuding Heqing Dali Qiaojia Dali
Voucher specimens LCF1 1395 1379 QJ6 895
GenBank numbers MG678799 MG678802 MG678801 MG678800 MG678803
Total clean reads 8,783,602 24,899,740 22,334,862 14,157,482 19,869,478

Number of contigs 2540 1468 1190 1161 1749
Contigs used for constructing the cp genome 4 3 3 3 3

N50 of contigs (bp) 1612 369 1939 1966 1953
Cp genome coverage (×) 56.4 159.9 147.7 90.9 127.7
Total cp DNA size (bp) 155,761 155,769 151,214 155,684 155,653

LSC size (bp) 86,394 86,340 83,182 86,292 86,267
IR size (bp) 26,209 26,240 26,217 26,235 26,221

SSC size (bp) 16,949 16,949 15,598 16,922 16,944
Total number of genes 132 131 131 132 132

Number of different protein-coding genes 78 78 78 78 78
Number of different tRNA genes 30 30 29 30 30
Number of different rRNA genes 4 4 4 4 4

Number of duplicated genes 20 19 20 20 20
Total number of pseudogenes 2 1 2 2 2

GC content (%) 38.1 38.1 38.3 38.1 38.1
GC content of LSC (%) 36.2 36.2 36.4 36.2 36.2
GC content of IR (%) 43.0 43.0 42.9 43.0 43.0

GC content of SSC (%) 32.5 32.6 32.9 32.6 32.6

cpDNA: chloroplast genome DNA; LSC: large single copy; IR: inverted repeat; SSC: small single copy. A. vil:
A. vilmorinianum Komarov, A. del: A. delavayi Franchet, A. epi: A. episcopale H. Léveillé, A. hem: A. hemsleyanum
E. Pritzel, A. con: A. contortum Finet & Gagnepain.
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Figure 1. Chloroplast genome map of five Aconitum species. Genes lying outside the circle are
transcribed in the counter clockwise direction, while those inside are transcribed in the clockwise
direction. The colored bars indicate different functional groups. The darker gray area in the inner circle
denotes GC content while the lighter gray corresponds to the AT content of the genome. LSC: large
single copy, SSC: Small single copy, IR: inverted repeat.

The cp genomes of four species contained 112 unique genes, including 78 protein-coding genes
(PCGs), 30 transfer RNA genes (tRNA) and four ribosomal RNA genes (rRNA). A. episcopale did not
contain the trnG-UCC tRNA gene. The LSC region contained 60 PCGs and 21–22 tRNA genes, while the
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SSC region contained eleven PCGs and one tRNA gene. Seven PCGs (rpl2, rpl23, ycf2, ycf15, ndhB,
rps7 and rps12), seven tRNA (trnI-CAU, trnL-CAA, trnV-GAC, trnI-GAU, trnA-UGC, trnR-ACG and
trnN-GUU) and all four rRNA (rrna16, rrna23, rrna4.5 and rrna5) genes were duplicated and all were
located in IR regions (Tables 1 and 2 and Figure 1). Compared with A. sinomontanum, A. barbatum
var. puberulum and A. barbatum var. hispidum, the rps16 gene was missing in these five species [13,26].
Two pseudogenes ψrps19 and ψycf1 were found in A. contortum, A. episcopale, A. vilmorinianum and
A. hemsleyanum, while only one pseudogene ψycf1 was found in A. delavayi.

Introns are non-coding fragments of genes that are under less functional constrains and thus
accumulated mutations more rapidly. However, introns can have an integral in regulating gene
expression [27]. In four Aconitum species, with the exception of A. episcopale, 15 intron-containing
genes were investigated: 12 genes (atpF, rpoC1, ndhB, petB, rpl2, ndhA, trnA-UGC, trnI-GAU, trnK-UUU,
trnL-UAA, trnG-GCC and trnV-UAC) had only one intron, while three genes (clpP, ycf3 and rps12) had
two introns. In A. episcopale, there are also 15 intron-containing genes; the petB gene does not contain
an intron, the other intron-containing genes are similar to the other four Aconitum species (Table S1).
The rps12 gene was a trans-spliced gene with 5’ end located in the LSC region and the duplicated 3’
end in IR regions, which was similar to other land plants [6,9]. The trnK-UUU gene had the largest
intron and ranged from 2236 bp–2538 bp. It also contained the matK gene.

Table 2. A list of genes found in the chloroplast genomes of five Aconitum species.

Category Grope of Genes Name of Genes

Transcription and
translation

Ribosomal proteins (LSU) rpl2*(×2), rpl14, rpl16, rpl20, rpl22, rpl23(×2), rpl33, rpl36

Ribosomal proteins (SSU) rps2, rps3, rps4, rps7(×2), rps8, rps11, rps12**(×2), rps14,
rps15, rps18, ψrps19

RNA polymerase rpoA, rpoB, rpoC1*, rpoC2

Translational initiation factor infA

rRNA genes rrn16(×2), rrn23(×2), rrn4.5(×2), rrn5(×2)

tRNA genes

trnA-UGC*(×2), trnC-GCA, trnD-GUC, trnE-UUC,
trnF-GAA, trnfM-CAU, trnG-GCC*, trnG-UCC,

trnH-GUG, trnI-CAU(×2), trnI-GAU*(×2), trnK-UUU*,
trnL-CAA(×2), trnL-UAA*, trnL-UAG, trnM-CAU,

trnN-GUU(×2), trnP-UGG, trnQ-UUG, trnR-ACG(×2),
trnR-UCU, trnS-GCU, trnS-GGA, trnS-UGA, trnT-GGU,

trnT-UGU, trnV-GAC(×2), trnV-UAC*, trnW-CCA,
trnY-GUA

Photosynthesis

Photosystem I psaA, psaB, psaC, psaI, psaJ

Photosystem II psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK,
psbL, psbM, psbN, psbT, psbZ

NADH oxidoreductase ndhA*, ndhB*(×2), ndhC, ndhD, ndhE, ndhF, ndhG, ndhH,
ndhI, ndhJ, ndhK

Cytochrome b6/f complex petA*, petB*, petD, petG, petL, petN

ATP synthase atpA, atpB, atpE, atpF*, atpH, atpI

Rubisco large subunit rbcL

ATP-dependent protease subunit
gene clpP**

Other genes

Maturase matK

Envelop membrane protein cemA

Subunit Acetyl- CoA-Carboxylate accD

c-type cytochrome synthesis gene ccsA

Unknown Conserved Open reading frames ψycf1, ycf2(×2), ycf3**, ycf4, ycf15(×2)

* contains one intron, ** contains two introns, (×2) shows genes duplicated in the IR regions, ψ shows pseudogenes,
A. delavayi did not contain ψrps19, A. episcopale not contanin trnG-UCC.
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2.2. Codon Usage

We further analyzed the codon usage frequency and relative synonymous codon usage (RSCU)
based on sequences of 85 PCGs in the five Aconitum species cp genomes. Among these, leucine was
the most abundant amino acid, with 2325 (10.32%), 2316 (10.32%), 1852 (8.77%), 2320 (10.32%) and
2324 (10.33%) of codons in A. vilmorinianum, A. delavayi, A. episcopale, A. hemsleyanum and A. contortum,
respectively, while cysteine was the least abundant amino acid, with 256 (1.14%), 256 (1.14%), 382
(1.81%), 256 (1.14%) and 256 (1.14%) codons in each species, respectively (Figure 2 and Table S2).
Codon usage was biased towards A and T at the third codon position in the five species, which agrees
with previous reports for the angiosperm chloroplast genome [28–30]. Furthermore, the usage of start
codons AUG and UGG, encoding methionine and tryptophan, had no bias (RSCU = 1) (Table S2).
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Figure 2. Codon content for the 20 amino acids and stop codons in 85 protein-coding genes in the five
Aconitum species chloroplast genomes. RSCU: relative synonymous codon usage; F: phenylalanine;
L: leucine; I: isoleucine; M: methionine; V: valine; S: serine; P: proline; T: threonine; A: alanine;
Y: tyrosine; *: stop; H: histidine; Q: glutamine; N: asparagine; K: lysine; D: aspartic acid; E: glutamic;
C: cysteine; W: tryptophan; R: arginine; G: glycine.

2.3. Repeat and SSR Analyses

Repeat regions are considered to play an important role in the generation of substitutions and
indels [29,31,32]. A total of 151 repeats were identified in the five Aconitum chloroplast genomes,
including 42 forward repeats, 59 palindromic repeats, 15 reverse repeats and 35 tandem repeats.
Aconitum hemsleyanum possessed the highest number of repeats (37), while A. episcopale possessed the
fewest (24) (Figure 3A and Table S3). The majority of repeats ranged in size from 20 to 39 bp (Figure 3B).
Most of them were distributed in intergenic (52.32%) or gene regions (43.71%) and only 3.97% were
located in intron regions, such as clpP and rpoC1 (Figure 3C and Table S3). Repeats located in identical
regions with the same lengths were identified as shared repeats. Using this criterion, 18 repeats were
found to be shared by all five Aconitum species (Table 3), providing a useful resource for phylogeny
and population studies.
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Figure 3. The type, length and distribution of repeats in the chloroplast genomes of five Aconitum
species. (A) Number of different repeat types: F, forward; P, palindromic; R, reverse; T, tandem;
(B) Number of different repeat lengths; (C) Proportion of repeats in LSC, SSC and IR regions.
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Table 3. The shared repeats of five Aconitum species.

No. Size (bp) Units Type Location Region

1 30 TAAAC(A)GGAA(G)AGAGAGGGATTCGAACCCTCG F IGS(psbI,trnS-GCU),
IGS(psbC,trnS-UGA)

2 52 AGAAAAAGAATTGCAATAGCTAAATGG(A)
TGA(G)TGA(C)GCAATATCGGTCAGCCATA F psaB(CDS),psaA(CDS)

3 39 CAGAACCGTACATGAGATTTTCACCTCATACGGCTCCTC F ycf3(intron),
IGS(rps12,trnV-GAC)

4 31 CC(G)ATATTGATGATAGTGAC(G)GATATT(C)GATGA F ycf2(CDS)
5 42 TGGTTGTTCGCCGTTCAAGAATTCTTGAACGGCGAACAACCA F ycf15(CDS)
6 31 ATCATCG(A)ATATCC(G)TCACTATCATCAATATC(G)G F ycf2(CDS)
7 32 GAGATTTTATTTCG(A)AATTTGAAATAAAATCTC P IGS(psbI,trnS-GCU)

8 30 ACGGAAAGAGAGGGATTCGAACCCTCGGTA P IGS(psbI,trnS-GCU),
IGS(trnS-GGA,rps4)

9 30 AA(C)GGAG(A)AGAGAGGGATTCGAACCCTCGA(G)TA P IGS(trnSUGA,psbZ),
IGS(trnS-GGA,rps4)

10 39 CAGAACCGTACATGAGATTTTCACCTCATACGGCTCCTC P ycf3(intron),
IGS(trnV-GAC,rps12)

11 72 GTAAGAATAAGAACTCAATGGACCTTGCCCCTCG(A)A
ATTT(C)GAGGGGCAAGGTCCATTGAGTTCTTATTCTTAC P IGS(petA,psbJ)

12 48 ATGTATCTAGGGACTAGTCGCTTC(G)C(G)AA
GCGACTAGTCCCTAGATACAT P IGS(petD,rpoA)

13 31 CCATATTGATGATAGTGACGATATTGATGAT P ycf2(CDS)
14 31 CGATATTGATGATAGTGAGGATATCGATGAT P ycf2(CDS)
15 42 TGGTTGTTCGCCGTTCAAGAATTCTTGAACGGCGAACAACCA P ycf15(CDS)
16 42 TGGTTGTTCGCCGTTCAAGAATTCTTGAACGGCGAACAACCA P ycf15(CDS)
17 38 TACACATGAAGTAAAGAAA×2 T IGS(trnS-GCU,trnG-GCC)
18 26 TTTTATAGTTAAA×2 T clpP(intron)

IGS: intergenic spacer regions; CDS: coding DNA sequence.

SSRs are tandemly repeated DNA sequences with 1–6 bp and are distributed throughout the
genome. They are widely used for the screening of effective molecular markers for detecting
intraspecific and interspecific polymorphisms [33,34] and population genetics [35]. In total, 1375 SSRs
were identified in the cp genome of the five Aconitum species, ranging from 259 SSRs in A. episcopale
to 282 SSRs in A. vilmorinianum and A. contortum; more than half of the SSRs were composed of A
or T (Figure 4A,C and Table S4). The majority of SSRs were mononucleotide repeats, followed by
trinucleotide repeats; no hexanucleotide repeats were found. Most of the SSR repeats were located in
intergenic spacer regions (IGS) (57.75%), while the regions situated in coding DNA sequence (CDS)
or tRNA introns, ψrps19 or ψycf1 and rRNA or tRNA accounted for 32.36%, 6.84%, 1.24% and 1.82%
of SSR repeats, respectively (Figure 4B). Among these mononucleotide repeats, there were generally
polyadenine (polyA, 47.33–51.09%) and polythymine (polyT, 45.99–49.58%) repeats (Table S4) and
rarely tandem guanine (G) or cytosine (C) repeats, which agrees with previous chloroplast SSRs
reports [36]. The longest polyA (17 bp) and the most abundant mononucleotide (51.09%) were found
in A. contortum.
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2.4. Comparative Chloroplast Genomic Analysis

Sequence identity plots of the five Aconitum species were generated, with the annotation of
A. vilmorinianum cp genome as a reference (Figure 5). LSC and SSC regions were more divergent than
IRs regions. Whereas, the coding regions were more conserved than the non-coding regions, the highly
divergent non-coding regions among the five chloroplast genomes appeared in IGS, such as trnH-psbA,
trnK-trnQ, atpF-atpH, trnC-petN, ycf4-cemA, trnP-psaJ and rpl16-rps3. Among coding regions, ndhA,
ndhH, rps15 and ycf1 genes were relatively divergent. On the other hand, all the rRNA genes were
highly conserved and are similar to other plants’ chloroplast genomes [37]. For further understanding
of the nucleotide variability (Pi), we also calculated the DNA polymorphism among these five Aconitum
species (Figure 6). The results are the same as previous reports: the IR regions more conserved than
LSC and SSC regions [13,14]. There were eight variable regions that showed high Pi values (≥0.005),
including psbA and ycf1 genes, the intron of trnV-UAC and intergenic regions (trnK-UUU-trnQ-UUG,
trnE-UUC-trnT-GGU, trnT-GGU-psbD, trnT-UGU-trnL-UAA and rpl20-rps12) in the chloroplast genomes.
These hotspot regions could be developed as molecular markers and barcoding for future phylogenetic
analyses and species identification of Aconitum.
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2.5. IR Expansion and Contraction

IRs are the most conserved regions of the chloroplast genome. However, the contraction and
expansion of IR borders are common evolutionary events and are the major reason for size differences
between chloroplast genomes [37]. Chloroplast genome structure and the junction positions between
IR regions were well conserved among the five Aconitum species but structure variation was still found
in the IRs/SC borders (Figure 7). There were 3 bp protrusion of rps19 gene into IRa regions, with the
corresponding pseudogene fragment ψrps19, located in the IRa/LSC border for A. vilmorinianum,
A. hemsleyanum and A. contortum. This agrees with most Aconitum subgen. Aconitum species. However,
the length of this protrusion was 107 bp in A. episcopale [13]. Moreover, no pseudogene fragment
ψrps19 was found in A. delavayi and there were 127 bp between rps19 and the IRa/LSC border. Long
ψycf1 fragments with 1259–1291 bp were created at the IRa regions due to the border between SSC
and IRb located in the ycf1 genes. In addition, the trnH-GUG genes for four of the five species were all
located in the LSC region, with the distance between trnH-GUG and the IRb/LSC border varying from
54 to 55 bp. The exception to this was A. episcopale, in which the trnH-GUG gene overlapped with the
ψrps19 by 49 bp.
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ψ indicates a pseudogene. Genes are denoted by colored boxes. The number above the gene features
shows the distance between the end of the gene and the borders sites. The slashes indicate the
location of the distance. The arrows indicated the orientation (5’→3’) of the rps19, ndhF and ycf1 genes.
This figure is not to scale.
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2.6. Phylogenetic Analyses

Relationships within Aconitum species are fairly well resolved in previously published studies
but the positions of the twining species of Aconitum still remain somewhat uncertain and there is
a possibility that they might have evolved independently in various groups [13,23]. The phylogenetic
analysis of these five species mostly used the chloroplast fragment trnH-psbA and the nuclear fragment
ITS [21,23,24]. In the present study, we chose two datasets (the whole cp genomes and 77–79 PCGs)
from the five Aconitum species and 20 published plastomes to perform the phylogenetic analysis.
A phylogenetic tree based on the same dataset, using ML and BI, had an almost identical topological
structure but different support values (Figure 8).Molecules 2018, 23, x FOR PEER REVIEW  11 of 15 
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methods, based on the whole cp genomes from different species. The numbers above the branches
represent ML bootstrap values/BI posterior probabilities. Triangle: twining species belonging to
subgen. Aconitum.

There were no obvious conflicts between the phylogenetic trees built by different datasets but
the support values of the branches based on the whole cp genomes dataset were higher than those
based on the PCG dataset, except for the clade of A. delavayi and A. episcopale. All of the 22 Aconitum
taxa formed a monophyletic clade with 100% bootstrap value or the Bayesian posterior probability.
The five species formed a monophyletic clade with 100% bootstrap value or the Bayesian posterior
probability within Aconitum subgen. Aconitum, among which three twining species belonging to ser.
Volubilia (A. episcopale, A. vilmorinianum and A. hemsleyanum) were clustered with the species from
ser. Stylosa (A. contortum) and ser. Ambigua (A. delavayi). Furthermore, A. delavayi and A. episcopale
formed a monophyletic group with very high support value and sister to the clade that was clustered
by A. vilmorinianum and A. hemsleyanum (Figure 8), a finding consistent with the previous result
that the ser. Volubilia was not a monophyly [23]. Aconitum vilmorinianum had a closer phylogenetic
relationship to A. hemsleyanum than to the other three species. At the same time, the phylogenetic
relationship constructed using the whole cp genomes dataset showed that A. ciliare and A. japonicum
subsp. napiforme formed a clade with a high support value of 98.4/1.00, sister to A. kusnezoffii (Figure 8);
however, their monopyly was not resolved with the PCGs (Figure S1). The current phylogenetic tree
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showed the deep-level relationships of Aconitum species, raising the possibility that the cp genome
sequences may be useful for elucidating the phylogeny of Aconitum species in the future.

3. Materials and Methods

3.1. Plant Material, DNA Extraction and Sequencing

Fresh leaves of five Aconitum species were collected from Yunnan province and dried with silica
gel. Voucher specimens were deposited in the herbarium of the Kunming Institute of Botany (KUN),
Chinese Academy of Sciences. Total genomic DNA was extracted with the modified cetyltrimethyl
ammonium bromide (CTAB) method [38]. The extracted DNA was sequenced using the Illumina
Miseq platform (Illumina, San Diego, CA, USA). The chloroplast sequence generated in this study was
submitted to GenBank (Table 1).

3.2. Chloroplast Genome Assembly and Annotation

For each Aconitum species, reads of the cp genome were assembled using CLC Genomic
Workbench v10 (CLC Bio., Aarhus, Denmark). All the contigs were checked against the reference
genome of A. chiisanense (KT820665), using BLAST (https://blast.ncbi.nlm.nih.gov/) and aligned
contigs were oriented according to the reference genome. The complete cp genomes were then
constructed using Geneious v4.8.5 (Biomatters Ltd., Auckland, New Zealand).

The annotation of cp genome sequence was performed using DOGMA (http://dogma.ccbb.
utexas.edu/) [39] and start/stop codons and intron/exon boundaries were adjusted in Geneious v4.8.5.
The tRNA was identified through tRNAscan-SE v2.0 [40]. The circular genome map was generated in
OGDRAW (http://ogdraw.mpimp-golm.mpg.de/) [41].

3.3. Structure of Genome and Genome Comparison

All protein-coding genes were used for determining the codon usage. Avoiding the influence of
the amino acid composition, we examined the RSCU using MEGA v7.0 [42]. We identified the repeat
sequences, including palindromic, reverse and forward repeats, in REPuter Online software, with the
following settings: Hamming distance of 3 and minimum repeat size of 30 bp [43]. Tandem Repeats
Finder v4.07 was used to analyze tandem repeats using default settings [44]. Simple sequence repeats
(SSRs) were detected by Phobos v3.3.12 [45] and SSR Hunter v1.3 [46]. The threshold value of the
repeat number was set as: ≥8 for mononucleotide repeats, ≥4 for dinucleotide repeats and ≥3 for
trinucleotide repeats, tetranucleotide repeats, pentanucleotide repeats and hexanucleotide repeats.
The mVISTA was used to compare the cp genomes of the five Aconitum species in Shuffle-LAGAN
mode, with annotation of A. vilmorinianum as a reference [47]. These cp genome sequences were
aligned by CLC Genomic Workbench v10. Sliding window analysis was conducted to determine the
nucleotide diversity of the cp genome using DnaSP v5, with 200 bp of step size and 600 bp window
length [48].

3.4. Phylogenetic Analyses

In order to explore the phylogenic relationships of the five species among Aconitum, a total of 20
complete cp genomes of the family Ranunculaceae were obtained from GenBank, including 17 Aconitum
taxa and another three species from different genera as outgroups (Table S5). For the phylogenetic
analysis, 77–79 PCGs and the whole cp genomes were aligned by CLC Genomic Workbench with
default parameters. A Maximum Likelihood (ML) tree was then performed in RAxML [49], with the
nucleotide substitution model of GTR + Gamma and a bootstrap of 1000 replicates. Bayesian inference
(BI) was estimated with MrBayes v3.2.6 [50]. The best-fitting substitution model was selected using
jModelTest [51]. The general time-reversible (GTR) model was chosen with a gamma model for the rate
of heterogeneity. The Markov chain Monte Carlo (MCMC) analysis was run for 10,000,000 generations.
The trees were sampled every 1000 generations, with the first 25% discarded as burn-in.

https://blast.ncbi.nlm.nih.gov/
http://dogma.ccbb.utexas.edu/
http://dogma.ccbb.utexas.edu/
http://ogdraw.mpimp-golm.mpg.de/
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4. Conclusions

The cp genomes of the four special Aconitum medicinal species ‘Dula’ and one species
A. hemsleyanum were reported for the first time. The cp genomes all displayed a typical quadripartite
structure, which was similar to that of most angiosperms. Aconitum episcopale was found to have the
smallest size of cp genome (151,214 bp) presently known in Aconitum species. Except for A. delavayi,
the other four species were found to have two pseudogenes (ψrps19 and ψycf1). Eight variable regions
(psbA, ycf1, trnV, trnK-trnQ, trnE-trnT, trnT-psbD, trnT-trnL and rpl20-rps12) were identified and
may potentially be useful as specific DNA barcodes for identifying Aconitum species. The result of
phylogenetic analyses showed that the Aconitum subgen. Aconitum ser. Volubilia was not monophyletic.
The resulting trees showed good construction of the deep-level relationships of Aconitum species,
indicating that the whole cp genome sequences will have much better resolution in the phylogenetic
study of Aconitum species in the future.

Supplementary Materials: Supplementary materials will be available online.
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