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Abstract: Currently, lignin is mainly produced in pulping processes, but it is considered as an
under-utilized chemical since it is being mainly used as a fuel source. Lignin contains many hydroxyl
groups that can participate in chemical reactions to produce value-added products. Flocculants,
adsorbents, and dispersants have a wide range of applications in industry, but they are mainly
oil-based chemicals and expensive. This paper reviews the pathways to produce water soluble
lignin-based flocculants, adsorbents, and dispersants. It provides information on the recent progress
in the possible use of these lignin-based flocculants, adsorbents, and dispersants. It also critically
discusses the advantages and disadvantages of various approaches to produce such products.
The challenges present in the production of lignin-based flocculants, adsorbents, and dispersants and
possible scenarios to overcome these challenges for commercial use of these products in industry
are discussed.
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1. Introduction

Greenhouse gas emission is a major driver of global warming; mainly caused by human
activities, such as fossil fuel combustion, deforestation, livestock farming, use of synthetic fertilizers,
and industrial processes. Contamination of global freshwater systems with industrial chemicals is
another crucial problem calling for the generation of nontoxic chemicals and transition to more
sustainable processes [1,2]. Currently, many oil-based chemicals are used in industry for a variety
of purposes, and unwillingly some will be released to the environment, causing wildlife and
environmental issues, consequently. Also, these oil-based chemicals are heavily used in treating
water and wastewater systems [3,4]. These commercial materials are mainly expensive, inefficient,
and sometimes environmentally unfriendly, raising the need for being replaced by environmentally
friendly analogs, such as biomass based value-added products.

Lignin is the most abundant natural aromatic polymer composing 18–35 wt. % of wood [5,6].
It was estimated that (5–36) × 108 tons of lignin are produced annually [7]. In woody plants, lignin
plays a critical role in providing strength to fiber walls, controlling fluid flow, and protecting against
enzymatic degradation [8]. Lignin contains phenylpropanoid units originating from three aromatic
alcohol precursors (monolignols), p-coumaryl, coniferyl, and sinapyl alcohols [9]. It was reported that
50 million tons of lignin are produced annually only by the pulping industry; however, the majority
of lignin is burned and used as a fuel source, implying that lignin is currently under-utilized [9,10].
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Lignin’s physicochemical advantages are classified as: (a) being rich in functional groups; (b) having
high adsorption capacity; and (c) having high potential for value-added product production [10].
Interestingly, lignin’s renewable, nontoxic, and biodegradable nature allows for its effective valorization
into value-added products [11]. The efforts to convert lignin derivatives into sensor components [12],
biocomposites [13], biofuels [14,15], and hydrogels [16,17] are currently under development.

Lignosulfonate is a by-product of the sulfite pulping process, providing up to 90% of
commercial lignin with an annual production of around 1.8 million tons [18–23]. The hydrophobicity,
water solubility, and negative charge density of lignosulfonate, in addition to its thermal stability,
renewability and eco-friendliness [24], make this polymer a promising candidate to be used in
industry [21,24]. Kraft lignin is produced via pulping of wood chips using sodium sulfite and sodium
hydroxide, while alkali lignin is produced via pulping of wood chips using sodium hydroxide [18–23].
Kraft lignin and alkali lignin are not water soluble at pH 7 in opposition to lignosulfonates [18–23].

Technical lignin’s application as a flocculant and dispersant has received a considerable
attention [25], which is the focus of this review paper. In this work, the advantages and disadvantages
of using lignin for producing flocculants, coagulants, and dispersants are also critically reviewed.

2. Flocculant

Flocculants have been extensively used in treating wastewater effluents with the aim of removing
colloidal particles from the solutions and suspensions [4,26]. Flocculants aggregate colloidal particles
via charge neutralization, patching, and bridging mechanisms as shown in Figure 1. In the charge
neutralization mechanism, the charges of colloidal particles are neutralized by adsorption of flocculants,
and thus repulsion force existing between adjacent particles is diminished/reduced, which causes
these particles to agglomerate via developing van der Waals interaction, for example (Figure 1a).
In the patching mechanism, flocculants adsorb on a colloidal particle due to their opposite charges,
and they neutralize a part of the particle’s surface. Due to their opposite charges, the adsorbed
flocculants will act as anchoring points for another adjacent particle for aggregation (Figure 1b).
In the bridging mechanism, high molecular weight flocculants adsorb on particles. Due to their large
sizes, the flocculants bridge particles and hence generate large flocs (Figure 1c). Although synthetic
organic flocculants have been mostly used in industry [27–29], they are non-biodegradable, inefficient,
and expensive [30]. Biomass based flocculants can be produced to replace synthetic flocculants.
Table 1 classifies different kinds of modified lignin used as flocculants in various fields [31]. In the
following sections, the application of lignin-based flocculants in different wastewater treatment systems
is described.

Figure 1. Cont.
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Figure 1. Mechanisms of flocculation: (a) charge neutralization; (b) patching; and (c) bridging.

2.1. Flocculants for Wastewater Systems

To remove natural organic substances from wastewater, the most frequently used and
economically feasible method is coagulation/flocculation [32]. Generally, hydrophobic and high
molecular weight compounds could be removed via coagulation. However, this method is
inefficient for removing low molecular weight and hydrophilic compounds from wastewater [33].
To address this problem, Li and coworkers [34] synthesized a sludge-based flocculant by
grafting amine groups onto the organics of sludge (Figure 2). The sludge contained a major
portion of lignin, and thus the chemical structure of lignin was considered for describing its
reaction mechanisms with other chemicals in Figure 2. The reaction was conducted by reacting
sludge with epichlorohydrin and N,N-dimethylformamide at a ratio of 1/1.6/1.6 (w/v/v) dried
sludge/epichlorohydrin/N,N-dimethylformamide at 60–70 ◦C for 1 h. Then, ethylenediamine was
added to the reactor at the ratio of 1/0.4 (w/v) dried sludge/ethylenediamine and the mixture
was treated for another hour. Afterward, triethylamine was reacted with the product under the
conditions of 1/1.2 (w/v) dried pulping sludge/triethylamine for two hours at 60–70 ◦C. The produced
amine-crosslinked sludge-based cationic polymer used as a flocculant along with aluminum sulfate
(AS) and poly aluminum chloride (PAC) for removing humic acid from a wastewater effluent. The AS
and PAC were used for improving the efficiency of flocculation in a dual system. The results showed
that the product could be used as a flocculant in this system and its efficiency was 25% higher under
acidic conditions [34].
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Figure 2. Reaction scheme for producing crosslinked amine-based sludge flocculant [34]. The sludge
contained mainly lignin and hence the structure of lignin was selected to represent sludge as the raw
material in this reaction.

Table 1. Lignin-based flocculants used in different fields.

Lignin Type Application Charge Density
meq/g

MW
(g/mol) Modification References

Pulping sludge containing lignin Wastewater N/A 510,000 Amination with
triethylamine [34]

Kraft lignin from black liquor Dye removal N/A N/A Grafting trimethyl
quaternary ammonium salt [35]

Alkali lignin Dye removal N/A N/A

Grafting trimethyl
quaternary ammonium salt

and along with sodium
alginate

[36]

Thermomechanical pulping lignin
(76 wt. % lignin) Dye removal −3.02 6270 Nitric acid oxidation [37]

Hydrolysis lignin Dye removal

+1.79 2669 Dimethylamine-acetone-
formaldehyde copolymer

grafting, Mannich reaction
[38]+2.11 2762

+2.55 6143

Papermaking sludge (45–50 wt. %
lignin and 5–10 wt. % cellulose) Wastewater N/A 1000 Acrylamide graft

copolymerization [39,40]

Softwood kraft lignin Dye removal +1.10 21,600 Cationization with GTMAC [11]

Softwood kraft lignin Dye removal −4.61 18,300 Oxidation and
sulfomethylation [41]

N/A: not available.

In another study, the sludge of a pulping process containing 45–50 wt. % lignin and 5–10 wt. %
cellulose was used to produce acrylamide-based polymers in a free radical polymerization system
under alkaline pH (Table 1) [39]. The product of this reaction was used as a flocculant along with
polyaluminum chloride (PAC) to treat humic acid solution [40]. However, the poor solubility of the
flocculants at a higher pH was cited as the main problem of this flocculation system.

Lignosulfonate can be used in the production of flocculants. Lignosulfonate has been reported to
have the highest molecular weight among all lignin products [21]. Generally, it was suggested that the
higher the molecular weight of the polymer, the better its flocculation performance [22]. The water
solubility of lignosulfonate has led to its vast utilization as a flocculant in wastewater systems [21].
Table 2 shows lignosulfonate applications as a flocculant in various fields. The charge density and
molecular weight of these samples were not reported in these reports.
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Table 2. Lignosulfonate as a flocculant in different areas.

Application as a Flocculant Modification Reference

Wastewater containing furfural Radiation polymerization with olefins monomers [42]
oil sands No modification, but applied along with polyacrylamide-based polymers [43]

Wastewater Grafting with acrylamide and chitosan [44]

NA: not available.

Liu and coworkers grafted olefin monomers to lignosulfonate by using radiation graft
polymerization and used the resulting natural-based polymers as flocculants for removing furfural
from wastewater [42]. In another work, lignosulfonate was used as a flocculant along with a high
molecular weight linear polyacrylamide-based polymer for flocculating particles in a mining waste.
The dual polymer system having lignosulfonate and polyacrylamide-based polymer at the dosages of
1 and 2.5 g/L, respectively, was found to be effective as it increased the chord length of the particles
from 20 to 145 µm for the flocs, while decreasing the number of particle in suspension from 100,000 to
80,000 as determined by focused beam reflectance measurement (FBRM) analysis [43].

Even though lignosulfonate is water soluble [22], there are some barriers in its use: (1) it is
less available than kraft lignin worldwide since the kraft pulping process is more common than
the sulfite pulping process; (2) its high sulfur content is a limitation for some applications such as
polymer synthesis; (3) sulfur removal from lignosulfonate is challenging since it is chemically bonded
to lignin; and (4) the sulfite spent liquor containing lignosulfonate contains hemicelluloses, indicating
the impurity in the produced lignosulfonate [45].

2.2. Flocculants for Dye Removal

Textile effluents contain a significant amount of dyes, which are generally non-biodegradable and
have a high level of toxicity and strong color [38]. To treat this source of environmental pollution [46],
adsorption, oxidation, hyper-filtration, biodegradation, flocculation, and ozonation processes were
considered in the past [47–52]. Inorganic coagulants including aluminum sulfate, ferric chloride,
and polyaluminum salts are used as flocculants for dye removal due to their low costs; however, these
inorganic coagulants need to be applied in high concentrations, resulting in a large volume of sludge.
The use of high concentration of ferric or aluminum ions generally yields a high concentration of salts
in the solution after treatment, which has a harmful effect on the ecosystem [38].

Lignin has been aminated (Table 1) for removing anionic dyes from solutions. In a work conducted
by Fang and coworkers, a quaternary ammonium salt was grafted onto kraft lignin with a mass ratio
of 2/1 of trimethyl quaternary ammonium/lignin at 70 ◦C [35]. The modified lignin at 2–3 g/L dosage
showed 94.02% removal of Acid Black dye from a 0.1 g/L dye concentration in acidic conditions
(pH 2–3) [35]. It was also discovered that the aminated lignin could remove 94.91% of Acid Black ATT
(0.1 g/L concentration) and 97.11% of Methylene Blue (0.1 g/L concentration) at 30 ◦C and pH 3 and
8, respectively [36]. Kong et al. (2015) grafted glycidyl-trimethylammonium chloride (GTMAC) onto
softwood kraft lignin (Table 1) in the molar ratio of 2/1 GTMAC/lignin for 1 h at 70 ◦C, in which
aminated lignin with the charge density of 1.10 meq/g was generated [11]. In this reaction, GTMAC
reacts with the phenolic group of lignin under alkaline conditions and renders lignin cationically
charged and water soluble. The use of this lignin as a flocculant for the removal of Remazol Brilliant
Violet (V5), Reactive Black 5 (B5), and Direct Yellow 50 (Y50) (100 mg/L concentration) led to more
than 87% dye removal at the lignin concentrations of 95, 235, and 375 mg/L for V5, B5, and Y50,
respectively [11]. In another study, enzymatically hydrolyzed cornstalk lignin was polymerized via the
Mannich reaction with dimethylamine, acetone, and formaldehyde. The addition of 75, 50, and 35 mg/L
of this cationic flocculant in Acid Black, Reactive Red, and Direct Red dyes solutions (100 mg/L) led
to 97.1, 98.3, and 99.5% removals, respectively [11]. He and coworkers reported that a ternary graft
copolymer of lignosulfonate-acrylamide-chitosan could be used as a flocculant in wastewater treatment
systems. The copolymer was produced with a chitosan/sodium lignosulfonate/acrylamide mass ratio
of 1.5/1.5/3 mixed with potassium persulfate/sodium thiosulfate in the mass ratio of 0.05/0.05 and
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reacted for 5 h at 60 ◦C. Three different dyes of Reactive Black 5 (Rb-5) (neutral), Methyl Orange (MO)
(cationic), and Acid Blue 113 (Ab-113) (anionic) were used to simulate textile wastewater and the
produced amphoteric copolymer was used as a flocculant in the system. The polymer removed 50,
85, and 98% of dyes (50 mg/L concentration) when 335, 135, and 35 mg/L of the polymer were used
for MO, Rb-5, and Ab-113, respectively. The flocculation mechanism was determined to be charge
neutralization in this work [44].

Lignin has also been modified to increase its anionic charge density for removing cationic dyes
from solutions. In one study, softwood kraft lignin was oxidized (Table 1) with nitric acid (20 wt. %
based on lignin, 60–100 ◦C for 0.5–4 h) and then sulfomethylated under the conditions of 1/1 mol/mol
formaldehyde/lignin, 0.5/1 sodium metabisulfite/lignin, and 4 wt. % sodium hydroxide concentration
at 60–100 ◦C for 1 h. The produced lignin had a charge density of −4.61 meq/g and the molecular
weight of 18,300 g/mol, and was able to coagulate 99.1% of ethyl violet dye (200 mg/L concentration)
at a 300 mg/L dosage [41]. Couch et al. (2016) reported that, thermomechanical lignin-carbohydrate
complex (LCC), containing 76 wt. % lignin and 24 wt. % of hemicellulose, was oxidized (Table 1)
with nitric acid under different concentrations of 70 and 30 wt. % at 60–100 ◦C for different times
(20–120 min). The oxidized lignin had a charge density of −3.02 meq/g and molecular weight of
6270 g/mol. The use of this product as a flocculant resulted in 70–80 wt. % of Ethyl Violet and 80–95%
of Basic Blue dye removals from simulated solutions [37]. Generally, the charge density of this modified
lignin had a significant impact on their performance since the main driving force for the removal was
the charge neutralization mechanism [53].

Effluents of the textile industry may contain salts and have different pH. It was reported that
the reduction of pH improved the efficiency of aminated lignin in dye removal. The presence of salts
(NaCl and NaNO3) up to 0.05 mol/L concentration did not affect their performance significantly [38].
However, NaCl (at a 3 g/L concentration) reduces the efficiency of oxidized lignin in Basic Blue dye
removal from 84% to 77% [37].

However, the main barrier to produce lignin-based flocculants are the complex and heterogeneous
structure of the flocculants [54,55]. Also, lignin obtained from different processes (sulfite, kraft,
and organosolv) have different physical and chemical characteristics, thereby affecting their
modification processes and product performance [56]. The current challenge in producing lignin-based
flocculants is to identify environmentally friendly and cost-effective processes for lignin modification
(Table 1) in order to induce flocculants with a high charge density, molecular weight, and hydrophilicity.
On the other hand, lignin contains many functional groups such as phenol hydroxyl, methoxy, hydroxy,
and carboxy groups [57,58], which makes it feasible to engraft the functional groups to its structure [59].

3. Adsorbent

3.1. Adsorbent for Heavy Metals

Wastewater from mining operations, fossil fuel combustion, metal plating, and tanneries contain
heavy metals and poses environmental concerns [60]. Application of lignin to adsorb these heavy
metals from solutions has shown a profound efficiency [61]. A summary of lignin application in metal
removal is compiled in Table 3.

Table 3. Lignin potential in heavy metal removal.

Material Adsorbent Adsorption Capacity Reference

Pb(II) Wheat straw lignin 85% [62]

Cr(III) + Pb, Cr(III) + Cu,
Cr(III) + Zn, Cr(III) + Cd Isolated lignin from black liquor ≥90% [63]

Cr(VI) Kraft lignin 33.33 mg/g [64]

Cr(VI) Alkali lignin 65 mg/g [65]
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Table 3. Cont.

Material Adsorbent Adsorption Capacity Reference

Cu + Ni
Cu + Cd Kraft lignin ≥80%

≥80% [66]

Fe(III)
Mn(III) Wheat straw lignin 100%

100% [67]

Cu(II) Wheat straw lignin 35 mg/g [68]

Cd(II) Alkynylated lignin 87.4 mg/g [69]

Pb(II) Aminated/esterified alkali lignin 120 mg/g [70]

Cu(II)
Pb(II) Aminated sulfomethylated lignin ≥60%

≥60% [68]

PO2−
4 Fe-Aminated lignin complex ≥90% [71]

Al(III)
Co(II)
La(III)

Crosslinked lignocatechol
80%

100%
100%

[72]

Ag+ Lignin-polyaniline 1556.8 mg/g [15]

Cu(II)
Cd(II) Lignin-melamine formaldehyde 73.2 mg/g

142.3 mg/g [73]

Generally, adsorbents have charges and these charges will interact with ions in wastewater via
the charge neutralization mechanism. The results of this interaction are the complexation of ions with
the adsorbents, as shown in Figure 3. The produced complexes may be removed from wastewater
effluents via filtration and/or sedimentation.

Kraft lignin, without modification, has been used as an adsorbent in many simulated wastewater
systems. In one report, bonding strength among various ions and kraft lignin was reported to be in
the order of Pb(II) > Cu(II) > Cd(II) > Zn(II) > Ni(II) [62]. Results demonstrated the higher efficiency of
lignin’s phenolate group than lignin’s carboxylate groups in coagulating metals [62]. In another study, the
adsorption of heavy metals on kraft lignin followed the order of Cr(VI) > Cd(II) > Cu(II) > Zn(II) [66].
As shown in Table 3, lignin had different efficiencies in metal removal as differently sourced lignin
contained varied properties originating from wood species and pulping process [62–68].

Figure 3. Mechanism of adsorbents in adsorbing ions.

Modification of lignin has also been examined as a means to produce adsorbents for heavy metal
removal. One study introduced secondary amino groups on enzymatic hydrolysis lignin’s backbone
via reacting with poly(N-methylaniline, PNMA) for 4 h at 25 ◦C [13]. Introduction of methyl and imino
groups onto lignin enhanced electron donating properties of the final product. The product removed
silver ions from wastewater. A high silver uptake of 1556.8 mg/g was reported for this modified
lignin. In the past, influence of aminated-Fe lignin complex on PO3−

4 uptake from wastewater was
studied [71]. First, lignin was aminated by triethylenetetramine in an alkaline solution for 4 h at 65 ◦C.
Then, aminated lignin was chelated with FeCl3 by stirring for 4 h at 35 ◦C to allow the uptake of Fe3+.
When the modified lignin was applied to wastewater system, the phosphate-Fe-lignin complexes
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were formed with the particle size of 452.4 nm. Results reported a maximum PO3−
4 removal capacity

of 90%. It was confirmed that Fe(III) was the active site for adsorption, and charge interaction was
the main interaction force between phosphate and iron. Another novel modification for alkynylated
lignin production was performed through thiol-yne reaction to remove different ions from water [69],
as shown in Figure 4. In the first reaction, alkynylated lignin was prepared via reacting lignin and
propargyl bromide under alkaline conditions for 2 h and 75 ◦C (Figure 4). In the next reaction, thiol-yne
click reaction was conducted on alkynylated lignin, in which 2,2-dimethoxy-2-phenylacetophenone
(DMPA) and 1,2,4-triazole-3-thiol monomers were reacted with the modified lignin in tetrahydrofuran
under UV radiation. Introduction of thio-triazole units into lignin led to an increased molecular weight
of the product (6756 g/mol) with an alkynylation degree of 2.47 mmol/g. The produced coagulant
exhibited a selective adsorption capacity in the order of Cd(II) > Pb(II) > Cu(II) > Ni(II) > Zn(II),
which is consistent with what was reported for unmodified lignin [66].

Figure 4. Schematic reaction mechanism of thiol-yne alkynylation lignin [69].

In all cases stated above on modified lignin, maximum adsorbed mass is correlated to the charged
groups and molecular weight of lignin, which in turn enhanced the solubility of modified lignin. But even
insoluble lignin seems to be an efficient adsorbent. In one study, a two-step process to synthesize
porous lignin has been developed [70]. Mannich reaction to graft polyethylenimine (PEI) onto alkali
lignin matrix at 90 ◦C for 5 h was first implemented to introduce amine groups to lignin. Then, carbon
disulfide was used for completing modification, while introducing dithiocarbamate groups to lignin.
The final product possessed 8.5 mmol/g of nitrogen and 2.8 mmol/g of dithiocarbamate groups.
The higher surface area of this adsorbent (22.3 m2/g) compared to lignin (1.8 m2/g) confirmed the
porous structure of the functionalized lignin matrix. The final product exhibited excellent adsorption
performance toward lead ions with 90% removal from the solution (120 mg/g). However, the
two stages of the Mannich and esterification reaction may be too complex to be implemented in
industry. Yang and coworkers formed a lignin-based interconnected foam in an oil/water interface
by in-situ polymerization containing lignin (1 wt. %) and melamine formaldehyde (25 wt. %) in a
water/toluene mixture at 60 ◦C for 4 h [73]. The product was employed to remove Cu2+ and Cd2+

from wastewater. The highest adsorbed capacities of 73.2 mg/g and 142.3 mg/g were reported for
Cu2+ and Cd2+, respectively.

3.2. Adsorbent for Dyes

Table 4 demonstrates that lignocellulosic material can be a good candidate to remove dyes
from aqueous media. Unmodified wheat straw lignin with a molecular weight of 3510 g/mol and
carboxylate content of 3.8 mmol/g was applied for adsorbing Brilliant Red dye [50]. Thermodynamic
parameters confirmed a spontaneous endothermic adsorption process. The driving force for adsorption
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stems from electrostatic interaction between the oppositely charged groups of lignin and dye.
The highest adsorption capacity was 10.13 mg/g at 20 ◦C.

Table 4. Lignin as an adsorbent for dye removal.

Material Adsorbent Adsorption Capacity Reference

Brilliant Red HE-3B dye Wheat straw lignin 10.17 mg/g [50]
Methylene Blue dye Esterified Lignin 31.23 mg/g [74]

Brilliant Red 2BE dye Etherified lignin-Fe3+ complex 73.6 mg/g [75]
Anthraquinonic dye Chitosan-alkali lignin complex ≥90% [76]

Procion Blue dye Carboxymethylated lignin-Al3+ complex
Carboxymethylated lignin-Mn2+ complex

73.52 mg/g
55.16 mg/g [77]

Methylene Blue Reticulated formic lignin 34.12 mg/g [50]

The counterions attached to lignin were proposed to influence its adsorption efficiency.
In one work, carboxymethylated lignin was produced under basic conditions via reacting with
monochloroacetic acid [75]. The product was treated with FeCl3·6H2O solution for 24 h to ensure that
Fe3+ was coupled to the lignin backbone. The final product with a molecular weight of 1890 g/mol
was shown to be a potential adsorbent for Brilliant Red dye. The high adsorbed amount of 73.6 mg/g
indicated an electrostatic attraction between carboxymethyl Fe-based lignin and an anionic dye.
In another study, Al3+ and Mn2+ based carboxymethylated lignins were produced and the coagulation
of Procion blue dye with these lignins was studied [77]. Al-lignin and Fe-lignin complexes showed
similar adsorption capacity [75,77]; while the Mn-based lignin complex yielded a lower adsorption
capacity. This difference may be attributed to the ion charge capacities of the metals.

Li and coworkers used larch-based and poplar-based lignins to form esterified lignin via reacting
lignin with maleic anhydride in acetone at 60 ◦C [78]. The esterified lignins, along with Fe3O4

nanoparticles, were dissolved in tetrahydrofuran. After investigating the adsorption capacity of
modified lignins for Methylene Blue dye, it was observed that larch-based adsorbent with the molecular
weight of 3200 g/mol exhibited an adsorption capacity of 31.23 mg/g. Monolayer surface coverage of
lignin with dyes was claimed to occur via van der Waals interaction between the benzene ring of the dye
and the esterified lignin. Results obtained from this insoluble lignin suggests that adsorbent’s particle
diameter and surface area play significant roles on its adsorption capacity. Also, the incorporation of
Fe3O4 may hinder the commercialization step to produce such adsorbent.

3.3. Adsorbent for Other Applications

Lignin appears to be an excellent adsorbent in chemical processes, which is tabulated in Table 5.
As a 2,4,6-Trinitrotoluene (TNT) adsorbent for military wastes, the chlorinated/aminated lignin
was prepared by reacting lignin with 1,2-dichloroethane monomer and aluminum chloride [79].
The chlorinated lignin was aminated via reacting with N,N-dimethylformamide and ethylenediamine
monomers. Adsorption of TNT on lignin reached 55.7 mg/g, mostly through hydrogen bonding.

In the past, lignin had also been used as an adsorbent to recover gold from the mining industry.
In one report, kraft lignin in an acidic HCl solution was used to uptake gold at 40 ◦C [80], where 100%
coagulation of gold and lignin was achieved due to the reduction of Au(III) ions by acidic Cl− ions in
a redox reaction. Thermodynamics of adsorption documented that the gold flakes were formed in an
endothermic (∆H > 0) entropy-driven process (∆S > 0). This high removal of gold was attributed
to attachment of AuCl−4 complex to the positively charged surface of adsorbent through electrostatic
interactions. However, high dissolution of lignin at elevated temperatures was a barrier for this
process, and the use of other water insoluble lignin in developing adsorbents needs to be evaluated in
the future.
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Table 5. Lignin as an adsorbent in other chemicals.

Material Adsorbent Adsorption Capacity Reference

TNT Chlorinated aminated lignin 55.7 mg/g [79]
2-nitrophenol Hydrolysis lignin 1.8 mg/g [81]

Bisphenol Black liquor isolated lignin 237.07 mg/g [82]

Metamitron, metribuzin pesticide rot-wood lignin 53%
62% [83]

Dazomet/tiram pesticide Indulin kraft lignin 38–40% [84]
Hexazinone pesticide Indulin kraft lignin 47% [85]

Au(II) Crosslinked lignophenol ≥30% [86]
Au(III) HCl mediated kraft lignin 100% [77]
Au(III)
Pd(II) Aminated lignin 100%

80% [86]

4. Dispersants

Dispersants are widely used for suspending colloidal particles in cosmetics, paints, pharmaceuticals,
drilling mud, cement, and ceramic applications [87]. Many synthetic polymers have been used as
dispersants [88–90]. However, their toxic nature and/or non-biodegradability limits their use in
industry [89]. The semi-natural or natural polymers have been proposed to be utilized as dispersants [91].
Lignin has been modified and used as a dispersant for different applications, as listed in Table 6.

Figure 5 shows the mechanism of dispersants in stabilizing particles in suspensions. In Figure 5a,
the adsorption of a dispersant, e.g., lignin, increases the surface charge density of particles, which enhances
repulsion force development between particles and stabilizes them in suspensions. In Figure 5b,
the adsorption of a dispersant, e.g., lignin, improves the hydrophilicity of particles and thus facilitates
the interaction of water molecules and hydrated particles, thus reducing the hydrophobic/hydrophobic
interaction developed between particles to prevent their agglomeration [92,93].

Figure 5. Mechanism of dispersants in stabilizing particles in suspensions (a) surface charge density
effect and (b) hydrophilicity effect.
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Table 6. Proposed lignin-based dispersants for various fields.

Lignin Type Application Charge Density (meq/g) Molecular Weight (g/mol) Modification References

Hardwood kraft lignin Cement admixture −1.60 53,360 Sulfomethylation [94]

Softwood kraft lignin Stellar clay, cement, calcium
carbonate and titanium dioxide N/A N/A Ozone oxidation [95]

Softwood kraft lignin Kaolin suspension −2.2 14,825 Oxidation [96]

Lignin N/A Carbon nanotubes nanofluids N/A N/A As is [97]

Straw alkali lignin Dispersant for graphite suspension N/A N/A Carboxymethylation [98]

Softwood kraft lignin Dispersant for cement admixture −3.8 18,299 Oxidation and sulfomethylation [44]

Hardwood lignin Kaolin suspension (−)1.2–3.62 26,700–83,543 Oxidation [99]

Hardwood kraft lignin Kaolin suspension 1.80 29,960 Carboxymethylation [94]

Kraft lignin Dimethomorph suspension N/A 18,061–29,201 Grafting poly(ethylene glycol) functionalized with
epichlorohydrin using BF3-Et2O [100]

Wheat straw kraft lignin Cement admixture N/A 25,700 Sulfonation [101]

Wheat straw alkali lignin Cement admixture N/A 9688 Hydroxymethylation and sulfonation [102]

Pinewood alkali lignin Dye suspension N/A 11,020 Hydroxypropylation and sulfonation [103]

Spruce alkali lignin Multiwalled carbon nanotubes N/A 14,000 As is [104]

Softwood kraft lignin Multiwalled carbon nanotubes N/A 6500–7000 and
34,000–36,000 Fractionization [105]

Wheat straw alkali lignin TiO2 slurry N/A 17,400–35,700 Sulfomethylation, horseradish peroxide utilization [106]

Esparto grass lignin Cement admixture N/A 10,000 Sulfonation [107]

Acid precipitated lignin Cement admixture N/A N/A Sulfonation [108]

N/A: not available.
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4.1. Dispersant for Dyes

Dispersive dyes have very low solubility in aqueous solutions. Adding dispersants is beneficial
for preventing agglomeration of dye particles and for stabilizing dye dispersion [103]. Dispersants
prevent the agglomeration of particles by introducing steric hindrance and electrostatic force
among particles [109,110]. Commercial dispersants are mainly naphthalene-sulfonated formaldehyde
and acid-phenol-formaldehyde condensates. Sulfonated lignin has been used as a dispersant for
dye dispersion.

Qin and coworkers produced a dispersant for dye suspension through hydroxypropyl sulfonation
of pinewood alkali lignin (HSL) (Table 6) under the conditions of 10/3.5 (w/w) lignin/sodium
3-chloro-2-hydroxy-propanesulfonate at 90 ◦C for 2 h, which was followed by crosslinking reaction
with epichlorohydrin for 1 h [103]. The produced products had a molecular weight of 11,020 g/mol
and contained 2.10 mmol/g of sulfonate group. The produced polymers and commercial sodium
naphthalene sulfonic acid formaldehyde (SNF) dispersant showed similar results in dispersing
dye particles.

It was observed that temperature affected the dispersion process in that a more dispersed dye
solution was observed at a lower temperature of 25 ◦C [103]. The molecular weight of the sulfonated
product also impacted the dispersion of dyes. The increase in the molecular weight of lignin-based
dispersants from 8750 g/mol to 11,020 g/mol reduced the particle size of azo dye by 40%. On the other
hand, increasing the molecular weight from 11,020 to 14,830 g/mol increased the particle size of an azo
dye by 36% [103]. Therefore, the molecular weight of the dispersant should be tailored for achieving
an acceptable efficiency.

4.2. Dispersant for Cement

Dispersants are used in the construction industry to boost the fluidity of concrete and decrease the
water content of cement pastes [111,112]. Generally, sulfonated products are used as dispersants
for cement admixtures. This is because sulfonate anions have more hydrophilic affinity than
carboxylate anions [110]. However, common dispersants used in cement admixtures, such as
sulfonated melamin-formaldehyde and sulfonated naphthalene-formaldehyde, have the disadvantages
of enhanced concrete shrinkage, meager dispersibility, and pollution [113,114].

In the past, hardwood kraft lignin was sulfomethylated (Table 6) under the conditions of sodium
hydroxymethylsulfonate/lignin ratios of 0.3–1.2 mol/mol in the temperature range between 80 and
140 ◦C and different periods of time (1–4 h). This process improved the anionic charge density
and molecular weight of lignin to −1.60 meq/g and 53,360 g/mol, respectively. The application of
this lignin (1.2 wt. %) improved the cement fluidity by 50% [94]. In another work, the oxidation
(with 10–30 wt. % nitric acid, 60–100 ◦C and 0.5–4 h) and sulfomethylation (CH2O/lignin of
0.4–1.2 mol/mol and Na2S2O5/lignin of 0.3–0.7 mol/mol, 60–100 ◦C and 0.5–4 h) of softwood kraft
lignin generated a sulfomethylated lignin with the charge density and molecular weight of −3.8 meq/g
and 18,299 g/mol, respectively. The 0.5 wt. % dosage of this product increased the fluidity of cement
from 65 mm to 200 mm [44].

In another study, kraft lignin from wheat straw was sulfonated (Table 6) by sodium sulfite in
water in the temperature range between 45 and 55 ◦C. The product was hydroxymethylated via
reacting with formaldehyde aqueous solution of 37% concentration at 98 ◦C for 3 h, which generated
a sulfonated lignin with sulfonate group contents in a range between 1.5 to 3.7 mmol/g and the
molecular weight of 30,000 g/mol. The results depicted that the use of this product yielded a fluidity
of 290 mm, which was higher than that of a commercial naphthalene dispersant (250 mm) for a cement
paste [101]. In another study, esparto grass lignin (Table 6) was sulfonated with sodium sulfite and
formaldehyde, which generated sulfonated lignin with a molecular weight of 10,000 g/mol, and the
sulfonate degree of 0.8 mmol/g. The use of sulfonated lignin in cement at the dosage of 0.4–0.6%
showed a remarkable decrease in water requirement of cement (7–12%) [107]. In another work, a
more complicated scenario was followed for producing sulfonated lignin [102]. At first, wheat straw
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alkali lignin was oxidized under the conditions of 10/2/0.1 (w/w/w) alkali lignin/H2O2/FeSO4 at
55–95 ◦C for 1 h. The product was then hydroxymethylated with 37% HCHO at 75 ◦C for 2 h. Finally,
the sulfonation reaction was conducted with Na2SO3/lignin ratio of 1–2/4 (w/w) at 75–95 ◦C for 3 h.
As reported, the produced sulfonated lignin could improve the dispersion of the cement admixture by
3% more than the commercial lignosulfonate [102]. The charge density and molecular weight seemed
to impact the performance of sulfonated lignin in dispersing cement.

Ozone was also used as an oxidizing agent for producing lignin-based dispersants. In one
study, alkali lignin was ozonated under the conditions of 50–55 ◦C for 2 h (Table 6) and used as a
dispersant for clay, titanium dioxide, cement and calcium carbonate suspensions (the suspension
concentrations were 41, 35, 68.5, and 50 wt. %, respectively, at the dispersant concentrations of 0.126,
0.25, 1, and 0.25 wt. %, respectively). It was observed that the produced modified lignin could decrease
the viscosity of clay, titanium dioxide, cement, and calcium carbonate suspensions up to 77, 98, 86,
and 90%, respectively [95].

Table 7 lists the applications of lignosulfonates in industries as dispersants. The use of
lignosulfonate as a dispersant for cement had been studied recently due to its acceptable performance
and cost-effectiveness [115–117]. In some studies, lignosulfonate was modified to improve its dispersant
performance in cement. In one study, calcium lignosulfonate was modified through oxidation
(using hydrogen peroxide/lignosulfonate ratio of 0.12 (w/w) at 80 ◦C for 1.5 h), hydroxymethylation
(using formaldehyde/lignosulfonate ratio of 0.35 (w/w) for 2 h at 80 ◦C) and sulfomethylation (using
sodium sulfite/lignosulfonate mass ratio of 0.2 and formaldehyde/lignosulfonate mass ratio of
0.2 for 2 h at 90 ◦C). The performance of the product was evaluated as a dispersant for cement
admixture. The adsorption of the oxidized, hydroxymethylated, and sulfomethylated lignosulfonates
onto the cement surface was increased 7.5, 6.9, and 1.2 times with respect to that of the unmodified
lignosulfonate, respectively. Although the adsorption of hydroxymethylated lignosulfonate was
remarkable, its dispersion performance was rather poor compared to the oxidized and sulfomethylated
lignosulfonates. The better dispersion performance of oxidized and sulfomethylated lignosulfonates
was attributed to their higher negative charge densities [118]. In another work, sodium lignosulfonate
underwent two consecutive reactions of oxidation (using 30% polyacrylic acid and 0.5% iron (II) sulfate
for 2 h at 80 ◦C) and sulfomethylation (using 20% of formaldehyde and 30% of sodium sulfite for 3 h at
95 ◦C). These modifications led to an increase in both molecular weight (up to 10 times) and sulfonate
content (up to two times) of the sodium lignosulfonate, which made the polymer 15% more efficient
than the unmodified sodium lignosulfonate in enhancing the fluidity of a cement paste [115].

The counter ions attached to lignosulfonate may impact its efficiency as a dispersant. Among
calcium, magnesium, sodium, and potassium lignosulfonates; calcium lignosulfonate was reported to
reduce the cement viscosity, while magnesium lignosulfonate could hamper the cement admixture’s
viscosity [117]. In addition, calcium lignosulfonate demonstrated the highest (11.1%) and sodium
lignosulfonate showed the lowest (6.5%) capacity in reducing the water use of cement paste [117].
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Table 7. Lignosulfonates as dispersants in various applications.

Lignosulfonate Type Application Charge Density (meq/g) Molecular Weight (g/mol) Modification Reference

NA Electroceramic suspensions −0.061 ± 0.002 C/m2 37,000 No modification [119]

NA Gypsum paste NA 9000–62,000 Hydroxymethylation, sulfonation, phenolation,
sulfomethylation, arylsulfonation [120]

NA Coal-water slurry NA 2000-17,000 No modification [59]

Sodium lignosulfonate Coal-water slurry NA less than 5000 to more than 50,000 No modification [121]

Calcium lignosulfonate Titanium dioxide suspension NA less than 1000—more than 30,000 No modification [122]

Calcium lignosulfonate Cement admixture NA NA Oxidation, sulfomethylation,
hydroxymethylation [118]

NA Dimethomorph suspension NA Less than 1000—more than 30,000 No modification [123]

Hardwood lignosulfonate Cement admixture NA NA No modification [120]

NA Dimethomorph suspension NA 4800–160,000 No modification [123]

Sodium lignosulfonate Ceramic suspension NA 13,000 No modification [124]

Sodium lignosulfonate Concrete admixture NA 2378 and 23,650 Oxidation, sulfomethylation [115]

NA Dye suspension NA 9010–17,307 No modification [125]

NA Dimethomorph suspension NA 9600–35,500 Oxidation, sulfonation [126]

NA Carbendazim suspension NA 1900–13,120 Sulfobutylation [127]

NA Coal-water slurry NA 13,100–251,000 Alkyl chain coupling polymerization [128]

Calcium, magnesium, sodium,
potassium lignosulfonate Cement admixture NA NA No modification [117]

NA: not available.
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4.3. Dispersant for Mineral Particles

Kaolin suspensions are used as raw materials for paper, ceramic, healthcare formulations,
and pharmaceutical applications [129–131]. In these applications, the fluidity of a kaolin paste
without settling is important to produce the products with appropriate properties [125,132]. By using
dispersants, they adsorb on particle’s surfaces and change the overall surface charge density of
the suspensions by inducing electrostatic or steric repulsion between particles. Various synthetic
polymers, such as sodium tripolyphosphate and sodium polyphosphate, are used for dispersing
kaolin suspensions, but their toxicity, price, and non-biodegradability are the main barriers for their
implementation in industry [89,133].

Lignin based dispersants were also used for kaolin dispersion. He and coworkers oxidized
softwood kraft lignin (Table 6) using hydrogen peroxide under varied reaction times (1–3 h) and
temperatures (60–100 ◦C), which generated oxidized lignin derivatives with the charge density of
−2.2 meq/g and molecular weight of 14,825 g/mol (Figure 6) [96]. Several lignin derivatives can be
generated in this reaction, but the exact product of this reaction was not identified [96]. The anionic
product improved the dispersion of kaolin suspensions by 18%. In another study, hardwood lignin
(Table 6) was oxidized by using nitric acid (4–12 wt. % nitric acid/lignin at 100 ◦C for 1 h), and the
product with the charge density of −3.6 meq/g and molecular weight of 30,243 g/mol showed the
best performance in dispersing kaolin suspensions. Dispersion studies in this work suggested that
both molecular weight and charge density had great impacts on the stability of kaolin particles [97].

Figure 6. Oxidation of softwood kraft lignin [96].

Various lignin-based chemicals have been used to other suspensions, such as titanium dioxide
slurry and graphite suspensions [98,100,106]. Graphite is extensively used in different industries,
such as ceramics, and conductive coating, due to its corrosion resistance, superior electric, thermal
conductivity, and chemical stability. Since graphite is a non-polar mineral with strong hydrophobicity,
it is difficult to disperse it in polar solvents, such as water. However, in most of the applications,
graphite particles should be dispersed in aqueous suspensions [134]. To address this challenge, wheat
straw alkali lignin was carboxymethylated using monochloroacetic acid under the conditions of
monochloroacetic acid/lignin ratio of 6/10 (w/w) at 70 ◦C for 90 min. As reported, carboxymethylated
lignin with the dosage of 1 wt. % enhanced the suspension stability of graphite by around 4% [98].

Titanium dioxide (TiO2) is a material broadly used in plastics, inks, papermaking, paints, ceramics,
and fibers, where its dispersion is critical [135,136]. However, titanium dioxide particles tend to
agglomerate due to their large surface area. In order to address this problem, sulfomethylated wheat
straw alkali lignin was modified by the horseradish peroxidase (HRP) under the conditions of ratio of
3/0.41 (w/w) lignin/formaldehyde at 95 ◦C for 1 h. After the reaction, the sulfonate and carboxylate
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groups, and the molecular weight of lignin were increased by 55%, 75%, and 470%, respectively.
The dispersion performance of the produced polymer in titanium dioxide suspension showed a
reduction of 84% in TiO2 particle size [106].

4.4. Dispersant for Coal-Water Slurry

Coal-water slurry is one of the alternative energy sources, which is cost-effective and easy to
handle. Since this slurry contains a high coal content to meet the energy requirement, the water
content of the slurry is of great importance. To reduce the water requirement, dispersants are used
for diminishing the interaction among the particles in the slurry [133,137]. Lignosulfonate by itself
may not be an effective dispersant for the coal-water slurry. As an inexpensive product, several
studies were carried out to improve the efficiency of lignosulfonate as a dispersant for the slurry [138].
In one study, the molecular weight of lignosulfonate has been increased through the reaction of
alkyl chain (conducted under alkaline condition using 1,6-dibromohexane in various mass ratios
of lignosulfonate/1,6-dibromohexane of 1/0.08, 1/0.12, 1/0.16, 1/0.24, and 1/0.30, and potassium
iodide for 8 h at 70 ◦C) and the products were used as dispersants for the coal-water slurry. It was
disclosed that the lignosulfonate’s molecular weight was increased from 42,800 g/mol to 125,000 g/mol.
All produced lignosulfonates worked better than the unmodified lignosulfonate and naphthalene
sulfonate formaldehyde in reducing the coal-water slurry’s viscosity. This result was attributed to the
higher molecular weights of the produced polymers, which may affect their adsorption affinity on the
coal particles [128].

Ultrafiltration was used as a method to generate lignosulfonates with different molecular weights
to refine them as dispersants for coal-water slurry [121,138]. The results showed that sulfonate group
content of lignosulfonates with the lowest (2000 g/mol) and highest (17,000 g/mol) molecular weights
were 1.36 and 1 mmol/g, respectively. Also, the carboxylate group content was determined to be 1.72
and 1.04 mmol/g for the highest and the lowest molecular weight lignosulfonate, respectively [138].
Overall, the molecular weight range of 10,000–30,000 g/mol was reported to be optimum for
lignosulfonate to act as a dispersant for coal-water slurry [138].

4.5. Dispersant for Carbon Nanotubes Suspensions

Aqueous carbon nanotube (CNT) nanofluids have widely been studied for the preparation of
nanocomposite materials with enhanced properties [139,140], such as large surface area, small size,
remarkable electrical conductivity, and high mechanical strength [141–143]. However, they have
poor solubility in water due to their tendency to agglomerate through van der Waals forces [144],
which hampers CNTs’ utilization and application as dispersants. Although chemical and physical
treatments have been suggested to address this problem [145,146], the disadvantage of chemical
modification of CNTs is the disconnection of π-networks within CNTs, causing a decline in their
electrical and mechanical properties [146,147]. Adding surfactants or polymers help cover CNTs by
noncovalent interactions [148,149]. By adsorbing polar polymers on CNTs, intermolecular hydrogen
bonding functionalized CNTs would enable CNT dispersion [150,151]. The most commonly used
surfactants for this purpose are sodium dodecylsulfate, sodium dodecylbenzene sulfonate, octyl
phenol ethoxylate, and hemadecyltrimethylammonium bromide [152–157].

Kraft lignin has been shown to have an efficient dispersion performance for CNTs. In one study,
lignin (Table 6) was used without any modification as a dispersant for CNT, and its performance was
compared with that of sodium dodecylbenzene sulfonate (SDBS). The results revealed that lignin
(2 wt. %) could reduce the suspension’s viscosity by 70% (comparing to SDBS) without increasing the
thermal conductivity of the suspension. Thus, it was suggested that lignin acted better than SDBS in
dispersing the carbon nanotubes suspended in water at 0.55 vol. % [97].

Rochez and coworkers used spruce alkali lignin (Table 6) with the molecular weight of
14,000 g/mol to disperse multiwalled carbon nanotubes (MWCNT). By adding 10 g/L of lignin to 1 wt.
% of MWCNT suspension, the transmission electron microscopy analysis showed that the nanotubes
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were distributed in the polymer matrix without morphological degradation or aggregation [104].
In another study, spruce wood alkali lignin, with the molecular weight of 14,000 g/mol (Table 6) was
used to disperse multiwalled carbon nanotubes (MWCNT). Lignin was added to MWCNT with a
lignin/MWCNT ratio of 1/6 (w/w). The lignin-MWCNT dispersion stability was monitored for several
months at ambient conditions through which the lignin efficiency to disperse multiwalled carbon
nanotubes was proved [104].

4.6. Dispersants for Other Suspensions

Dimethomorph, named (E,Z)-4-[3-(4-chlorophenyl)-3-(3,4-dimethoxyphenyl) acryloyl] morpholine,
is a fungicide, which acts as a pesticide by protecting vegetables and plants from downy mildews,
late blights, crown, and root rots [123]. The utilization of this pesticide requires its mixing with water.
System stability and dispersion are critically important since the ingredients need to spread evenly
on the plant surface after spraying [123]. Lin and coworkers dispersed a dimethomorph suspension
by a synthesized pine kraft lignin-based polyoxyethylene ether (KL-PEG) [100]. KL-PEG production
was carried out via reacting kraft lignin with poly(ethylene glycol) in a weight ratio of 100/0.8.
The ethoxyethane-trifluoroborane then proceeded at 55 ◦C for 2 h [100]. The products had a molecular
weight ranging from 18,061 to 29,201 g/mol (Table 6). Among three different samples with similar
molecular weights, the highest dimethomorph dispersion of 99.2% was observed using lignin modified
with ethoxyethane-trifluoroborane/poly (ethylene glycol) in a molar ratio of 1/1, while dimethomorph
dispersion was 93.1% using commercial lignosulfonate [100].

Lignosulfonate has also been studied as a dispersant for the dimethomorph suspension. In one
study, the dispersion performance of lab-made and commercial lignosulfonates with different
molecular weights and sulfonate groups were evaluated in an aqueous dimethomorph suspension
(Table 7) [124]. As reported, both the lab-made and commercial lignosulfonates could act as dispersants
for dimethomorph suspensions with similar results in reducing dimethomorph’s particle size. It was
revealed that the lab-made lignosulfonate having a molecular mass of 16,000 g/mol contributed to
the system stability through steric repulsive forces; while the commercial lignosulfonate with higher
sulfonate groups provided the system stability with the electrostatic repulsive forces [124].

The effects of lignosulfonate’s molecular weight and sulfonate group content were analyzed
in two other studies on the dimethomorph suspension stability (Table 7). It was revealed that
the higher the polymer’s molecular weight, the greater its adsorption and thus the greater the
electrostatic repulsion force between the particles, leading to the stability of dimethomorph. It was
also reported that a lignosulfonate with a molecular weight higher than 30,000 g/mol was inefficient in
dispersing dimethomorph due to its longer branched structure that might bridge the particles [123,126].
Lignosulfonates with similar molecular weights, but various sulfonation degrees, were also evaluated
for their dispersion performance in the dimethomorph granule suspension, and the results revealed
that an increase in the sulfonation degree from 1.58 to 1.81 mmol/g increased the suspending ratio by
10% [123].

In addition, the performance of sulfonated lignin with various cations of sodium, magnesium,
and iron as a dispersant was evaluated and it was determined that an increase in the valence of
a cation led to a slight enhancement (i.e., 4%) in the dispersion performance [123]. However, in
order to increase the efficiency of lignin-based dispersants, lignin needs to undergo various chemical
modifications to increase its charge density and solubility. Discovering the reactions with high efficiency
and environmentally friendly features is a challenge.

Matsushita and Yasuda produced several types of sulfonated lignin by hydroxymethylating,
sulfonating, phenolating, sulfomethylating and arylsulfonating of the phenolated lignin to use as
dispersants in gypsum pastes [120]. It was also claimed that the increase in molecular weight (to around
15,000 g/mol) and sulfur content (to 11.4%) enhanced the dispersibility of the gypsum paste by 70%
compared to the commercial lignosulfonate [120].
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In another work, lignosulfonate was sulfobutylated (using varied proportions of 1,4-butane
sulfonate and 1,6-dibromohexane for 7 h at 70 ◦C) and used as a dispersant for the antifungal agent
carbendazim suspensions. It was found that the modified lignosulfonates having the molecular weights
of 11,850 and 13,120 g/mol with sulfonate group contents of 2.66 and 2.18 mmol/g, respectively,
improved the dispersion properties of the suspension and that these samples could act as better
dispersants than a commercial lignosulfonate [127].

Yang and coworkers (2008) investigated the dispersion performance of calcium lignosulfonate
with different molecular weights in the range of less than 1000 g/mol to more than 30,000 g/mol in
a titanium dioxide suspension (Table 7) and observed that an increase in the molecular weight from
927 g/mol to 21,646 g/mol led to an increase in the adsorption of lignosulfonate on titanium oxide
particles [125]. Lignosulfonate with the molecular weight of 7621 g/mol had the highest sulfonate
group content of 10.28 wt. % and showed the best dispersion performance in the dosage below 4 mg/L.
System stabilization, in this case, has been pronounced to be due to the electrostatic forces between the
titanium dioxide particles. Meanwhile, by increasing the modified lignosulfonate concentration, the
sample with a higher molecular weight (21,646 g/mol) demonstrated a better dispersion via promoting
steric hindrance.

5. Conclusions

Although promising results were reported for the modification and application of lignin as
flocculants, adsorbents, and dispersants, the modification procedures seemed to be industrially
unattractive, as they mainly applied solvent-based systems. Also, more analyses were carried out
for assessing the performance of lignin-based flocculants, adsorbents, and dispersants in simulated
samples than industrially produced samples. The application of these products in industrially produced
samples must be examined for further development of lignin-based processes for valorizing lignin.
Although the results on the importance of molecular weight and charge density of lignin-based
flocculants are available in literature, the contribution of lignin in the flocculation systems should be
investigated in detail. The use of lignin as a flocculant for dyes has been examined more than for other
wastewater effluents. However, the volume of municipal and industrial wastes produced annually
make the expansion for the potential use of lignin-based flocculants in these effluents appealing.
The use of unmodified lignin as an adsorbent for dyes and heavy metals appears promising, and its
simplicity in use may be attractive to industry. The uses of unmodified and modified lignin and
lignosulfonate as dispersants were more practiced in the past and the reports showed a similar
performance (or better) for lignin-based dispersants than for synthetic ones. Different values were
reported as optimum values for molecular weight and charge density of lignin-based dispersants for
altered systems. These results suggest that the properties performance relationships for lignin-based
dispersants are case dependent.
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