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The reactivity of a Lewis pair has been mainly judged by its ability to form a Lewis adduct or not,
according to the Lewis definition [1]. However, the discovery of reversible dihydrogen activation in
2006 enabled by the so-called frustrated Lewis pair (FLP) that is sterically separated but still possesses
highly unquenched, orthogonal Lewis acid and base reactivity has changed the view of the reaction
pattern of a Lewis pair [2]. Thanks to intensive research carried out on this nonclassical Lewis pair
reactivity, FLP chemistry has been developed into a powerful tool in small molecule activation, organic
transformation, and polymer synthesis over the years. In 2010, Lewis pair polymerization (LPP) [3],
which employs an FLP, a classical Lewis adduct (CLA), or an interacting Lewis pair, emerged to
promote cooperative monomer activation and chain initiation and/or propagation, the cooperativity
of which was exploited for the polymerization of polar and non-polar vinyl monomers as well as
heterocyclic monomers to afford a variety of polymer structures [4]. Herein, with the aim of updating
and highlighting some recent developments in the area of LPP, we have gathered 10 articles in
this Special Issue entitled “Lewis Pair Polymerization for New Reactivity and Structure in Polymer
Synthesis” under the following three major topics.

Firstly, the studies on the controlled or chemoselective addition polymerizations of conjugated
polar alkene monomers represent four articles in this Special Issue [5–8]. Specifically, the controlled and
efficient polymerizations of polar monomers such as methyl methacrylate (MMA), n-butyl methacrylate
(nBMA), and γ-methyl-α-methylene-γ-butyrolactone (γMMBL) catalyzed by the sterically hindered
aryloxide-substituted alkylaluminum/N-heterocyclic carbene (NHC) Lewis acid/base catalyst system
were reported by Hong and co-workers [5]. Zhang and He employed the silyl ketene acetal/B(C6F5)3

Lewis pair system to render the living group-transfer polymerization of a similar monomer scope,
including linear MMA and cyclic renewable acrylics (α-methylene-γ-butyrolactone and γMMBL) [6].
Xu’s group further reported the chemoselective polymerization of polar divinyl monomers such
as allyl methacrylate, vinyl methacrylate, and 4-vinylbenzyl methacrylate using simple homoleptic
rare-earth/phosphine Lewis pairs, as well as the post modifications of the retained side-chain double
bonds with the thio-ene reaction [7]. The ability to bring about chemoselective polymerization by Lewis
pairs was also exploited Lu and co-workers to synthesize PMMA-based copolymers with complex
structures [8]. Thus, the installation of pendant vinyl groups onto the NHC catalyst or monomer
led to two types of polymers bearing –OH groups through the thio-ene click functionalization; these
macro-initiators were then utilized to promote the ring-opening polymerization of lactide to produce
block and brush copolymers [8].

Secondly, another major topic of the contributions collected in this issue is ring-opening
polymerization. The current progresses on the Lewis pair-mediated ring-opening polymerization
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of lactide and related cyclic esters were reviewed by Wu and co-workers [9]. Naumann’s group
examined the mechanism of lactone polymerization enabled by N-Heterocyclic olefins paired with
different halides as Lewis acids, including ZnCl2, MgCl2, and LiCl, through a computational
study [10]. In addition, Yang and Du reported the synthesis of well-defined polypeptides from
the ring-opening polymerization of N-carboxyanhydrides catalyzed by zinc acetate Zn(OAc)2 using
a variety of anilines as the base [11]. The copolymerization of carbonyl sulfide and propylene oxide
in the presence of polyethylene glycol to yield block copolymers with perfectly alternating and
regio-regular poly(monothiocarbonate) segments was described by Zhang [12]. Narrow molecule
weight distributions and high turn-over frequencies were achieved by the applied metal-free Lewis
pair catalyst systems in conjunction with different chain transfer agents [12].

Thirdly, constructions of complex and interesting polymeric or supramolecular structures, through
the modulation of Lewis acid-base interactions on the macromolecular level, were accomplished by the
groups of Chen and Jäkle. Chen’s team demonstrated that poly(3-hexylthiophene) macromer anchored
with alkyl or vinyl imidazolium end groups can be readily converted into a polymeric NHC Lewis
base that is capable of binding to Lewis acidic C60 to form a single donor-acceptor dyad or brush of
donor-acceptor dyads. The special architecture of brush donor-acceptor dyads provides promising
potential applications in polymer-based solar cells [13]. In a different way, Jäkle and co-workers
reported the interaction pattern between a polymeric Lewis acid and a telechelic Lewis base [14].
The Lewis acidic polymer was obtained by the partial decoration of the para-phenyl position of
polystyrene with electron-deficient borane moieties, whereas the Lewis basic polymer was synthesized
by capping polydimethylsiloxane with electron-donating pyridine units at both ends. The mixing
of such Lewis acidic and basic polymers results in the formation of solid-like gel with a crosslinked
network that exhibits dynamic properties and thermally induced self-healing behaviors [14].

Finally, the guest editors of this Special Issue wish to take this opportunity to thank all of the
authors who contributed to this Special Issue. We also hope the readers will enjoy reading this
first thematic issue on LPP, which covers a broad spectrum of topics on the exploration of Lewis
pair catalyst/initiator and monomer scopes, the synthesis of polymers with controlled or unique
structures through catalyst design and Lewis interaction modulation, as well as the related mechanistic
investigations through both experimental and computational studies.
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