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Abstract: G protein-coupled receptors (GPCRs) are integral cell membrane proteins of relevance
for pharmacology. The complete tertiary structure including both extracellular and transmembrane
domains has not been determined for any member of class C GPCRs. An alternative way to work
on GPCR structural models is the investigation of their functionality through the analysis of their
primary structure. For this, sequence representation is a key factor for the GPCRs’ classification
context, where usually, feature engineering is carried out. In this paper, we propose the use of
representation learning to acquire the features that best represent the class C GPCR sequences and at
the same time to obtain a model for classification automatically. Deep learning methods in conjunction
with amino acid physicochemical property indices are then used for this purpose. Experimental
results assessed by the classification accuracy, Matthews’ correlation coefficient and the balanced
error rate show that using a hydrophobicity index and a restricted Boltzmann machine (RBM) can
achieve performance results (accuracy of 92.9%) similar to those reported in the literature. As a
second proposal, we combine two or more physicochemical property indices instead of only one as
the input for a deep architecture in order to add information from the sequences. Experimental results
show that using three hydrophobicity-related index combinations helps to improve the classification
performance (accuracy of 94.1%) of an RBM better than those reported in the literature for class C
GPCRs without using feature selection methods.

Keywords: representation learning; G protein-coupled receptors; deep learning; pattern classification

1. Introduction

G protein coupled receptors (GPCRs) are integral cell membrane proteins responsible for
translating the molecular signals encoded in the chemical structure of hormones and neurotransmitters
from outside to inside the cell. GPCRs share a common structure consisting of seven transmembrane
helices (7TM), which are linked by three extracellular and three intracellular loops [1]. The binding of
endogenous or synthetic agonists causes the activation of the receptor, which results in conformational
changes that allow the allosteric coupling of accessory proteins such as G protein or S-arrestin at
the intracellular part of the receptor [2,3]. Activation of these accessory proteins triggers the series
of steps that constitute the signal transduction mechanism, which eventually lead to the observed
physiological responses. The human GPCRs have been classified into five main families or classes
(glutamate or class C, rhodopsin or class A, adhesion, frizzled or class F/taste2 and secretin or
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class B) by phylogenetic analysis [4]. Crystallographic determinations of a number of ligand-GPCR
complexes have provided insights into the recognition determinants that discriminate between agonists
(activators) and antagonists (inhibitors) [5], whereas other techniques such as nuclear magnetic
resonance (NMR) [6], fluorescence approaches [7] and molecular dynamics (MD) [8] have led to
mechanistic proposals for receptor activation and the allosteric transmission of the signal from the
ligand binding site to the G protein or S-arrestin binding sites of the receptor.

GPCRs are at the center of current drug discovery programs. As of November 2017, approximately
35% of approved drugs in the United States or European Union target GPCRs [9]. There are different
criteria for therapeutic drug design. One is selectivity, as it seems appropriate that drugs act selectively
through specific receptors. Another is the concept of receptor polypharmacology in which a drug exerts
a combination of positive effects by binding to different receptors [10]. Notwithstanding the approach
that is followed, the correct classification of receptors in public databases is fundamental for virtual
screening studies and in the examination of receptor functionality in general. To this aim, machine
learning methods have proven to be useful [11-17]. For this, the standard procedure follows a feature
extraction stage, where many ad hoc representations designed by specific domain experts can be used,
and then, a classification stage is utilized. For the first stage, there are two main approaches to analyze
GPCR sequences in order to extract the inherent features of the original sequences: multiple alignment
and alignment-free representations. Many methods of both techniques have been developed in the
literature achieving good representations, which are confirmed by the corresponding classification
results [11-14,18-20]. However, the obtained/extracted representations are domain-dependent,
which considers only certain factors (as frequency, order, etc.) of the original sequences.

In recent years, the representation learning field has arisen as an alternative resource for
learning representations of the data that makes it easier to extract useful information when building
classifiers [21]. That is, the main idea is to extract the relevant features (explanatory factors) from
the observed data without using feature engineering methods. Following this idea and the good
results presented in [22-26], in this paper, we aim to use a deep architecture in order to implicitly
represent the explanatory factors of the protein sequences as much as possible and at the same
time to obtain a model for classification. To this aim, we propose to use aligned GPCR sequences,
which are translated into a numeric form by using an amino acid property index [27]. In the first stage,
a hydrophobicity-related index is selected (because of its importance in determining the structure
and function of GPCRs [14]) as the input for several deep architectures in order to choose one of
them and find its parameters. After that, the preprocessed amino acid index (AAindex) database
[19] is used as the input for training the selected deep architecture in order to implicitly represent
the explanatory factors of the protein sequences. Experimental results assessed by the classification
accuracy, Matthews’ correlation coefficient (MCC) and balanced error rate (BER) show that using the
hydrophobicity index number 531 and a restricted Boltzmann machine (RBM) can achieve performance
results (accuracy of 92.9%) similar to those reported in the literature [12,20].

As a second proposal, we hypothesize that using two or more physicochemical property index
combinations instead of only one might add information from the sequences that a deep architecture
can extract and classify in a better way. Experimental results show that using three hydrophobicity-
related index combinations helps to improve the classification performance (accuracy of 94.1%) of an
RBM better than those reported in the literature for class C GPCRs without using feature selection
methods. The class C subfamily has been chosen for the present study due to structural, functional
and therapeutic reasons [28].

2. Materials and Methods

2.1. Datasets

The current study focuses on class C GPCRs, which have become an increasingly important target
for new therapies, particularly in areas such as fragile-X syndrome, schizophrenia, Alzheimer’s disease,
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Parkinson’s disease, epilepsy, L-DOPA-induced dyskinesias, generalized anxiety disorder, migraine,
chronic pain, gastroesophageal reflux disorder, hyperparathyroidism, osteoporosis and drug
addiction [29].

Because of its specificity, data were taken from GPCRdb (http://gpcrdb.org/) [30], which is
defined as a molecular-class information system that collects, combines, validates and disseminates
large amounts of heterogeneous data on GPCRs [31]. GPCRdb divides the GPCR superfamily into
5 families: the class A Rhodopsin like, the class B secretin like, the class C metabotropic glutamate/
pheromone, vomeronasal receptors (VIR and V3R) and taste receptors (T2R).

Class C GPCRs were selected for analysis because of (i) their structural complexity, (ii) high sequence
length variability and (iii) therapeutic relevance. Briefly, (i) whereas all GPCRs are characterized by
sharing a common seven-transmembrane (7TM) domain, responsible for G protein/S-arrestin activation,
most class C GPCRs include, in addition, an extracellular large domain, the Venus flytrap (VFT) and a
cysteine rich domain (CRD) connecting both [28]. It was till 2014 that the crystal structures of the 7TM
domains of two class C receptors had been solved [32,33]. (ii) The full or partial presence of the whole
domain structure confers a high sequence length variability to this family. (iii) The involvement of class C
GPCRs in many neurological disorders, as previously mentioned, makes this class an attractive target for
drug discovery and development.

Class C is, in turn, subdivided into seven types: metabotropic glutamate (mG), calcium sensing
(Cs), GABAg(gB), vomeronasal (Vn), pheromone (Ph), odorant (Od) and taste (Ta). The investigated
dataset is available in two forms: unaligned and aligned versions, which can be downloaded as
Supplementary Material files. The former and the latter are distributed as shown in Tables 1 and 2,
respectively. The unaligned version is used for experimentation with alignment-free transformations,
while the aligned one is used for experimentation with representation learning methods.

Table 1. Distribution of the unaligned class C GPCRs.

Type Number of seq.
Calcium sensing 46
GABAp 193
Metabotropic glutamate 321
Odorant 91
Pheromone 372

Taste 65
Vomeronasal 304

Total 1392

Table 2. Distribution of the aligned class C GPCRs.

Type Number of seq.
Calcium sensing 36
GABAg 139
Metabotropic glutamate 296
Odorant 82
Pheromone 356

Taste 60
Vomeronasal 230

Total 1199

When the aligned version is used, each sequence is converted to a basic and numeric form by
using an amino acid physicochemical property index taken from the amino acid index (AAindex)
database [27]. This database contains three sections: AAindex1, AAindex2 and AAindex3 (Version 9),
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where AAindex1 contains 544 indices. For our experimentation, we used a preprocessed version of
AAindex1, which contains 531 indices. All of them are available as Supporting Information in [19].

2.2. GPCR Representations

There are two main approaches to analyzing GPCR sequences through machine learning
methods in order to capture the inherent features of the original sequences: (a) multiple alignment
and (b) alignment-free representations. Both of them have been extensively utilized depending
on the final application or use. Many methods of both techniques have been developed in the
literature achieving good representations, which are confirmed by the corresponding classification
results [11-14,18-20]. However, most of them are manually designed ad hoc by specific domain
experts as a pre-processing step, which produces the fixed-length inputs for the classification methods.
Therefore, the obtained /extracted representations are domain-dependent, which considers only certain
factors (such as frequency, order, etc.) of the original sequence. Consequently, the extracted features
can be relevant or not when they are used for different applications.

Multiple Sequence Alignment and Alignment-Free Representations

A very common preprocessing step for protein classification is multiple sequence alignment
(MSA). The outputs of MSA are sequences of the same length using the one-letter code of the
amino acids. Several methods and tools of MSA have been developed for studies of homology and
evolutionary relationships between the sequences [34-36]. In addition, MSA output can be used
as input for machine learning methods applied to classification tasks. Usually, the MSA output is
directly used with natural language processing (as n-grams) or similarity matrix-related techniques.
When MSA is used, the protein classification results strongly depend on the characteristics of the
information provided by the alignment.

On the other hand, alignment-free protein representations have been defined in the literature in
order to capture as much relevant information that might be conveyed by an amino acid sequence
as possible. Among these, some rely on transformations based on the amino acid physicochemical
characteristics, such as the auto-cross-covariance transformation [37,38].

In this paper, we consider a basic and three advanced alignment-free data transformations to
obtain fixed-length vectors as input data for supervised classification algorithms. The corresponding
transformed resulting datasets are available as Supplementary Material files. The first and most simple
one reflects the amino acid composition (AAcomp) of the primary sequence: the relative frequencies
of the occurrence of the 20 amino acids are calculated for each sequence resulting in a N x 20 matrix,
where N is the number of sequences in the dataset. This transformation does not take into account the
relative position of amino acids in the sequence.

The second and third are extensions of the AAcomp, which include sequence-order information.
The second is known as pseudo-amino acid composition (PseAA) [39], while the third is formed
by a hybrid feature vector, which combines multiscale energy (MSE) and PseAA representations.
Both representations have shown a better GPCR classification performance than AAcomp [14,16].

For a GPCR sequence S = Ry, Ry, ..., Ry where R; represents the amino acid at position 7 in the
sequence S of length L, the PseAA is defined as:

PseAA = [P1,P2,...,P20,...,pA], (1)

where A =20+n x A (A =0,1,...,m is the number of levels used to compute the correlation factors
of the amino acids in the sequence, and 7 is the number of physicochemical properties used as relevant
information for the GPCR sequences). Following [14,40,41], we set A = 21 as the maximum level and
n = 2 physicochemical properties (hydrophobicity and hydrophilicity). That is, the PseAA feature
vector length is 62, where the first 20 elements are the relative frequencies of occurrence of the 20 amino
acids (as AAcomp), and the remaining elements are the first-level to A-level correlation factors of
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amino acid sequences for each physicochemical property. In our case, the PseAA transformation of the
class C GPCRs was obtained by using the Pse AAC server [42].
Now, the wavelet-based MSE representation of a sequence is defined as:

MSE(k) = [d%,d5, ..., d~,, a5, 2)

where k = 1,2,...,N (N is the total number of GPCRs); d;‘ is the root mean square energy of
wavelet detail coefficients in the corresponding i-th scale; and af, is the root mean square energy
of wavelet approximation coefficients in the m-th scale. For this transformation, the GPCR sequences
are first converted into a numeric form by using hydrophobicity values taken from the FHscale [43].
The resulting numeric form takes the role of a digital signal in which the wavelet (Haar) transformation
is applied. That is, the approximation (aX,) and detailed (d¥) coefficients are computed, where the
maximum decomposition level (scale) m of a sequence is taken as log, (L).
Finally, the MSE and PseAA are concatenated to form a hybrid feature vector as follows:

PseAA-MSE = [P}, P,,..., Py, ..., Pa,d5,ds, ... d5, ak . (3)

Major details for computing PseAA and MSE can be found in [14,16,40].

The fourth representation, related by the descriptors obtained in [44], is the ACC
transformation [37,38]. Here, time series models are applied to the protein sequences in order to extract
their sequential patterns, and consequently, the extracted information is sequence-order dependent.
This representation was originally developed in [38] and then applied and modified in [15,37].

The ACC transformation can be described as follows: each sequence is first translated into
physicochemical descriptors by representing each amino acid with the five z-scales derived in [44],
where these scales are in turn obtained from 26 physicochemical properties. The auto-covariance (AC)
and cross-covariance (CC) variables are then computed from the transformed sequences. The AC
measures the correlation of the same descriptor, d, between two residues separated by a lag, /, along the
sequence, and it can be calculated as:

n—I 5 L5
AC() = & R @

The CC variable measures the correlation of two different descriptors between two residues
separated by a lag along the sequence, and it can be computed as:

n=l F— 0 /s — O
CCor) =T (04, U(d;z (i)dljl;-l 0y ), 5)
i

wherel =1,...,Lag and Lag is the maximal lag, which must be lesser than the length of the shortest
sequence in the dataset; n is the total number of amino acids in the sequence; v;; is the value of
descriptord =1,...,D (D = 5) of an amino acid in a sequence at position i; 7, is the mean value of
descriptor d across all positions; and p is the degree of normalization.

From these, the ACC fixed-length vectors are obtained: first, the AC and CC terms from
Equations (4) and (5) are concatenated for each lag (C(I) = [AC(I) CC(l)]), and then, the ACC is
obtained for a maximum lag Lag by concatenating the C(I) terms, that is,

ACC(Lag) = [C(1),...,C(Lag)]. (6)

Here, the length of an ACC feature vector is length(AC) x length(CC) x Lag = 25 x Lag.
Details of this procedure can be found in [15,37].
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2.3. GPCR Feature Learning Proposal through the Deep Approach

In recent years, the representation learning field has arisen as an alternative resource for
learning representations of the data that makes it easier to extract useful information when building
classifiers [21]. That is, the main idea is to extract the relevant features (explanatory factors) from the
observed data without using feature engineering methods.

When representation learning methods are applied to GPCR sequences, a fixed-length and as
unprocessed as possible representation of them is needed as the input for these methods. For this
reason, we take the aligned version (see Table 2) with 259 fixed-length sequences of the GPCR database
described in [30].

In our first proposal, each aligned sequence is converted to a basic and numeric form by using
an amino acid property index taken from the preprocessed AAindex1 database [19,27]. That is,
the sequence S = Ry, Ry, ..., Ry of length L is now represented by:

S =11 I @)

where | lk indicates the corresponding numeric value of the amino acid R; using the k-th amino acid
property index. In the case that a gap is presented in a sequence, it is replaced by a zero value.
From Equation 7, it is observed that neither occurrence frequency, nor order information from S are
included in S'.

In this way, for the class C GPCRs dataset, we form k = 1,2, ... K input datasets, where K = 531
is the total number of indices of the preprocessed [19] amino acid properties index database [27].
Each k-th dataset is used as input for training a deep architecture in order to implicitly represent the
explanatory factors of the protein sequences as much as possible and at the same time to obtain a
model for classification. For illustration, Figure 1 shows how a sequence is used for training a deep
architecture. It is observed from this figure that we can use different kinds of deep architectures to
represent a dataset. In this paper, we experiment with basic and functional architectures, namely:
(a) autoencoders, (b) convolutional neural networks (CNN) and (c) restricted Boltzmann machine in
the first stage in order to select the architecture that best represents the original dataset. In this stage,
a hydrophobicity-related index is selected because of its importance in determining the structure and
function of GPCRs [14].

After the selection of a deep model, we proceed to find the right number of hidden layers and
the number of neurons in each hidden layer by using a grid search in the range of [1,2,...,10] and
[100, 200, 300, 500, 800], respectively. The number of neurons in a hidden layer is selected to be lesser or
greater than the number of input neurons in order to allow the codification or magnification of the
information from the inputs.

Once the number of hidden layers and the number of neurons in each hidden layer is found,
we look into a neighborhood of the number of neurons in a hidden layer in order to refine and confirm
the results. Next, we use the best setting (deep model, number of hidden layers and number of neurons
in a hidden layer) to train a model using each one of the 531 indices from the AAindex database.
This process will help to select the physicochemical index that in conjunction with the selected deep
architecture represents the explanatory factors of the GPCR sequences.

Now, we hypothesize (as a second proposal) that using two or more physicochemical property
indices instead of only one might add information from the sequences that a deep architecture can
extract and classify in a better way. This is carried out by combining the physicochemical indices for
each amino acid in a sequence. That is, if a GPCR sequence has a length of L (259), after combination,
its length is L x n, where n is the number of indices. For n = 2, the sequence is represented by:

S =1, 0,1, 1,1 ®)
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where I{ 1 lk indicates the combination of the corresponding numeric value of the amino acid R; using
the j-th and k-th amino acid property indices.
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Figure 1. Deep architecture training proposal scheme.

2.4. Deep and Conventional Supervised Learning Methods

In this paper, we experiment with basic and functional deep architectures, namely: autoencoders,
convolutional neural networks and restricted Boltzmann machine in the first stage in order to select
the architecture that best represents the original dataset. These architectures help to discover complex
structures in datasets, which are used to compute the representations in each layer. These distributed
representations lead to improved generalization for different tasks.

Convolutional neural networks have been widely applied to the recognition of objects in digital
images. The architecture of a typical deep CNN is structured as a series of convolutional layers and
pooling (subsampling) layers. The role of a convolutional layer is to detect local conjunctions of
features from the previous layer, whereas the role of a pooling layer is to merge semantically similar
features into one [45].

A stacked autoencoder is used mainly to encode the inputs into some representation so that the
inputs can be reconstructed from that representation. In practice, the output representation can also be
used to initialize a deep neural network for multi-class classification. In this paper, a stochastic version
of the autoencoder is used, namely the denoising autoencoder, which avoids learning the identity
function [46,47].

A stacked RBM is a particular type of energy-based model with hidden variables, which has the
restriction that its neurons must form a bipartite graph. An RBM is formed by a visible input layer
and a hidden layer and connections between them, but not within a layer. Usually, the contrastive
divergence algorithm is utilized as the unsupervised training procedure to detect features from the
inputs [46,48].

For classification tasks, a deep belief network or simply a deep neural network can be constructed
by stacking RBMs or autoencoders where the top layer (1) is used as the classifier’s output. In the first
stage, a deep network of this kind is trained without supervision using # — 1 layers to detect the main
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features of the inputs. After this, the n-th layer is added to the network and trained with supervision
through the error backpropagation algorithm to perform classification.

On the other hand, we also compare the obtained RBM results with some conventional classifiers
such as k-nearest neighbor (k-NN), decision tree (DT), multilayer perceptron (MLP) and support vector
machine (SVM).

k-NN is one of the simplest classifiers. It finds the k points in the training set that are nearest
to the test input, then counts how many members of each class are present in the corresponding
neighborhood (formed by the k points) and returns a class label belonging to the most common class
in such a neighborhood.

Another basic classifier is a DT or classification tree. It partitions the feature space into
hyperrectangles with sides parallel to the axes and then fits a simple model in each one. That is,
the sequence of decisions is applied to individual features. In the resulting (tree-like) structure,
an internal node represents a test on a variable or attribute, and a leaf node represents a class label.

MLP is a sophisticated feedforward neural network architecture, which can be trained in a
supervised manner through the error backpropagation algorithm. The network contains layers of
hidden neurons, which extract meaningful features from the input vectors. Each neuron in the network
uses a nonlinear activation function, which helps to model non-linearities in its input-output relation.

A more sophisticated and widely-applied nonlinear classifier is SVM. It separates the input data
points by mapping them into a high-dimensional feature space where a hyper-plane is constructed.
This hyper-plane creates a decision surface, which has a maximum distance to the nearest points
in the feature space. That is, two key concepts are involved in the design of an SVM: large margin
separation and kernel functions. The former concept means that the constructed hyper-plane should be
placed as far as possible away from the points in different classes. The latter concept helps to calculate
the similarity between points in the corresponding feature space, which allows an SVM to generate
nonlinear decision boundaries [49,50]. In this paper, a radial basis function was used as the kernel (due
to the good results presented in [12,20]), where a grid search was carried out to find the regularization
parameter C and the kernel width parameter ¢.

Performance Assessment Measures

The performance measures used in the experiments are classification accuracy, MCC and BER.
Accuracy is widely known and used as the proportion of correctly-classified cases. MCC and BER are
commonly used as performance measures when the analyzed datasets are class-unbalanced. All of
them can be naturally extended from the binary to the multi-class context [51].

Let us assume a classification problem with S samples and G classes and two functions defined as
tc,pc: S — {1,...,G}, where tc(s) and pc(s) return the true and the predicted class of s, respectively.
The corresponding square confusion matrix C is:

Cij=|{s € S:te(s) =iand pc(s) = j}, )

in which the ij-th entry of C is the number of cases of true class i that have been assigned to class j by
the classifier. Then, the confusion matrix notation can be used to define the accuracy, MCC and BER as:

G
C
accuracy = @, (10)
Z,‘,]‘:1 Cij
G
1 (oo [EiEuzCi )
BER = = |27, | 57— |, (11)
G ( T ZG
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BER is the average of the errors on each class, which takes values in the interval [0, 1]. Then,
0 means perfect classification where no error contribution per class was found, and 1 means an extreme
misclassification case where items for each class are misclassified.

MCC is commonly used in the bioinformatics field and takes values in the interval [—1, 1], where
1 means complete correlation (perfect classification), 0 means no correlation (all samples have been
classified to be of only one class) and —1 indicates a negative correlation (extreme misclassification
case). MCC is recommended as an optimal tool for practical tasks, since it presents a good trade-off
among discriminatory ability, consistency and coherent behavior with a varying number of classes,
unbalanced datasets and randomization [52].

MCC =

(12)

3. Results and Discussion

The experimental results reported in this section aim to assess the ability of representation learning
methods to extract the explanatory factors from the observed class C GPCR sequences without using
feature engineering methods. For this purpose, two kinds of experimentation are designed.

Firstly, unaligned amino acid sequences are transformed according to the alignment-free
transformations described in Section 2.2 in order to extract the relevant features that will help to
gauge the classification performance using conventional supervised methods. Secondly, aligned amino
acid sequences converted to a basic and numeric form are used as input for deep learning methods
in order to implicitly represent the explanatory factors of the protein sequences. These models have
the characteristic that at the same time the representation is extracted, a classification model is also
obtained, which is assessed through classification performance.

3.1. Class C GPCRs Classification Using Alignment-Free Representations

The goal of the experiments in this subsection is two-fold. Firstly, we aimed to gauge the ability
of the alignment-free amino acid sequence transformations to capture the inherent relevant features of
class C GPCR subfamilies through supervised classification models. Secondly, we aimed to compare
the performance of four conventional supervised models in terms of classification performance.

For the first set of experiments, the alignment-free transformations described in Section 2.2 are
used in order to obtain the fixed-length feature vectors of the class C GPCRs unaligned dataset
(see Table 1). This means that the AAcomp, PseAA, PseAA-MSE and ACC transformations are
computed to obtain the corresponding four datasets as input for classification algorithms.

Following Section 2.2, a feature vector of the AAcomp dataset has a length of 20; for the PseAA
dataset, the length is 62; and for the PseAA-MSE, the length is 74; taking a maximum decomposition
level of m = 11 (log,(max{Lj, Ly,...,Ly}) = 11, where L; is the length of the sequence 7). In the
case of the ACC transformation, it uses two parameters that must be set to adequate values prior
to classification: the maximum Lag and the degree of normalization p. In this study, we set both as
Lag = 13 and p = 0.5, since the unaligned dataset is almost the same as in [11,12]. Then, the length of
an ACC-transformed feature vector is 25 x Lag = 325.

For the second set of experiments, we selected two baseline and two sophisticated (non-linear)
classifiers. Here, the k-nearest neighbor, decision tree, multilayer perceptron trained with
the backpropagation algorithm and support vector machines were used. For k-NN, different
neighborhoods were tried in the range k = 1,...,10. Different settings for the number of hidden
layers (hl) and number of neurons in a hidden layer (nhl) for MLP were used as hl = [1,2,3,4,5]
and nhl = [10, 20, 30, 40, 50, 60, 70, 80,90, 100]. In the case of SVM classifier, the radial basis function
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kernel was used, which utilizes two parameters that must be identified in order to accurately predict
unknown data: C and . For this, a grid search is carried out in the ranges C = [1,16] and y = [271°,25]
as in [12,20]. For these classifiers, only the parameters that lead to the best classification performance
are reported.

For all conventional classifiers, the corresponding implementation available in the Weka
(Version 3.6) toolbox [53] was used. It also allows data preprocessing where data normalization
in the range [0, 1] was carried out using the min — max normalization technique. In order to estimate
the average classification performance, 10-fold cross-validation is used.

The average classification accuracy results using alignment-free representation datasets with
the above described classifiers are shown in Table 3. From these results, SVM is shown to outperform
the rest of the classifiers in terms of accuracy, which is similar to that reported in the literature [12,20].

Table 3. Average classification accuracy (%) results of four classifiers using alignment-free representation
datasets. AAcomp, amino acid composition; PseAA, pseudo-amino acid composition.

Transformation MLP SVM DT  k-NN

AAcomp 8398 87.64 7213 84.99
ACC 89.08 91.67 6135 87.79
PseAA 88.22 88.86 7421 8743
PseAA-MSE 87.57 8851 7249 88.00

On the other hand, the alignment-free transformation that best captures relevant features through
classifiers is ACC, except for decision trees. This is followed by PseAA and Pse A A-MSE transformation,
which indicates the importance of adding sequence-order information in transformed feature
vectors [11,14,16].

3.2. Class C GPCRs Classification Using Representation Learning

The goal of the experiments in this subsection is two-fold. Firstly, we aimed to gauge the ability
of representation learning methods to extract the explanatory factors directly from the observed data
sequences through deep learning approaches. Secondly, we aimed to compare the performance of
deep and conventional learning models in terms of classification performance.

As stated in the first proposal of Section 2.3, the aligned dataset (see Table 2) is converted to a
numeric form by using an amino acid property index taken from AAindex database [19,27]. From the
531 indices, in the first stage, we selected a hydrophobicity-related index, because of its importance
in determining the structure and function of GPCRs [14], then the hydrophobicity index 2 is chosen.
The resulting dataset is named AAhydro.

Three common deep architectures were selected for experimentation: autoencoders, restricted
Boltzmann machines and convolutional neural networks. In order to select the best architecture, which
will be tuned in a posterior step, a basic configuration for each was used: two hidden layers and
700 neurons for each layer. To estimate the classification performance of the deep models, stratified
10-fold cross-validation was carried out.

The corresponding implementation of deep architectures was taken from [54,55]. The average
classification accuracy results of the different deep architectures are shown in Table 4. Here, it is
observed that RBM outperforms the other deep architectures in terms of classification accuracy. It is
worth noting that RBM is modeled through a Gaussian-Bernoulli distribution, which naturally allows
real-valued inputs. Although it is widely-known that CNNs have good performance for image pattern
recognition (where large datasets are used), this is not the case for class C GPCR classification where
the amount of analyzed data is not large enough.
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Table 4. Average classification results using the amino acid hydrophobicity-related index (AAhydro) set.

Deep architecture Accuracy (%)
Autoencoder 71.98
Convolutional neural network 71.68
Restricted Boltzmann machine 86.68

From here on, RBM is selected as the deep architecture trained with the backpropagation
algorithm where gradient descent is accelerated by Nesterov’s method [56]. In order to find the
right configuration for the number of hidden layers and the number of neurons for layer of RBM, an
ad hoc and coarse grid search was carried out in the ranges [1,2,...,10] and [100, 200, 300, 500, 800],
respectively. The corresponding average classification accuracy results of this search are progressively
shown in Tables 5-8.

Table 5. Average classification results for an RBM with a hidden layer using the AAhydro set.

layer; (#Neurons) Accuracy (%)

100 88.11
200 88.48
300 88.45
500 89.33
800 87.98

Table 6. Average classification accuracy results for an RBM with two hidden layers using the AAhydro set.

Layer;
100 200 300 500 800

100 90.62 8824 88.61 8790 88.45
200 88.24 88.24 88.03 87.98 88.28
300 88.61 88.03 88.19 87.82 88.03
500 8790 8798 87.82 89.71 87.98
800 88.45 88.28 88.03 87.98 87.82

Layerq

From Tables 5 and 6, it is observed that the right number of neurons for the first and second layer
is around 500. Then, the number of neurons for the third and fourth layer is around 500. Tables 7 and 8
show that no improvement is achieved when we add more hidden layers. We also tried five hidden
layers, but the results are worse than previous tables; therefore, they are not reported.

Table 7. Average classification accuracy results for an RBM with three hidden layers using the AAhydro set.

Layery, Layer, —z55 L?(I)Erg' 800
300, 300 79.06 7723 7832
300, 500 77.96 7727 7832
500, 300 7650 7869 77.23
500, 500 7796 8124 77.96
300, 800 83.07 83.07 81.24
800, 300 83.43 8270 83.06
800, 800 7869 7942 7942
500, 800 8197 8270 81.97

800, 500 80.15 78.32 83.07
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Table 8. Average classification results for an RBM with four hidden layers using the AAhydro set.

Layer;, Layer;, Layers, Layery  Accuracy (%)

300, 300, 300, 300 82.70
500, 500, 500, 500 82.34
800, 800, 800, 800 81.24

Since the best results are obtained using 500 neurons for two hidden layers, we proceed with a
fine grid search of around 500 neurons for each layer. Then, we tried the range [400, 450, 500, 550, 600]
for each layer. The average classification accuracy results for this search are shown in Table 9. Again,
the best results are obtained with 500 neurons for the first and second layers.

Table 9. Average classification accuracy results for an RBM with two hidden layers using a fine grid
search around 500 neurons and the AAhydro set.

Layer;
400 450 500 550 600

400 81.24 8197 81.61 81,60 81,60
450 84.16 7796 79.41 81.60 80.51
500 83.80 80.51 89.71 81.60 79.41
550 79.78 79.05 79.78 8124 8270
600 8270 79.78 79.05 79.05 81.24

Layerq

From previously-obtained results, we selected two hidden layers and 500 neurons for each layer
as the right configuration for RBM. Now, we train the selected RBM architecture using each one of the
531 indices from the preprocessed AAindex database [19]. This process will help us to select the amino
acid physicochemical property index that in conjunction with RBM represents the explanatory factors
of the class C GPCR sequences.

The average classification results of the 12 amino acid physicochemical property indices with
the highest classification accuracy are shown in Table 10. Since the resulting datasets are unbalanced
(see Table 2), the MCC and BER measures are also presented in order to compare them with
accuracy results.

Table 10. Highest average accuracy results of the restricted Boltzmann machine (RBM) with two hidden
layers over 531 amino acid property indices. MCC, Matthews’ correlation coefficient; BER, balanced

error rate.
Name Index Accuracy (%) MCC BER
Hydrophobicity index 531 92.86 9112 771
Principal eigenvector of contact matrices and hydrophobicity profiles 485 92.82 91.02 1033
Frequency of occurrence in beta-bends 166 92.40 90.41 10.69
Distinct character in hydrophobicity of the amino acid composition 193 91.93 89.83  9.88
Weights for coil at the window position of —2 288 91.81 89.68 11.78
NMR chemical shift of the alpha-carbon 84 91.76 89.68 13.34
AA composition of EXT20f single-spanning proteins 205 91.72 89.64 11.69
Relative mutability 65 91.60 89.50 10.52
Protein surface amino acid compositions 471 91.51 89.39 11.39
Hydrophobic packing and spatial arrangement of amino acids 247 90.97 88.90  9.89
Proportion of residues 95% buried 35 90.42 8826  9.70
Normalized van der Waals volume 80 90.29 8796  10.60

It is observed from Table 10 that the amino acid property index number 531 in conjunction with
RBM represents in a better way the explanatory factors of the class C GPCR sequences than the initial
hydrophobicity index number 2. Although indices 531 and 485 have similar accuracy results, the BER
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measure is in favor of the hydrophobicity index number 531, which indicates a minimum mean
misclassification for each class. Furthermore, this result is similar to that reported in the literature
using feature engineering methods with SVM classifier (Konig 2013, 2014), but in contrast, an RBM
learns representations directly from the observed data sequences.

In order to find out to what extent each of the seven class C GPCR types described in Section 2.1
can be discriminated from the rest and how each of them influences the overall classification
performance, the four highest accuracy results represented by their corresponding amino acid property
indices are presented in Figure 2 for all these types. Here, it is clear that the overall pattern of supervised
classification is quite stable across amino acid property indices, except for index 166. The tendency is
that the odorant and pheromone subfamilies are those that contribute less to the overall classification,
which is a pattern similarly obtained in [11,12] with a difference (in favor of RBM) in the vomeronasal
subfamily results. In this figure, five out of seven subfamilies (including vomeronasal) have high
classification performance. The exception for this pattern is the results from index 166, which indicate
that RBM cannot extract the explanatory factors of calcium sensing receptors, but in contrast, it has the
highest recognition rate for the most difficult subfamily (odorant) to discriminate.
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Figure 2. Class-specific percentage of contribution to overall classification using four amino acid
property indices with the highest classification accuracy. metabotropic glutamate (mG), calcium
sensing (Cs), GABAp (gB), vomeronasal (Vn), pheromone (Ph), odorant (Od) and taste (Ta).

Results from Figure 2 suggest that if feeding an RBM with information of two or more amino acid
property indices instead of one, it probably could extract and represent more inherent and hidden
information from GPCR sequences and consequently improve classification performance. Therefore,
as a second proposal, we can combine two or more amino acid property indices as inputs for the RBM
architecture previously selected.

Providing two amino acid property indices to an RBM means that the input sequence is first
converted to a numeric form as I{, I{‘, Ié, x ..., I{, ¥, where If , Ilk indicates the combination of the
corresponding numeric value of the amino acid i using the j-th and k-th amino acid property indices.
For the next experiments, we combine pairs of indices from Table 10 in order to reduce the search space.

The average classification results of the five amino acid property index combinations with the
highest classification accuracy are shown in Table 11. From this table, it is observed that a combination
of indices 65 and 205 in conjunction with RBM can represent the class C GPCRs types in a better
way than using only one index, then classification performance is improved and confirmed by all the
performance measures. This result outperformed the one obtained in [12] using feature engineering
methods and is similar to [20], obtained by feature selection methods, with the difference being that
we did not resort to these kinds of methods.
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Table 11. Highest accuracy results of RBM using the amino acid property two-index combinations

from Table 10.

Index  Accuracy (%) MCC BER
65-205 93.91 9234 828
35-65 93.53 91.88 9.12
84-193 93.45 91.77  6.96
247-166 93.11 9132 9.52
84-205 93.03 91.28 1155

As in the previous experiment, we investigate the class-specific contribution to overall
classification for class C GPCR types, and this is shown in Figure 3. The tendency and pattern
described by these results are very similar to the ones described by using only one amino acid property
index, but this, time the recognition rate of the most difficult subfamily to discriminate is improved.
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Figure 3. Class-specific percentage of contribution to overall classification using two amino acid
property index combinations with the highest classification accuracy. The tendency of index
combination results is similar to the results shown in Figure 2, but this time, the Ph and Od subfamilies
are better discriminated.

Now, we proceed with combinations of three and more amino acid property index combinations.
Since the results were not improved using four or more combinations, we only present the performance
results with three index combinations in Table 12 and Figure 4. The classification results in Table 12
slightly improve the highest obtained using a combination of two indices. In particular, the combination
of indices 485, 247 and 193 is better than the combination of 65 and 205 in terms of MCC and BER
measures, but the rest of the combinations are not better than those shown in Table 11.

Table 12. Highest accuracy results of RBM using the amino acid property three-index combinations
from Table 10.

Index Accuracy (%) MCC BER
485-247-193 94.08 92.67 518
247-80-166 92.82 9111 948
485-65-166 92.73 9094 11.16
247-166-471 92.69 90.86 8.18
35-80-471 91.64 89.73  7.87
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Figure 4. Class-specific percentage of contribution to overall classification using three amino acid property
index combinations with the highest classification accuracy. As in Figures 2 and 3, the tendency of index
combination 485-247-193 is similar, but the recognition rate of the Od subfamily is highly improved.

From Figure 4, it is observed that the same pattern described in Figures 2 and 3 is found, including
the recognition rate improvement of the odorant type.

A summary of the highest classification performance using one, two and three amino acid property
index combinations is presented in Figure 5. Here, it is observed that the highest results are addressed
by the ability of the recognition (discrimination) of odorant and pheromone subfamilies. According
to [11,12], subfamilies related to the odor function, such as vomeronasal, pheromone and odorant,
are the most difficult to discriminate. However, Figure 5 shows that an RBM using one, two or three
amino acid property index combinations can perfectly discriminate the vomeronasal type from the rest.
Moreover, an RBM using the 485-247-193 index combination can also highly recognize the pheromone
and odorant subfamilies. These results reveal the important contribution of hydrophobicity-related
index combinations to correct amino acid sequence classification. This is not an unexpected result
considering that GPCRs are membrane proteins, and thus, hydrophobic residues are highly present
along the sequence and important both for receptor structure and function [14].
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Figure 5. Class-specific percentage of contribution to overall classification using one, two and three
amino acid property index combinations with the highest classification accuracy.
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Finally, we compare the performance obtained with the highest classification accuracy results of
RBM using one, two and three amino acid property index combinations with conventional supervised
classification methods. For this purpose, the datasets obtained with one, two and three amino acid
property index combinations are used as input for classification methods, such as SVM, k-NN and
DT. The corresponding parameters of SVM and k-NN were as in Section 3.1, and the best average
classification accuracy results are reported in Table 13.

Table 13. Comparison of RBM results with conventional classification methods using one, two and
three amino acid property index combinations.

Index SVM DT k-NN RBM

Combination Accu MCC BER Accu MCC BER Accu MCC BER  Accu MCC BER
531 9099 87.80 11.77 8716 82.07 1579 89.41 8625 1143 9286 91.12 7.71
65-205 91.24 88.04 11.73 8857 8378 1365 9049 8771 1030 9391 9234 828

485-247-193 90.74 8734 1296 8832 8378 1297 9033 87.65 1033 94.08 9267 518

From Table 13, it can be observed that RBM can extract and represent the inherent and hidden
information of class C GPCRs in a better way than conventional classification methods, which is
confirmed by the accuracy, MCC and BER measure results. These results outperformed those reported
in the literature [11,12,20] for class C GPCR classification without using feature selection methods.

4. Conclusions

Given the interest in class C receptors in pharmacology and in the absence of much knowledge
regarding their complete 3D crystal structures, the investigation of their functionality can be
approached through the analysis of their primary structure in the form of amino acid sequences.
For this, many works reported in the literature [11,13,14,16,19,20,37] have coincided with the fact
that sequence representation is a key factor for the GPCR classification task. Following this idea
and opposite to the standard procedure of applying feature engineering methods for sequence
representation, the use of the representation learning approach for automatically acquiring the features
that best represent the class C GPCR sequences is proposed in this paper. That is, the AAindex database
is used as the input for training a stacked RBM in order to implicitly represent the explanatory factors
of the protein sequences. Experimental results assessed by classification accuracy, MCC and BER show
that using the hydrophobicity index number 531 in conjunction with an RBM can achieve performance
results similar to those reported in the literature. Furthermore, it is also shown that using three
hydrophobicity-related index combinations helps to improve the classification performance of an RBM
better than those reported in the literature for class C GPCRs without using feature selection methods.

Besides, type-specific classification results have shown that the discriminative and representative
ability of the stacked RBM for each type varies according to the provided amino acid property index
combinations, but keeping, in general, a stable and consistent classification pattern across all index
combinations. Moreover, and importantly for the problem of recognizing the subfamilies related
to the odor function, the experimental results indicate that RBM in conjunction with any amino
acid physicochemical property index combinations can quite accurately represent and discriminate
the vomeronasal type, and specifically using the 485-247-193 index combination, it can also highly
recognize the pheromone and odorant subfamilies.

Motivated by the fact that relevant features of two class C GPCR subfamilies (related to the
odor function) are difficult to represent and classifiers confuse them, a multi-label learning approach
that allows an instance to belong to different classes is considered as future work. Furthermore,
a pertinent evaluation of the three hydrophobicity-related index combinations found in this work
should be carried out at a biochemical level.
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