Supplementary Materials for Indium-Catalyzed Annulation of o-Acylanilines with Alkoxyheteroarenes: Synthesis of Heteroaryl[b]quinolines and Subsequent Transformation to Cryptolepine Derivatives Kyohei Yonekura, Mika Shinoda, Yuko Yonekura and Teruhisa Tsuchimoto* Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Japan #### **A Table of Contents:** | I. | Indium-Catalyzed Annulation of o-Acylanilines with | | |--------|-------------------------------------------------------------------------|------| | | Alkoxyheteroarenes: A General Procedure for Tables 3–5 | S-2 | | II. | N-Methylation of Indolo[3,2-b] quinolines with MeOTf: | | | | A General Procedure for Table 6 | S-15 | | III. | Control Experiments for Mechanistic Studies (Scheme 3) | | | III-1. | Indium-Catalyzed S _N Ar Amination of 3-Methoxybenzothiophene | | | | with 1-(2-Aminophenyl)-2-methyl-1-propanone: | | | | An Experimental Procedure for Eq. 1 in Scheme 3 | S-17 | | III-2. | Indium-Catalyzed Intramolecular Cyclization of 6ea: | | | | An Experimental Procedure for Eq. 2 in Scheme 3 | S-18 | | IV. | ¹ H, ¹³ C and/or ¹⁹ F NMR Spectra | S-19 | ### I. Indium-Catalyzed Annulation of *o*-Acylanilines with Alkoxyheteroarenes: A General Procedure for Tables 3–5 InBr₃ [(4.43 mg, 12.5 μ mol), (13.3 mg, 37.5 μ mol) or (39.0 mg, 110 μ mol)] or InI₃ (6.19 mg, 12.5 μ mol) was placed in a 20 mL Schlenk tube, which was heated at 80 °C in vacuo for 15 min. The tube was cooled down to room temperature and filled with argon or air. PhCl (0.20, 0.30, 0.40, 0.50 or 1.7 mL) or o-C₆H₄Cl₂ (0.20 mL) was added to the tube, and the mixture was then stirred at room temperature for 3 min. To this were added alkoxyheteroarenes **3** (0.250, 0.300, 0.500, 0.625 or 5.50 mmol) and o-acylanilines **2** (0.250, 0.300 or 2.20 mmol) in the order, and the mixture was stirred at 70, 100, 110, 120, 130 or 170 °C. After stirring for 3, 24 or 36 h, a saturated NaHCO₃ aqueous solution (0.5 mL) was added at room temperature, and the resulting mixture was stirred for 20 min. The aqueous phase was extracted with EtOAc (5 mL × 3). The combined organic layer was washed with brine (1 mL) and then dried over anhydrous sodium sulfate (Na₂SO₄). Filtration and evaporation of the solvent followed by purification gave product **4**. Unless otherwise noted, the annulation reaction was performed according to the above procedure, and products **4** synthesized here were fully characterized by 1 H and 13 C NMR spectroscopy and HRMS. Products **4** with fluorine atoms were characterized additionally by 19 F NMR spectroscopy. 11-Methyl[1]benzothieno[3,2-b]quinoline (4aa). Spectral and analytical data of product 4aa are collected in section 3.3. of the article. **4-Hydroxy-11-methyl[1]benzothieno[3,2-***b***]quinoline (4ba).** The title compound was isolated by column chromatography on silica gel (*n*-hexane/EtOAc = 20/1). A pale yellow solid, mp 155–156 °C. ¹H NMR (400 MHz, CDCl₃) δ 2.89 (s, 3 H), 7.19–7.24 (m, 1 H), 7.47–7.65 (m, 4 H), 7.82–7.90 (m, 1 H), 8.52–8.63 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 17.5, 108.6, 113.3, 123.1, 123.8, 125.1, 126.2, 126.9, 129.8, 132.9, 134.5, 136.8, 138.0, 140.7, 150.8, 152.5. HRMS (FD) Calcd for C₁₆H₁₁NOS: M, 265.0561. Found: *m/z* 265.0554. **2,3-Dimethoxy-11-methyl[1]benzothieno[3,2-b]quinoline (4ca).** The title compound was isolated by column chromatography on silica gel (n-hexane/EtOAc = 2/1). A yellow solid, mp 191–192 °C. ¹H NMR (400 MHz, CDCl₃) δ 2.88 (s, 3 H), 4.09 (s, 3 H), 4.11 (s, 3 H), 7.25–7.27 (m, 1 H), 7.51–7.62 (m, 3 H), 7.83–7.88 (m, 1 H), 8.55–8.60 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 17.6, 56.0, 56.2, 100.5, 108.2, 121.9, 123.0, 123.3, 124.9, 129.0, 130.7, 135.28, 135.31, 140.1, 144.0, 149.6, 151.3, 151.9. HRMS (FD) Calcd for C₁₈H₁₅NO₂S: M, 309.0823. Found: m/z 309.0808. 11-Methyl-1,3-dioxolo[4,5-g][1]benzothieno[3,2-b]quinoline (4da). CHCl₃ instead of EtOAc was used to extract an aqueous phase in a work-up process, and the title compound was isolated by column chromatography on silica gel (n-hexane/EtOAc = 5/1). A pale yellow solid, mp 224–226 °C. ¹H NMR (500 MHz, CDCl₃) δ 2.82 (s, 3 H), 6.15 (s, 2 H), 7.33 (s, 1 H), 7.50–7.62 (m, 3 H), 7.84 (d, J = 7.4 Hz, 1 H), 8.56 (d, J = 7.2 Hz, 1 H); ¹³C NMR (125 MHz, CDCl₃) δ 17.8, 98.3, 101.8, 105.9, 123.0, 123.2, 123.5, 124.9, 129.0, 130.9, 135.2, 135.8, 140.1, 145.2, 147.9, 150.1, 151.2. HRMS (FD) Calcd for $C_{17}H_{11}NO_2S$: M, 293.0510. Found: m/z 293.0521. 11-(1-Methylethyl)[1]benzothieno[3,2-b]quinoline (4ea). CHCl₃ instead of EtOAc was used to extract an aqueous phase in a work-up process, and the title compound was isolated by column chromatography on silica gel (n-hexane/EtOAc = 40/1). A pale pink solid, mp 109–111 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.67 (d, J = 7.1 Hz, 6 H), 4.10 (bs, 1 H), 7.51–7.56 (m, 1 H), 7.57-7.63 (m, 2 H), 7.74 (ddd, J = 8.4, 6.8, 1.3 Hz, 1 H), 7.81-7.86 (m, 1 H),8.27–8.34 (m, 2 H), 8.61–8.67 (m, 1 H); ¹H NMR (400 MHz, acetone- d_6) δ 1.68 (d, J = 7.1 Hz, 6 H), 4.23 (bs, 1 H), 7.62 (ddd, J = 8.0, 7.0, 0.9 Hz, 1 H), 7.66–7.74 (m, 2 H), 7.82 (ddd, J = 8.4, 6.8, 1.5 Hz, 1 H), 8.03 (dt, J = 7.9, 0.8 Hz, 1 H), 8.27 (ddd, J = 8.5, 1.4, 0.6 Hz, 1 H), 8.47 (ddd, J = 8.7, 0.7, 0.4 Hz, 1 H), 8.60 (ddd, J = 7.9, 1.3, 0.6 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 20.8, 122.5, 123.1, 123.9, 124.9, 125.7, 128.2, 129.8, 130.5, 134.5, 140.6, 146.7, 147.3, 154.1 (Two aromatic carbon signals are missing due to overlapping, and no methine carbon signal is observed.); 13 C NMR (100 MHz, acetone- d_6) δ 21.0, 123.7, 124.20, 124.23, 124.4, 125.7, 126.0, 126.9, 129.3, 131.0, 131.3, 135.3, 141.4, 147.7, 148.3, 154.7 (All aromatic carbon signals are observed, but no methine carbon signal is again observed.). HRMS (FD) Calcd for C₁₈H₁₅NS: M, 277.0925. Found: *m/z* 277.0913. 11-Trifluoromethyl[1]benzothieno[3,2-b]quinoline (4fa). The title compound was isolated by column chromatography on silica gel (n-hexane/EtOAc = 20/1). A pale yellow solid, mp 141–142 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.56–7.62 (m, 1 H), 7.67 (ddd, J = 8.1, 7.0, 1.0 Hz, 1 H), 7.72 (ddd, J = 8.5, 6.9, 1.3 Hz, 1 H), 7.81–7.88 (m, 2 H), 8.23–8.31 (m, 1 H), 8.35–8.41 (m, 1 H), 8.66 (d, J = 7.8 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 122.1 (q, J = 1.9 Hz), 122.5, 123.3 (q, J = 2.9 Hz), 124.1, 124.6 (q, J = 276.4 Hz), 125.5, 126.9 (q, J = 32.4 Hz), 127.9, 129.2, 129.9 (q, J = 1.0 Hz), 130.4, 130.8, 133.1, 140.9 (q, J = 3.5 Hz), 146.9, 154.7; ¹⁹F NMR (471 MHz, CDCl₃) δ –56.5. HRMS (FD) Calcd for C₁₆H₈F₃NS: M, 303.0330. Found: m/z 303.0316. **2-Chloro-11-trifluoromethyl[1]benzothieno[3,2-b]quinoline (4ga).** The title compound was isolated by column chromatography on silica gel (n-hexane/EtOAc = 50/1). A pale yellow solid, mp 199–200 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.61 (ddd, J = 7.9, 7.2, 0.9 Hz, 1 H), 7.70 (ddd, J = 7.7, 7.2, 1.3 Hz, 1 H), 7.79 (dd, J = 9.2, 2.3 Hz, 1 H), 7.85–7.90 (m, 1 H), 8.22–8.27 (m, 1 H), 8.32 (d, J = 8.9 Hz, 1 H), 8.62–8.67 (m, 1 H); ¹³C NMR (125 MHz, CDCl₃) δ 122.3 (q, J = 3.0 Hz), 122.5, 122.6, 124.1, 124.2 (q, J = 276.1 Hz), 125.7, 126.0 (q, J = 33.0 Hz), 130.3, 130.9, 131.0, 131.8, 132.8, 134.0, 140.8 (q, J = 3.4 Hz), 145.2, 154.9; ¹⁹F NMR (471 MHz, CDCl₃) δ –56.7. HRMS (FD) Calcd for C₁₆H₇ClF₃NS: M, 336.9940. Found: m/z 336.9944. 11-Phenyl[1]benzothieno[3,2-b]quinoline (4ha). CHCl₃ instead of EtOAc was used to extract an aqueous phase in a work-up process, and the title compound was isolated by column chromatography on silica gel (n-hexane/CHCl₃ = 1/30). Compound **4ha** has already emerged in the literature [1], and its spectral and analytical data are in good agreement with those reported. Accordingly, only ¹H NMR data are provided here. ¹H NMR (400 MHz, CDCl₃) δ 7.51 (ddd, J = 8.4, 6.9, 1.2 Hz, 1 H), 7.54–7.64 (m, 7 H), 7.77 (dd, J = 8.5, 7.1, 1.3 Hz, 2 H), 7.83–7.89 (m, 1 H), 8.32–8.39 (m, 1 H), 8.66–8.72 (m, 1 H). **2-Chloro-11-phenyl[1]benzothieno[3,2-***b***]quinoline (4ia).** CHCl₃ instead of EtOAc was used to extract an aqueous phase in a work-up process, and the title compound was isolated by column chromatography on silica gel (*n*-hexane/CHCl₃ = 1/1). A white solid, mp 228–229 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.55–7.68 (m, 7 H), 7.69 (dd, J = 8.9, 2.3 Hz, 1 H), 7.76–7.80 (m, 1 H), 7.81 (d, J = 2.3 Hz, 1 H), 8.28 (d, J = 9.2 Hz, 1 H), 8.63–8.68 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 122.9, 123.7, 124.1, 125.2, 125.9, 129.2, 129.29, 129.32, 129.6, 130.1, 131.3, 132.0, 133.1, 134.5, 136.0, 140.7, 141.6, 145.6, 153.8. HRMS (FD) Calcd for C₂₁H₁₂CINS: M, 345.0379. Found: m/z 345.0357. 1. Gao, W.-C.; Liu, T.; Cheng, Y.-F.; Chang, H.-H.; Li, X.; Zhou, R.; Wei, W.-L.; Qiao, Y. *J. Org. Chem.* **2017**, *82*, 13459–13467. S-6 11-(4-Methoxyphenyl)[1]benzothieno[3,2-b]quinoline (4ja). CHCl₃ instead of EtOAc was used to extract an aqueous phase in a work-up process, and the title compound was isolated by column chromatography on silica gel (n-hexane/CHCl₃ = 1/3). A white solid, mp 200–204 °C. ¹H NMR (400 MHz, CDCl₃) δ 3.94 (s, 3 H), 7.15 (dt, J = 9.3, 2.5 Hz, 2 H), 7.51 (ddd, J = 8.4, 6.8, 1.3 Hz, 1 H), 7.54–7.62 (m, 4 H), 7.73–7.81 (m, 2 H), 7.90 (dd, J = 8.5, 0.9 Hz, 1 H), 8.34 (d, J = 8.2 Hz, 1 H), 8.64–8.75 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 55.4, 114.4, 122.9, 124.1, 125.01, 125.03, 125.6, 126.0, 128.6, 128.8, 129.7, 129.8, 130.8, 132.3, 134.8, 141.5, 141.6, 147.3, 153.5, 160.1. HRMS (FD) Calcd for C₂₂H₁₅NOS: M, 341.0874. Found: m/z 341.0879. **11-(4-Fluorophenyl)[1]benzothieno[3,2-b]quinoline (4ka).** CHCl₃ instead of EtOAc was used to extract an aqueous phase in a work-up process, and the title compound was isolated by column chromatography on silica gel (n-hexane/EtOAc = 10/1). A white solid, mp 182–183 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.29–7.36 (m, 2 H), 7.53 (ddd, J = 8.5, 6.9, 1.4 Hz, 1 H), 7.56–7.64 (m, 4 H), 7.75–7.84 (m, 3 H), 8.36 (ddd, J = 8.7, 1.2, 0.6 Hz, 1 H), 8.66–8.72 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 116.2 (d, J = 21.6 Hz), 122.9, 124.1, 124.7, 125.2, 125.4, 126.3, 128.8, 129.8, 129.9, 131.4 (d, J = 8.6 Hz), 132.3, 132.6 (d, J = 3.4 Hz), 134.7, 140.5, 141.4, 147.2, 153.6, 163.1 (d, J = 248.7 Hz); ¹⁹F NMR (471 MHz, CDCl₃) δ –112.5. HRMS (FD) Calcd for C₂₁H₁₂FNS: M, 329.0674. Found: *m/z* 329.0671. **11-(2-Methylphenyl)[1]benzothieno[3,2-***b***]quinoline (4la).** CHCl₃ instead of EtOAc was used to extract an aqueous phase in a work-up process, and the title compound was isolated by column chromatography on silica gel (*n*-hexane/EtOAc = 10/1). A white solid, mp 175–177 °C. ¹H NMR (400 MHz, CDCl₃) δ 2.02 (s, 3 H), 7.34 (dd, J = 7.4, 1.0 Hz, 1 H), 7.41 (td, J = 7.3, 1.7 Hz, 1 H), 7.44–7.52 (m, 3 H), 7.54–7.64 (m, 3 H), 7.75–7.81 (m, 2 H), 8.37 (d, J = 8.7 Hz, 1 H), 8.68–8.74 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 19.6, 123.0, 124.0, 124.9, 125.1, 125.6, 126.2, 126.3, 128.7, 129.1, 129.2, 129.7, 129.9, 130.6, 132.4, 134.8, 136.0, 136.4, 141.5, 147.0, 153.6 (One carbon signal is missing due to overlapping.). HRMS (FD) Calcd for $C_{22}H_{15}NS$: M, 325.0925. Found: m/z 325.0934. Naphtho[1,2,3-de][1]benzothieno[3,2-b]quinolin-5(3H)-one (4ma). The following work-up procedure was conducted after stirring at 130 °C for 24 h: a saturated NaHCO₃ aqueous solution (0.1 mL) was added at room temperature. The resulting mixture was stirred for 20 min and then dried over anhydrous sodium sulfate (Na₂SO₄). The mixture was filtered and eluted with CHCl₃ (60 mL). (Note: due to the low solubility of the title compound in CHCl₃, a larger amount of CHCl₃ should be required.) The solvent was evaporated, and recrystallization from CH₂Cl₂/EtOAc followed by washing with a small amount of EtOAc gave product 4ma. A grass green solid, mp 313–316 °C (decomp.). ¹H NMR (400 MHz, CDCl₃) δ 7.61 (t, J = 7.1 Hz, 1 H), 7.66–7.74 (m, 2 H), 7.87–7.94 (m, 2 H), 7.97 (t, J = 7.8 Hz, 1 H), 8.59 (d, J = 8.5 Hz, 1 H), 8.62–8.70 (m, 2 H), 8.74 (d, J = 8.2 Hz, 1 H), 8.79 (d, J = 7.1 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 122.0, 122.5, 124.2, 125.9, 127.6, 127.8, 128.7, 128.8, 129.0, 129.78, 129.85, 129.9, 130.7, 132.8, 133.3, 133.7, 134.5, 136.9, 140.0, 145.7, 156.0, 182.4. HRMS (FD) Calcd for C₂₂H₁₁NOS: M, 337.0561. Found: m/z 337.0574. **11-Methyl[1]benzothieno[2,3-***b***]quinoline (4ab).** The title compound was isolated by column chromatography on silica gel (*n*-hexane/EtOAc = 20/1). A white solid, mp 174–175 °C. ¹H NMR (400 MHz, CDCl₃) δ 3.25 (s, 3 H), 7.49–7.57 (m, 2 H), 7.61 (ddd, J = 8.5, 6.8, 1.3 Hz, 1 H), 7.77 (ddd, J = 8.4, 6.8, 1.3 Hz, 1 H), 7.86–7.92 (m, 1 H), 8.14 (dd, J = 8.5, 0.7 Hz, 1 H), 8.33 (dd, J = 8.6, 0.8 Hz, 1 H), 8.39–8.45 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 15.9, 123.2, 124.1, 124.9, 125.3, 125.5, 126.0, 126.7, 127.5, 128.7, 129.4, 134.1, 138.5, 140.4, 146.9, 162.9. HRMS (FD) Calcd for C₁₆H₁₁NS: M, 249.0612. Found: m/z 249.0607. **11-Methyl[1]benzothieno[2,3-***b***]quinolin-7-ol (4bb).** The title compound was isolated by column chromatography on silica gel (*n*-hexane/EtOAc = 4/1). A beige solid, mp 206 °C. ¹H NMR (400 MHz, CDCl₃) δ 3.23 (s, 3 H), 7.22–7.26 (m, 1 H), 7.48–7.59 (m, 3 H), 7.79 (dd, J = 8.7, 0.9 Hz, 1 H), 7.86–7.94 (m, 1 H), 8.25 (bs, 1 H), 8.41–8.47 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 16.2, 109.7, 114.6, 123.2, 125.0, 125.8, 126.0, 126.1, 127.4, 127.6, 134.0, 137.3, 138.3, 141.1, 151.4, 160.6. HRMS (FD) Calcd for C₁₆H₁₁NOS: M, 265.0561. Found: m/z 265.0586. **4-Methylthieno[2,3-***b***]quinoline (4ac).** The title compound was isolated by column chromatography on silica gel (*n*-hexane/EtOAc = 20/1). A white solid, mp 73–74 °C. ¹H NMR (400 MHz, CDCl₃) δ 3.00 (s, 3 H), 7.48 (d, J = 6.2 Hz, 1 H), 7.54–7.62 (m, 2 H), 7.75 (ddd, J = 8.4, 6.8, 1.5 Hz, 1 H), 8.15 (ddd, J = 8.5, 1.2, 0.6 Hz, 1 H), 8.18 (ddd, J = 8.5, 1.4, 0.6 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 15.4, 120.0, 124.2, 124.8, 125.1, 127.4, 128.9, 129.1, 130.8, 138.6, 146.5, 162.9. HRMS (FD) Calcd for C₁₂H₉NS: M, 199.0456. Found: m/z 199.0462. **4-Phenylthieno[2,3-***b***]quinoline (4hc).** The title compound was isolated by column chromatography on silica gel (*n*-hexane/EtOAc = 10/1). A pale gray solid, mp 116–118 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.11 (d, J = 6.2 Hz, 1 H), 7.45–7.62 (m, 7 H), 7.75 (ddd, J = 8.6, 6.8, 1.5 Hz, 1 H), 7.87 (ddd, J = 8.5, 1.4, 0.6 Hz, 1 H), 8.20 (ddd, J = 8.5, 1.2, 0.6 Hz, 1 H); ¹³C NMR (125 MHz, CDCl₃) δ 121.3, 123.9, 125.4, 126.4, 127.9, 128.5, 128.60, 128.65, 129.1, 130.0, 130.3, 136.1, 142.8, 146.9, 163.0. HRMS (FD) Calcd for C₁₇H₁₁NS: M, 261.0612. Found: m/z 261.0615. **2,4-Dimethylthieno**[**2,3-***b***]quinoline (4ad).** The title compound was isolated by column chromatography on silica gel (*n*-hexane/EtOAc/Et₃N = 20/1/1). A white solid, mp 91–92 °C. ¹H NMR (500 MHz, CDCl₃) δ 2.66 (d, J = 1.1 Hz, 3 H), 2.91 (s, 3 H), 7.10 (q, J = 1.3 Hz, 1 H), 7.55 (ddd, J = 8.2, 6.9, 1.1 Hz, 1 H), 7.70 (ddd, J = 8.5, 7.1, 1.1 Hz, 1 H), 8.08–8.15 (m, 2 H); ¹³C NMR (125 MHz, CDCl₃) δ 15.3, 17.4, 117.3, 124.1, 125.0, 125.1, 128.4, 128.9, 132.3, 136.5, 141.8, 145.9, 163.5. HRMS (FD) Calcd for C₁₃H₁₁NS: M, 213.0612. Found: m/z 213.0622. **9-Phenylthieno[3,2-***b***]quinoline (4he).** The title compound was isolated by column chromatography on silica gel (*n*-hexane/EtOAc = 10/1). A pale yellow solid, mp 116–118 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.49 (ddd, J = 8.6, 6.8, 1.3 Hz, 1 H), 7.56–7.64 (m, 5 H), 7.68 (d, J = 5.7 Hz, 1 H), 7.76 (ddd, J = 8.6, 6.8, 1.5 Hz, 1 H), 7.87 (ddd, J = 8.6, 1.4, 0.6 Hz, 1 H), 7.93 (d, J = 5.7 Hz, 1 H), 8.26 (ddd, J = 8.6, 1.1, 0.6 Hz, 1 H); ¹³C NMR (125 MHz, CDCl₃) δ 123.5, 125.2, 125.3, 125.6, 128.96, 128.99, 129.04, 129.4, 129.5, 131.6, 135.2, 136.5, 142.4, 147.7, 157.1. HRMS (FD) Calcd for C₁₇H₁₁NS: M, 261.0612. Found: m/z 261.0615. **11-Methylbenzofuro[2,3-***b***]quinoline (4af).** The title compound was isolated by column chromatography on silica gel (*n*-hexane/EtOAc = 20/1). A beige solid, mp 194–195 °C. ¹H NMR (400 MHz, CDCl₃) δ 3.16 (s, 3 H), 7.39–7.46 (m, 1 H), 7.52–7.67 (m, 3 H), 7.77 (ddd, J = 8.2, 6.9, 1.1 Hz, 1 H), 8.12–8.16 (m, 2 H), 8.22 (dd, J = 8.5, 0.9 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 15.2, 112.0, 116.0, 123.2, 123.3, 123.8, 124.8, 126.0, 128.6, 129.1, 129.4, 140.7, 145.9, 155.6, 162.1 (One carbon signal is missing due to overlapping.). HRMS (FD) Calcd for C₁₆H₁₁NO: M, 233.0841. Found: m/z 233.0842. **11-Phenylbenzofuro**[2,3-*b*]quinoline (4hf). The title compound was isolated by column chromatography on silica gel (*n*-hexane/EtOAc = 20/1). A white solid, mp 216–217 °C. 1 H NMR (400 MHz, CDCl₃) δ 7.06–7.10 (m, 1 H), 7.13 (td, J = 7.4, 0.8 Hz, 1 H), 7.44–7.51 (m, 2 H), 7.52–7.58 (m, 2 H), 7.58–7.63 (m, 1 H), 7.63–7.72 (m, 3 H), 7.77 (ddd, J = 8.5, 6.9, 1.4 Hz, 1 H), 7.81 (ddd, J = 8.5, 1.4, 0.7 Hz, 1 H), 8.21 (dd, J = 8.5, 0.7 Hz, 1 H); 13 C NMR (125 MHz, CDCl₃) δ 111.8, 115.6, 122.4, 122.8, 123.1, 125.0, 125.6, 126.1, 128.6, 129.00, 129.02, 129.1, 129.3, 129.5, 135.3, 144.0, 146.2, 155.9, 162.1. HRMS (FD) Calcd for C₂₁H₁₃NO: M, 295.0997. Found: m/z 295.0986. **4-Methyl-2-phenylfuro**[**2,3-***b*]**quinoline** (**4ag**). The title compound was isolated by column chromatography on silica gel (n-hexane/EtOAc = 10/1). A white solid, mp 133–134 °C. ¹H NMR (400 MHz, CDCl₃) δ 2.92 (s, 3 H), 7.19 (s, 1 H), 7.43 (tt, J = 7.4, 1.6 Hz, 1 H), 7.48–7.53 (m, 2 H), 7.55 (ddd, J = 8.4, 6.9, 1.4 Hz, 1 H), 7.70 (ddd, J = 8.4, 6.9, 1.5 Hz, 1 H), 7.97–8.02 (m, 2 H), 8.07–8.14 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 15.3, 98.7, 121.7, 123.8, 124.6, 125.4, 126.1, 128.5, 129.0, 129.1, 129.5, 129.6, 137.1, 144.9, 156.7, 161.1. HRMS (FD) Calcd for C₁₈H₁₃NO: M, 259.0997. Found: m/z 259.0974. **11-Methyl-10***H***-quindoline (4ai).** The annulation reaction was conducted after the addition of **3i**, **2a**, and then H₂O (198 mg, 11.0 mmol). The title compound was isolated by column chromatography on silica gel (n-hexane/EtOAc/Et₃N = 8/4/1). Compound **4ai** has already emerged in the literature [2], and its spectral and analytical data are in good agreement with those reported. Accordingly, only ¹H NMR data are provided here. ¹H NMR (500 MHz, CDCl₃) δ 2.88 (s, 3 H), 7.32 (t, J = 7.6 Hz, 1 H), 7.48 (d, J = 8.3 Hz, 1 H), 7.55–7.63 (m, 2 H), 7.68 (t, J = 7.4 Hz, 1 H), 8.13 (d, J = 8.3 Hz, 1 H), 8.26 (bs, 1 H), 8.34 (d, J = 8.3 Hz, 1 H), 8.52 (d, J = 7.7 Hz, 1 H). ^{2.} Arzel, E.; Rocca, P.; Grellier, P.; Labaeïd, M.; Frappier, F.; Guéritte, F.; Gaspard, C.; Marsais, F.; Godard, A.; Quéguiner, G. *J. Med. Chem.* **2001**, *44*, 949–960. 11-Methyl-10*H*-1,3-dioxolo[4,5-*b*]quindoline (4di). CHCl₃ instead of EtOAc was used to extract an aqueous phase in a work-up process, and the title compound was isolated by recrystallization from *n*-hexane/EtOAc after column chromatography on silica gel (CH₂Cl₂/MeOH = 100/1). A pale green solid, mp 269–271 °C (decomp.). ¹H NMR (400 MHz, dimethyl sulfoxide- d_6) δ 2.81 (s, 3 H), 6.20 (s, 2 H), 7.23 (ddd, J = 8.0, 4.5, 3.5 Hz, 1 H), 7.49 (s, 1 H), 7.50–7.56 (m, 3 H), 8.24 (d, J = 7.6 Hz, 1 H), 11.21 (bs, 1 H); ¹³C NMR (100 MHz, dimethyl sulfoxide- d_6) δ 12.8, 98.7, 101.6, 105.0, 111.3, 119.0, 120.7, 121.2, 121.6, 122.8, 128.4, 131.2, 141.4, 142.3, 142.8, 146.8, 147.9. HRMS (FD) Calcd for C₁₇H₁₂N₂O₂: M, 276.0899. Found: m/z 276.0911. **11-Trifluoromethyl-10***H***-quindoline (4fi).** The title compound was isolated by column chromatography on silica gel (*n*-hexane/EtOAc = 10/1). A pale green solid, mp 163–164 °C. ¹H NMR (400 MHz, dimethyl sulfoxide- d_6) δ 7.38 (ddd, J = 7.9, 5.0, 2.6 Hz, 1 H), 7.69–7.75 (m, 2 H), 7.76–7.83 (m, 2 H), 8.21 (dq, J = 9.8, 2.3 Hz, 1 H), 8.33–8.37 (m, 1 H), 8.40 (d, J = 7.6 Hz, 1 H), 11.55 (bs, 1 H); ¹³C NMR (100 MHz, dimethyl sulfoxide- d_6) δ 108.5 (q, J = 31.5 Hz), 112.3, 120.1, 120.7, 121.0 (q, J = 1.9 Hz), 121.5, 122.5 (q, J = 2.4 Hz), 125.0 (q, J = 274.1 Hz), 126.6, 127.4, 128.4 (q, J = 1.9 Hz), 129.9, 131.0, 142.9, 144.9, 147.7; ¹⁹F NMR (471 MHz, dimethyl sulfoxide- d_6) δ –53.4. HRMS (FD) Calcd for C₁₆H₉F₃N₂: M, 286.0718. Found: m/z 286.0727. **2-Chloro-11-trifluoromethyl-10***H***-quindoline (4gi).** The title compound was isolated by column chromatography on silica gel (n-hexane/EtOAc = 10/1). A pale green solid, mp 236–238 °C. ¹H NMR (400 MHz, dimethyl sulfoxide- d_6) δ 7.40 (ddd, J = 7.8, 6.4, 1.5 Hz, 1 H), 7.69–7.77 (m, 2 H), 7.81 (dd, J = 9.0, 1.9 Hz, 1 H), 8.08–8.14 (m, 1 H), 8.33–8.41 (m, 2 H), 11.67 (bs, 1 H); ¹³C NMR (100 MHz, dimethyl sulfoxide- d_6) δ 107.5 (q, J = 32.1 Hz), 112.4, 119.8, 121.0, 121.0 (q, J = 2.9 Hz), 121.5, 121.6 (q, J = 1.4 Hz), 124.7 (q, J = 273.9 Hz), 127.0, 128.8 (q, J = 1.9 Hz), 131.3, 131.92, 131.94, 141.1, 145.1, 148.1; ¹⁹F NMR (471 MHz, dimethyl sulfoxide- d_6) δ –53.7. HRMS (FD) Calcd for $C_{16}H_8ClF_3N_2$: M, 320.0328. Found: m/z 320.0343. ## II. N-Methylation of Indolo[3,2-b]quinolines with MeOTf: A General Procedure for Table 6 Compounds **10di**, **10fi** and **10gi** were synthesized based on the modified literature procedure [2], as follows: A flame-dried 20 mL Schlenk tube was charged with **4** (0.100 mmol) and solvent CH₂Cl₂ (1.2 mL) or solvent toluene (0.60 mL). The resulting solution was degassed by three freeze-pump-thaw cycles, and the tube was then filled with argon. To this solution was added MeOTf (31.2 mg, 0.190 mmol) that had been distilled by Kugelrohr at 90 °C/500 Pa prior to use, and the mixture was then stirred at 30 or 50 °C for 24 h. The resulting mixture including a solid product was filtered, and the solid was washed with Et₂O (5 mL). The filtrate was concentrated, and the residue was filtered and then washed with Et₂O (5 mL). This concentration—filtration—washing sequence was repeated once again, and the combined solid was dried in vacuo to give analytically pure product **10**. Compounds **10** synthesized here were fully characterized by ¹H, ¹³C and ¹⁹F NMR spectroscopy and HRMS. #### 5,11-Dimethyl-10*H*-1,3-dioxolo[4,5-*b*]quindolinium **1,1,1-Trifluoromethanesulfonate** (**10di**). A yellow solid, mp 335–337 °C (decomp.). ¹H NMR (500 MHz, dimethyl sulfoxide- d_6) δ 3.08 (s, 3 H), 4.86 (s, 3 H), 6.44 (s, 2 H), 7.46 (ddd, J = 8.5, 6.9, 1.0 Hz, 1 H), 7.78 (ddd, J = 8.4, 1.6, 0.9 Hz, 1 H), 7.81–7.86 (m, 1 H), 7.94 (d, J = 1.0 Hz, 1 H), 8.21 (d, J = 1.0 Hz, 1 H), 8.68 (d, J = 8.4 Hz, 1 H), 12.59 (bs, 1 H); ¹³C NMR (100 MHz, dimethyl sulfoxide- d_6) δ 14.5, 40.4, 95.7, 100.6, 103.9, 112.7, 114.1, 120.7 (q, J = 322.4 Hz), 121.0, 123.0, 124.9, 131.6, 131.9, 133.1, 134.3, 134.5, 143.4, 148.2, 153.3; ¹⁹F NMR (376 MHz, dimethyl sulfoxide- d_6) δ –77.3. HRMS (FD) Calcd for $C_{18}H_{15}N_2O_2$: M^+ , 291.1128. Found: m/z 291.1124. 11-Trifluoromethyl-5-methyl-10*H*-quindolinium 1,1,1-Trifluoromethanesulfonate (10fi). Spectral and analytical data of compound 10fi are collected in section 3.4. of the article. #### 2-Chloro-11-trifluoromethyl-5-methyl-10*H*-quindolinium **1,1,1-Trifluoromethanesulfonate (10gi).** An orange solid, mp 321–322 °C. ¹H NMR (500 MHz, dimethyl sulfoxide- d_6) δ 5.13 (s, 3 H), 7.63 (ddd, J = 8.6, 6.9, 0.9 Hz, 1 H), 7.96 (d, J = 8.3 Hz, 1 H), 8.09 (ddd, J = 8.7, 6.7, 1.1 Hz, 1 H), 8.32 (dd, J = 9.5, 2.0 Hz, 1 H), 8.40–8.48 (m, 1 H), 8.89 (d, J = 8.6 Hz, 1 H), 9.02 (d, J = 9.7 Hz, 1 H), 12.81 (s, 1 H); ¹³C NMR (125 MHz, dimethyl sulfoxide- d_6) δ 42.1, 113.5, 113.9, 115.5 (q, J = 33.0 Hz), 120.6 (q, J = 322.3 Hz), 121.8, 122.3, 122.4 (q, J = 3.4 Hz), 122.8, 122.9 (q, J = 275.9 Hz), 127.3, 131.7 (q, J = 1.8 Hz), 131.9, 133.8, 134.3, 136.4, 143.2, 147.6; ¹⁹F NMR (376 MHz, dimethyl sulfoxide- d_6) δ –77.3, –53.7. HRMS (FD) Calcd for C₁₇H₁₁ClF₃N₂: M⁺, 335.0557. Found: m/z 335.0546. #### III. Control Experiments for Mechanistic Studies (Scheme 3) III-1. Indium-Catalyzed S_NAr Amination of 3-Methoxybenzothiophene with 1-(2-Aminophenyl)-2-methyl-1-propanone: An Experimental Procedure for Eq. 1 in Scheme 3 The reaction of **2e** with **3a** for the synthesis of **6ea** was carried out in a similar way to the procedure described in section "**I. Indium-Catalyzed Annulation of** *o***-Acylanilines with Alkoxyheteroarenes: A General Procedure for Tables 3–5**". Compound **6ea** was fully characterized by ¹H and ¹³C NMR spectroscopy and HRMS. **1-[2-(Benzo[b]thien-3-ylamino)phenyl]-2-methyl-1-propanone** (**6ea**). The title compound was isolated by column chromatography on silica gel (n-hexane/EtOAc = 40/1). A yellow solid, mp 96–97 °C. ¹H NMR (500 MHz, CDCl₃) δ 1.29 (d, J = 6.9 Hz, 6 H), 3.72 (sept, J = 6.8 Hz, 1 H), 6.77 (dd, J = 8.0, 7.2 Hz, 1 H), 7.19 (d, J = 8.6 Hz, 1 H), 7.19 (s, 1 H), 7.31–7.35 (m, 1 H), 7.37–7.43 (m, 2 H), 7.75–7.81 (m, 1 H), 7.83–7.88 (m, 1 H), 7.94 (dd, J = 8.0, 0.9 Hz, 1 H), 10.97 (bs, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 19.8, 35.6, 113.3, 114.9, 116.6, 117.4, 121.3, 123.0, 124.2, 125.0, 131.5, 133.0, 134.6, 135.2, 138.5, 149.1, 207.9. HRMS (FD) Calcd for C₁₈H₁₇NOS: M, 295.1031. Found: m/z 295.1044. # III-2. Indium-Catalyzed Intramolecular Cyclization of 6ea: An Experimental Procedure for Eq. 2 in Scheme 3 InBr₃ (4.43 mg, 12.5 μ mol) was placed in a 20 mL Schlenk tube, which was heated at 80 °C in vacuo for 15 min. The tube was cooled down to room temperature and filled with argon. PhCl (0.20 mL) was added to the tube, and the mixture was then stirred at room temperature for 3 min. To this was added **6ea** (73.8 mg, 0.250 mmol), and the mixture was stirred at 110 °C for 24 h. A saturated NaHCO₃ aqueous solution (0.5 mL) was added at room temperature, and the resulting mixture was stirred for 20 min. The aqueous phase was extracted with EtOAc (5 mL × 3). The combined organic layer was washed with brine (1 mL) and then dried over anhydrous sodium sulfate (Na₂SO₄). Filtration and evaporation of the solvent followed by column chromatography on silica gel (n-hexane/EtOAc = 40/1) gave 11-(1-methylethyl)[1]benzothieno[3,2-b]quinoline (**4ea**) in 95% yield (65.9 mg) as a pale pink solid. Compound **4ea** has already appeared in this Supplementary Materials, and its spectral and analytical data are thus collected there (vide supra). ### IV. ¹H, ¹³C and/or ¹⁹F NMR Spectra NMR spectra of substrates and products are collected in the following pages. Only ¹H NMR spectra are provided in the case of compounds for which ¹H NMR, ¹³C NMR, and HRMS or elemental analysis data have been already reported in the literature. Both of ¹H and ¹³C NMR spectra are provided in the case of compounds that have not been reported in the literature. In the case of compounds with fluorine atoms that have not been reported in the literature, ¹⁹F NMR spectra are also provided along with ¹H and ¹³C NMR spectra. Figure S1. ¹H NMR spectrum of compound 2g in CDCl₃. Figure S2. ¹H NMR spectrum of compound Me₂-2e in CDCl₃. Figure S3. ¹H NMR spectrum of compound 4aa in CDCl₃. Figure S4. ¹³C NMR spectrum of compound 4aa in CDCl₃. Figure S5. ¹H NMR spectrum of compound 4ba in CDCl₃. Figure S6. ¹³C NMR spectrum of compound 4ba in CDCl₃. Figure S7. ¹H NMR spectrum of compound 4ca in CDCl₃. Figure S8. ¹³C NMR spectrum of compound 4ca in CDCl₃. Figure S9. ¹H NMR spectrum of compound 4da in CDCl₃. Figure S10. ¹³C NMR spectrum of compound 4da in CDCl₃. Figure S11. ¹H NMR spectrum of compound 4ea in CDCl₃. **Figure S12.** ¹H NMR spectrum of compound **4ea** in acetone- d_6 . Figure S13. ¹³C NMR spectrum of compound 4ea in CDCl₃. **Figure S14.** 13 C NMR spectrum of compound **4ea** in acetone- d_6 . Figure S15. ¹H NMR spectrum of compound 4fa in CDCl₃. Figure S16. ¹³C NMR spectrum of compound 4fa in CDCl₃. Figure S17. ¹⁹F NMR spectrum of compound 4fa in CDCl₃. Figure S18. ¹H NMR spectrum of compound 4ga in CDCl₃. Figure S19. ¹³C NMR spectrum of compound 4ga in CDCl₃. Figure S20. ¹⁹F NMR spectrum of compound 4ga in CDCl₃. Figure S21. ¹H NMR spectrum of compound 4ha in CDCl₃. Figure S22. ¹H NMR spectrum of compound 4ia in CDCl₃. Figure S23. ¹³C NMR spectrum of compound 4ia in CDCl₃. Figure S24. ¹H NMR spectrum of compound 4ja in CDCl₃. Figure S25. ¹³C NMR spectrum of compound 4ja in CDCl₃. Figure S26. ¹H NMR spectrum of compound 4ka in CDCl₃. Figure S27. ¹³C NMR spectrum of compound 4ka in CDCl₃. Figure S28. ¹⁹F NMR spectrum of compound 4ka in CDCl₃. Figure S29. ¹H NMR spectrum of compound 4la in CDCl₃. Figure S30. ¹³C NMR spectrum of compound 4la in CDCl₃. Figure S31. ¹H NMR spectrum of compound 4ma in CDCl₃. Figure S32. ¹³C NMR spectrum of compound 4ma in CDCl₃. Figure S33. ¹H NMR spectrum of compound 4ab in CDCl₃. Figure S34. ¹³C NMR spectrum of compound 4ab in CDCl₃. Figure S35. ¹H NMR spectrum of compound 4bb in CDCl₃. Figure S36. ¹³C NMR spectrum of compound 4bb in CDCl₃. Figure S37. ¹H NMR spectrum of compound 4ac in CDCl₃. Figure S38. ¹³C NMR spectrum of compound 4ac in CDCl₃. Figure S39. ¹H NMR spectrum of compound 4hc in CDCl₃. Figure S40. ¹³C NMR spectrum of compound 4hc in CDCl₃. Figure S41. ¹H NMR spectrum of compound 4ad in CDCl₃. Figure S42. ¹³C NMR spectrum of compound 4ad in CDCl₃. Figure S43. ¹H NMR spectrum of compound 4he in CDCl₃. Figure S44. ¹³C NMR spectrum of compound 4he in CDCl₃. Figure S45. ¹H NMR spectrum of compound 4af in CDCl₃. Figure S46. ¹³C NMR spectrum of compound 4af in CDCl₃. Figure S47. ¹H NMR spectrum of compound 4hf in CDCl₃. Figure S48. ¹³C NMR spectrum of compound 4hf in CDCl₃. Figure S49. ¹H NMR spectrum of compound 4ag in CDCl₃. Figure S50. ¹³C NMR spectrum of compound 4ag in CDCl₃. Figure S51. ¹H NMR spectrum of compound 4ai in CDCl₃. **Figure S52.** ¹H NMR spectrum of compound **4di** in dimethyl sulfoxide-*d*₆. **Figure S53.** 13 C NMR spectrum of compound **4di** in dimethyl sulfoxide- d_6 . **Figure S54.** 1 H NMR spectrum of compound **4fi** in dimethyl sulfoxide- d_{6} . **Figure S55.** 13 C NMR spectrum of compound **4fi** in dimethyl sulfoxide- d_6 . **Figure S56.** ¹⁹F NMR spectrum of compound **4fi** in dimethyl sulfoxide- d_6 . **Figure S57.** 1 H NMR spectrum of compound **4gi** in dimethyl sulfoxide- d_6 . **Figure S58.** 13 C NMR spectrum of compound **4gi** in dimethyl sulfoxide- d_6 . **Figure S59.** ¹⁹F NMR spectrum of compound **4gi** in dimethyl sulfoxide- d_6 . **Figure S60.** ¹H NMR spectrum of compound **10di** in dimethyl sulfoxide-*d*₆. **Figure S61.** 13 C NMR spectrum of compound **10di** in dimethyl sulfoxide- d_6 . **Figure S62.** ¹⁹F NMR spectrum of compound **10di** in dimethyl sulfoxide-*d*₆. **Figure S63.** ¹H NMR spectrum of compound **10fi** in dimethyl sulfoxide-*d*₆. **Figure S64.** 13 C NMR spectrum of compound **10fi** in dimethyl sulfoxide- d_6 . **Figure S65.** ¹⁹F NMR spectrum of compound **10fi** in dimethyl sulfoxide-*d*₆. **Figure S66.** ¹H NMR spectrum of compound **10gi** in dimethyl sulfoxide-*d*₆. **Figure S67.** 13 C NMR spectrum of compound **10gi** in dimethyl sulfoxide- d_6 . **Figure S68.** ¹⁹F NMR spectrum of compound **10gi** in dimethyl sulfoxide- d_6 . **Figure S69.** ¹H NMR spectrum of compound **11fi** in dimethyl sulfoxide- d_6 . **Figure S70.** 13 C NMR spectrum of compound **11fi** in dimethyl sulfoxide- d_6 . **Figure S71.** 19 F NMR spectrum of compound **11fi** in dimethyl sulfoxide- d_6 . Figure S72. ¹H NMR spectrum of compound 6ea in CDCl₃. Figure S73. ¹³C NMR spectrum of compound 6ea in CDCl₃.