Supporting Information for

Complexes of CO_{2} with Azoles: Tetrel Bonds, Hydrogen Bonds, and Other Secondary Interactions

Janet E. Del Bene, ${ }^{\ddagger}$ José Elguero, ${ }^{\S}$ and Ibon Alkorta, ${ }^{\S}$
${ }^{\text {D Department of Chemistry, Youngstown State University, Youngstown, Ohio } 44555 \text { USA }}$
§ Instituto de Química Médica (IQM-CSIC), Juan de la Cierva, 3, E-28006 Madrid, Spain
Pgs. S2-S5 Table S1. Structures (\AA), total energies (a.u.), and molecular graphs of tetrel-bonded planar CO_{2} :azole complexes
Pg. S6 Table S2. Bending and stretching frequencies $\left(v, \mathrm{~cm}^{-1}\right)$ of isolated CO_{2} and of CO_{2} in planar tetrel-bonded complexes
Pg. S7 Fig. S1. Fig. S1. Changes in Ny-H stretching frequencies in planar tetrelbonded complexes versus the number of N atoms in the ring.
Pg. S8 Fig. S2. ${ }^{1 t} \mathrm{~J}(\mathrm{Nx}-\mathrm{C})$ versus the $\mathrm{Nx}-\mathrm{C}$ distance for planar tetrel-bonded complexes
Pg. S9 Fig. S3. J(Ny-O') versus the Ny-O' distance for planar tetrel-bonded complexes
Pgs. S10-S12 Table S3. Structures (\AA), total energies (a.u.), and molecular graphs of tetrel-bonded perpendicular CO_{2} :azole complexes
Pgs. S13-S14 Table S4. Structures (\AA), total energies (a.u.), and molecular graphs of hydrogen-bonded CO_{2} :azole complexes

Table S1. Structures (\AA), total energies (a.u.), and molecular graphs of tetrel-bonded planar CO_{2} :azole complexes

lle

	2H-123tri-12 MP2 $=-430.13530138$ NIMAG $=0$ C,3.2933550286,-2.1279297602,0. 0,3.6187390348,-1.0002137407,0. 0,3.0138948314,-3.2605141693,0. $\mathrm{N}, 0.9748720105,0.2773519743,0$. N,0.6617366904,-1.011310578,0. N,-0.0256285276,1.1454985494,0. C,-0.6874048453,-0.9857816272,0. C,-1.1094346434,0.3418491912,0. H,-1.2502820077,-1.9020668612,0. H,1.9411763344,0.570916358,0. H,-2.0991221886,0.7622745169,0.
	1H-124tri-12 MP2=-430.15368316 NIMAG=0 C,3.2956578076,-2.1557483799,0. 0,3.6450728067,-1.0348497283,0. 0,2.9940721005,-3.2821757123,0. $\mathrm{N}, 0.6900264853,-0.9798470779,0$. $\mathrm{N}, 1.0420816504,0.3174297227,0$. C,-0.6445872111,-0.9009989713,0. $\mathrm{N},-1.1449716982,0.3603477092,0$. C,-0.0493819263,1.1091472371,0. H,-1.2570552949,-1.7859281956,0. H,2.0219553427,0.5590328966,0. H,-0.0015779228,2.1845635195,0.
	1H-124tri-45 MP2 $=-430.15248122$ NIMAG $=0$ C,-2.4390824651,0.1933198228,0. 0,-2.1542061596,1.3301570155,0. 0,-2.7737856244,-0.9260536728,0. N,2.5962715301,-0.6407984787,0. N,2.3018192463,0.671289904,0. C,1.3786340551,-1.1897783443,0. N,0.3491978711,-0.3037298721,0. C,0.9680871005,0.8699880018,0. H,1.244751248,-2.2575136001,0. H,3.0462500584,1.3499888968,0. H,0.5041797496,1.8415024872,0.

	1H-tet-12 MP2 $=-446.15444402$ NIMAG $=0$ C,3.2763631041,-2.1760388934,0. 0,3.5881277109,-1.0430472973,0. 0,3.0018257053,-3.3082658322,0. N,1.0388684985,0.348231601,0. $\mathrm{N}, 0.6241943203,-0.9238050043,0$. $\mathrm{N},-0.6924350418,-0.870609022,0$. N,-1.1201990638,0.4143240639,0. C,-0.0281345497,1.162353954,0. H,2.0307701632,0.5414588984,0. H,0.016805243,2.2362515521,0.
	2H-tet-23 MP2 $=-446.15987382$ NIMAG $=0$ C,3.2905608608,-2.1404527626,0. 0,3.5735214019,-1.0003140078,0. 0,3.0451932882,-3.2797936329,0. N,-0.0126099953,1.1730058555,0. $\mathrm{N}, 0.9776427463,0.3023151624,0$. $\mathrm{N}, 0.6149138717,-0.9782236414,0$. $\mathrm{N},-0.7133704827,-0.9583019294,0$. C,-1.0656258054,0.3405637443,0. H,1.9548410166,0.5656173052,0. H,-2.082883192,0.6877246168,0.
	2H-tet-12 MP2=-446.15951455 NIMAG= 0 C,3.3580551859,-2.129904022,0. 0,3.6220894099,-0.9859544262,0. 0,3.1271917179,-3.2728431277,0. N,0.6354678058,-1.04001045,0. $\mathrm{N}, 0.9733939654,0.2358625691,0$. N,-0.0392023779,1.0970737466,0. $\mathrm{N},-1.1308879537,0.339651276,0$. C,-0.7026366869,-0.9357903057,0. H,-1.3540677703,-1.7907932311,0. H,1.941620594,0.530507301,0.

Table S2. Bending and stretching frequencies $\left(v, \mathrm{~cm}^{-1}\right)$ of isolated CO_{2} and of CO_{2} in planar tetrel-bonded complexes

		out-of-plane bending	in-plane bending	Symmetric stretch	Asymmetric stretch
	CO_{2}	659	659	1326	2401
Azole	Complex				
pyrazole	1H-pyra-12	661	634	1327	2402
imidazole	1 H -imid-23	664	628	1327	2400
triazoles	$1 \mathrm{H}-123$ tri-12	660	640	1327	2404
	$2 \mathrm{H}-123$ tri-12	660	641	1327	2404
	$1 \mathrm{H}-124$ tri-12	660	640	1328	2404
	$1 \mathrm{H}-124$ tri-45	663	636	1328	2402
tetrazoles	$1 \mathrm{H}-$ tet-12	658	646	1327	2405
	2H-tet-23	659	646	1327	2405
	2H-tet-12	659	646	1328	2405
pentazole	1H-pent-12	657	650	1328	2406

Fig. S1. Changes in Ny-H stretching frequencies in planar tetrel-bonded complexes versus the number of N atoms in the ring.

Fig. S2. ${ }^{1 t} \mathrm{~J}(\mathrm{Nx}-\mathrm{C})$ versus the Nx-C distance for planar tetrel-bonded complexes

Fig. $\mathrm{S} 3 . \mathrm{J}\left(\mathrm{Ny}-\mathrm{O}^{\prime}\right)$ versus the $\mathrm{Ny}-\mathrm{O}^{\prime}$ distance for planar tetrel-bonded complexes

Table S3. Structures (\AA), total energies (a.u.), and molecular graphs of tetrel-bonded perpendicular CO_{2} :azole complexes

	1H-123tri-23p MP2 $=-430.12623017$ NIMAG $=0$ C,0.0193666139,0.,-3.9192408243 O,0.016563709,1.1699533762,-3.9394666568 0,0.016563709,-1.1699533762,-3.9394666568 N,-1.0624660736,0.,0.2788888579 N,-0.7087456306,0.,-1.015231868 $\mathrm{N}, 0.6165036478,0 .,-1.0424757459$ C,1.0799169353,0.,0.2322498716 C,0.008901476,0.,1.1021734811 H,-0.0767248975,0.,2.1735109375 H,2.1332421598,0.,0.4489583011 H,-2.0431216492,0.,0.5143883927
	4H-124tri-12p MP2 $=-430.14200266$ NIMAG $=0$ C,0.,0.,-3.8796093137 0,0.,1.169850826,-3.9024000548 0,0.,-1.169850826,-3.9024000548 N,0.6893925965,0.,-1.0400671923 N,-0.6893925965,0.,-1.0400671923 C,1.0807570502,0.,0.2188521624 C,-1.0807570502,0.,0.2188521624 N,0.,0.,1.0451520233 H,0.,0.,2.0519045151 H,2.1004401687,0.,0.562035506 H,-2.1004401687,0.,0.562035506
	$\begin{aligned} & \text { 1H-tet-34p } \\ & \text { MP2 }=-446.15242792 \text { NIMAG }=0 \\ & \text { C,-0.0400504806,0.,-3.8996071895 } \\ & \mathrm{O},-0.039145282,1.1699429134,-3.9161980066 \\ & \mathrm{O},-0.039145282,-1.1699429134,-3.9161980066 \\ & \mathrm{~N}, 0.0072175728,0 ., 1.014263033 \\ & \mathrm{~N},-1.0815458463,0 ., 0.2349101273 \\ & \mathrm{~N},-0.6282909974,0 .,-0.9994222547 \\ & \mathrm{~N}, 0.727757013,0 .,-1.0189271573 \\ & \mathrm{C}, 1.1094530328,0 ., 0.2467252077 \\ & \mathrm{H},-0.0918373611,0 ., 2.0179021338 \\ & \mathrm{H}, 2.1187092911,0 ., 0.6164518029 \end{aligned}$


	```2H-tet-34p MP2=-446.15752637 NIMAG=0 C,0.0151807066,0.,-3.9596903595 0,0.0129142903,1.1700251958,-3.9749182619 0,0.0129142903,-1.1700251958,-3.9749182619 N,0.0105789243,0.,1.1000260199 N,-1.0126557374,0.,0.2674525119 \(\mathrm{N},-0.7038540642,0 .,-1.0257470604\) N,0.62432727,0.,-1.0558224527 C,1.0295867493,0.,0.2270837799 H,2.0598798307,0.,0.533161686 H,-1.9721473495,0.,0.5841495388```
	1H-tet-23p   MP2= -446.15175141 $\mathrm{NIMAG}=0$   C,0.0760410761,0.,-3.9449944864   0,0.0720640527,1.1700205784,-3.9602107625   0,0.0720640527,-1.1700205784,-3.9602107625   N,-1.110834781,0.,0.3168729464   $\mathrm{N},-0.7948889615,0 .,-0.9827408927$   $\mathrm{N}, 0.5215616004,0 .,-1.024388667$   $\mathrm{N}, 1.0462790547,0 ., 0.2236160438$   C,0.0142611853,0.,1.0511044386   H,0.0487983432,0.,2.1253695509   H,-2.0785877732,0.,0.600912371
	$\begin{aligned} & \text { 1H-pent-34p } \\ & \text { MP2= -462.16267680 NIMAG= } 0 \\ & \text { C,0.,0.,-3.9199249944 } \\ & \text { O,0.,1.1700468519,-3.9304125838 } \\ & \text { O,0.,-1.1700468519,-3.9304125838 } \\ & \text { N,0.6704093968,0.,-0.9793025741 } \\ & \text { N,-0.6704093968,0.,-0.9793025741 } \\ & \text { N,1.1069848368,0.,0.2653755437 } \\ & \text { N,-1.1069848368,0.,0.2653755437 } \\ & \text { N,0.,0.,0.9836936856 } \\ & \text { H,O.,0.,1.9951695175 } \end{aligned}$


	1H-pent-23p   MP2 $=-462.16229813$ NIMAG $=0$   C,2.432388604, 0.0245513847,0.   0,2.441912584,0.0206615398,1.1701009336   0,2.441912584,0.0206615398,-1.1701009336   $\mathrm{N},-0.588378221,-0.7291173407,0$.   $\mathrm{N},-0.4977457489,0.5884504839,0$.   $\mathrm{N},-1.8877778532,-0.9524049398,0$.   $\mathrm{N},-1.7278046183,1.1181518216,0$.   $\mathrm{N},-2.620270706,0.1453970592,0$.   Н,-2.2873570246,-1.8816424785,0.

Table S4. Structures ( $\AA$ ), total energies (a.u.), and molecular graphs of hydrogen-bonded $\mathrm{CO}_{2}$ :azole complexes

	1H-pyrr   MP2 $=-398.07162177$ NIMAG $=0$   C,0.,0.,-3.4964986496   0,0.,0.,-2.3246952146   0,0.,0.,-4.6638813805   N,0.,0.,0.8506168761   C,0.,1.121913066,1.63440219   C,0.,-1.121913066,1.63440219   C,0.,0.7082353985,2.95473723   C,0.,-0.7082353985,2.95473723   H,0.,O.,-0.1554371991   H,0.,2.1061835051,1.1984878319   H,O.,-2.1061835051,1.1984878319   H,0.,-1.3577931483,3.8138016119   H,0.,1.3577931483,3.8138016119
	1H-imid   MP2 $=-414.11793162$ NIMAG $=0$   C,-2.2880865408,1.0527201927,0.   0,-1.2045314969,0.6055206279,0.   O,-3.3664833789,1.4982647037,0.   N,1.6814714667,-0.6608037946,0.   C,1.9566471959,-1.9941108613,0.   N,3.2602597584,-2.2219588731,0.   C,3.840497088,-0.9777297706,0.   C,2.8781525027,0.008008757,0.   H,0.7650991289,-0.2425547706,0.   H,2.935646823,1.0820017335,0.   H,1.1837254828,-2.7439990447,0.   H,4.9102364902,-0.8555450598,0.


	4H-124tri   $\mathrm{MP2}=-430.13999255 \mathrm{NIMAG}=0$   $\mathrm{C}, 0 ., 0 .,-3.3356438$   $\mathrm{O}, 0 ., 0 .,-2.1629184$
$\mathrm{O}, 0 ., 0 .,-4.50172987$	
$\mathrm{~N}, 0 ., 0.68967067,3.03863268$	
$\mathrm{~N}, 0 .,-0.68967067,3.03863268$	

