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Abstract: Symptomatic treatment of myasthenia gravis is based on the use of peripherally-acting 
acetylcholinesterase (AChE) inhibitors that, in some cases, must be discontinued due to the 
occurrence of a number of side-effects. Thus, new AChE inhibitors are being developed and 
investigated for their potential use against this disease. Here, we have explored two alternative 
approaches to get access to peripherally-acting AChE inhibitors as new agents against myasthenia 
gravis, by structural modification of the brain permeable anti-Alzheimer AChE inhibitors tacrine, 
6-chlorotacrine, and huprine Y. Both quaternization upon methylation of the quinoline nitrogen 
atom, and tethering of a triazole ring, with, in some cases, the additional incorporation of a 
polyphenol-like moiety, result in more polar compounds with higher inhibitory activity against human 
AChE (up to 190-fold) and butyrylcholinesterase (up to 40-fold) than pyridostigmine, the standard drug 
for symptomatic treatment of myasthenia gravis. The novel compounds are furthermore devoid of brain 
permeability, thereby emerging as interesting leads against myasthenia gravis. 

Keywords: acetylcholinesterase inhibitors; butyrylcholinesterase inhibitors; quinolinium compounds; 
triazoles; structural biology; copper-catalyzed azide-alkyne cycloaddition; click chemistry 

 

1. Introduction 
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Myasthenia gravis is an autoimmune disease that is associated with antibodies directed against 
nicotinic acetylcholine receptors (AChRs) on the postsynaptic membrane at the neuromuscular 
junction, or against other proteins, such as muscle-specific tyrosine kinase (MuSK), low-density 
lipoprotein receptor-related protein 4 (LRP4), and agrin, which are involved in AChR clustering on 
the postsynaptic membrane and in structural maintenance of the neuromuscular synapse [1,2]. 
Antibodies against AChRs may block these receptors by binding to the acetylcholine-binding site, 
may reduce the number of available receptors in the membrane by internalization, and may activate 
the complement cascade, leading to destruction of the postsynaptic muscle membrane and, hence, 
negatively affecting AChR function [2,3]. Failure of neuromuscular transmission leads to fluctuating 
skeletal muscle fatigue and weakness upon repeated contraction, which is the main clinical hallmark 
of myasthenia gravis. Weakness affects various muscle groups, such as extraocular muscles, which 
control eye movements, bulbar muscles in the mouth and throat, responsible for speech and 
swallowing, and limb and axial muscles [1]. 

The worldwide prevalence of myasthenia gravis has been estimated to be 40‒180 per million 
people, with 10% being children and adolescents, and an annual incidence of 4–12 per million people, 
with little geographical variation [1,2,4]. Even though myasthenia gravis remains a rare disease, its 
incidence and prevalence are increasing, particularly in the elderly [5], likely as a result of improved 
recognition and diagnosis, due to the widespread availability of autoantibody tests, and of increased 
life expectancy [4]. 

Diagnostic testing and symptomatic treatment of myasthenia gravis are based on restoration of 
cholinergic transmission at the neuromuscular junction by means of peripherally-acting inhibitors of 
acetylcholinesterase (AChE), the enzyme responsible for the hydrolysis of the neurotransmitter 
acetylcholine at the synapse [6]. Inhibition of acetylcholine breakdown renders the neurotransmitter 
more available for nicotinic AChR stimulation, which alleviates muscle weakness by improving 
neuromuscular transmission [7]. The short-acting AChE inhibitor (AChEI) edrophonium chloride 
(Enlon®, Tensilon®, Figure 1) is used for diagnosis of myasthenia gravis, because it leads to dramatic 
amelioration of the functioning of a particularly weak muscle group immediately after 
administration. Other AChEIs, such as pyridostigmine bromide (Mestinon®), neostigmine bromide 
(Prostigmin®), and ambenonium dichloride (Mytelase®) (Figure 1), which were introduced in the 
early 1950s, are used for the symptomatic treatment of early and mild myasthenia gravis [3,7,8]. 
Patients who do not appropriately respond to symptomatic treatment should be treated with 
immunosuppressive drugs, which target the underlying pathological immune response, with 
azathioprine being one of those most widely used [1,2]. 
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Figure 1. Chemical structures of peripherally-acting AChEIs used for diagnosis and symptomatic 
treatment of myasthenia gravis. 

Commercially available AChEIs often permit patients suffering from myasthenia gravis to 
function normally, without the need for immunosuppressive drugs. However, their use is 
accompanied by a number of muscarinic receptor-mediated side-effects, including abdominal 
cramps, diarrhea, increased gastric and bronchial secretions, salivation, lacrimation, nasal discharge, 
sweating, increased urination, and bradycardia, which can result in discontinuation of the treatment 
[7]. Thus, novel AChE inhibitors with more favorable efficacy/safety profiles are being developed for 
the symptomatic treatment of myasthenia gravis. 
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To ensure a peripheral effect and prevent blood‒brain barrier (BBB) crossing and, hence, 
potential central cholinergic side-effects, the design of novel AChEIs against myasthenia gravis is 
commonly based on the introduction of permanently charged quaternary nitrogens [9]. A number of 
alkylammonium [10], piperidinium [11,12], pyridinium [13], quinolinium [14], and isoquinolinium 
[15] derivatives have been developed as potential drug candidates against myasthenia gravis or as 
reversal agents of neuromuscular blockade in surgical anesthesia. These compounds usually exhibit 
AChE inhibitory potencies in the low micromolar to low nanomolar range. It is noteworthy that some 
of these compounds are formally derived, by quaternization, from centrally-acting AChE inhibitors 
that are being used for treatment of Alzheimer’s disease, such as donepezil [11,12]. Permanently 
charged derivatives of the anti-Alzheimer drug galantamine have been also reported as potent 
peripherally-acting AChEIs [16]. 

Tacrine (1, Scheme 1) was the first AChEI to be approved for treatment of Alzheimer’s disease [17]. 
Its chlorosubstituted derivatives 6-chlorotacrine, 2 [18], and huprine Y, 3 [19–21], are very potent 
AChEIs that were also developed as candidate drugs against Alzheimer’s disease. 

In this study, we explored two different approaches to accessing more polar derivatives of 
tacrine, 6-chlorotacrine, and huprine Y, which may serve as new peripherally-acting AChEIs of 
potential value for treatment of myasthenia gravis. First, we envisaged the classic approach, 
involving design of permanently charged quinolinium salts (compounds 4‒6, Scheme 1). As an 
alternative approach, we also explored the introduction of non-charged polar moieties attached to a 
tacrine or 6-chlorotacrine core. To this end, we considered the introduction of a 1,2,3-triazole ring 
(compounds 9 and 10, Scheme 2). The 1,2,3-triazole ring can be readily installed through the 
prototypic click reaction, the Huisgen 1,3-dipolar cycloaddition reaction of alkynes and azides [22]. 
It is a very stable moiety, non-hydrolytically cleavable, essentially non-oxidizable and non-reducible, 
with a very large dipole moment, and with two out of its three nitrogen atoms able to act as weak 
hydrogen bond acceptors, so that they can be involved in interactions with biological targets [23]. 
Indeed, previous studies have highlighted additional favorable interactions of the 1,2,3-triazole 
group with residues in the AChE active-site gorge, when attached to a tacrine moiety by a two-carbon 
linker. These additional interactions seem to account for the efficacy of the in situ click chemistry 
approach (KTGS, kinetic target-guided synthesis) for the synthesis of dual binding-site AChE 
inhibitors [24–27]. In addition, in some target compounds we decided to introduce a second polar 
moiety, namely a polyphenol-like moiety at the end of a triazole-containing tether chain (compounds 
15 and 16, Scheme 2), with the double purpose of increasing polarity and producing dual site binding 
to AChE, i.e., simultaneous interaction with both the catalytic anionic site (CAS), at the bottom of the 
active-site gorge, and with the peripheral anionic site (PAS), at the mouth of the gorge [28], which 
should result in increased inhibitory potency. 

Here we report the synthesis of the above-mentioned novel polar derivatives of tacrine, 6-
chlorotacrine, and huprine Y, and the in vitro evaluation of their inhibitory activities against human 
AChE (hAChE) and human butyrylcholinesterase (hBChE), a second human cholinesterase that 
hydrolyzes acetylcholine in the blood and in the central nervous system. To assess the peripheral 
distribution and discard potential central cholinergic effects of these lead compounds, their brain 
permeability was also assessed in vitro. Furthermore, the three-dimensional structures of complexes 
of several of these compounds with Torpedo californica AChE (TcAChE) were also solved, in order to 
shed light on their mechanism of action. 

2. Results and Discussion 

2.1. Synthesis of the Target Compounds 

The new quinolinium iodide derivatives 4‒6 were prepared in good yield by reaction of tacrine, 
6-chlorotacrine, and huprine Y, respectively, with excess iodomethane in refluxing methyl ethyl 
ketone [29] (Scheme 1). 
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Scheme 1. Synthesis of tacrine-, 6-chlorotacrine-, and huprine-based quinolinium derivatives 4–6. 
Reagents and conditions: (i) MeI, methyl ethyl ketone, reflux, overnight, 91% yield (4), 91% yield (5), 
77% yield (6). 

The synthesis of the triazole-based compounds 9, 10, 15, and 16 started from the known 
azidoalkyltacrines 7 [30] and 8 [31], which, in turn, were readily prepared by reaction of 9-chloro-
1,2,3,4-tetrahydroacridine or 6,9-dichloro-1,2,3,4-tetrahydroacridine with 2-aminoethanol, 
followed by conversion of the resulting hydroxyethyl tacrine derivatives to the corresponding 
mesylates [32], and a final nucleophilic substitution reaction with sodium azide in acetonitrile at 
80 °C. Copper-catalyzed azide-alkyne cycloaddition reaction of azides 7 and 8 with 3-butyn-1-
ol afforded the target triazole-containing tacrines 9 and 10 in 63% and 81% yield, respectively 
(Scheme 2). 
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Scheme 2. Synthesis of tacrine-based triazole derivatives 9, 10, 15, and 16. Reagents and conditions: 
(i) alkyne (3-butyn-1-ol or 12), CuI, acetonitrile, r.t., 16 h, 63% yield (9), 81% yield (10), 99% yield (13), 
60% yield (14); (ii) 3-butynoic acid, EDC·HCl, CH2Cl2, r.t., 2 h, 36% yield; (iii) CSA, MeOH, r.t., 18 h 
(for 15, 15% yield) or TBAF, THF, 0 °C, 1 h, then r.t., 1 h (for 16, 69% yield). 

For the synthesis of the target triazole-based compounds 15 and 16, the new alkyne 12 was 
first prepared by amide coupling of the know amine 11 [33] with 3-butynoic acid (Scheme 2). 
Copper(I)-catalyzed Huisgen reaction of alkyne 12 with azides 7 and 8 afforded in good yields 
the O-TBDMS-protected triazole intermediates 13 and 14, which were finally converted into the 
target triazole-containing tacrines 15 and 16 upon deprotection with camphorsulfonic acid 
(CSA) in MeOH or with tetrabutylammonium fluoride (TBAF) in THF, respectively (Scheme 2). 

2.2. Biological Profiling of the Target Compounds 

The inhibitory activities of the novel compounds against human recombinant AChE and human 
serum BChE were evaluated using the method by Ellman et al. [34], using as reference compounds 



Molecules 2018, 22, 634 5 of 18 

 

pyridostigime, the most widely used AChE inhibitor for treatment of myasthenia gravis, and tacrine, 
6-chlorotacrine, and huprine Y, the apolar brain-permeable parent compounds. 

Interestingly, all the novel compounds exhibited hAChE and hBChE inhibitory potencies in the 
low micromolar to submicromolar, or even low nanomolar range, with most being more potent than 
or equipotent to pyridostigmine (Table 1). 

Table 1. hAChE and hBChE inhibitory activities and PAMPA-BBB permeabilities of the target and 
reference compounds. 

Compounds hAChE  
IC50 (μM) 1 

hBChE  
IC50 (μM) 1 

PAMPA-BBB  
Pe (10‒6 cm/s) (Prediction) 2 

4 12.0 ± 1.00 2.85 ± 0.19 1.70 ± 1.50 (CNS−) 
5 2.45 ± 0.28 22.3 ± 1.50 1.20 ± 0.80 (CNS−) 
6 0.06 ± 0.01 3 3.25 ± 0.15 10.90 ± 1.50 (CNS+) 
9 1.73 ± 0.12 0.17 ± 0.01 0.03 ± 0.001 (CNS−) 

10 0.20 ± 0.01 3.25 ± 0.17 0.02 ± 0.001 (CNS−) 
15 0.25 ± 0.01 0.05 ± 0.00 4 0.03 ± 0.001 (CNS−) 
16 0.01 ± 0.00 5 0.29 ± 0.01 2.97 ± 0.61 (CNS±) 

pyridostigmine 1.38 ± 0.07 2.13 ± 0.20 - 
tacrine 0.32 ± 0.01 0.05 ± 0.00 6 - 

6-chlorotacrine 0.01 ± 0.00 7 0.50 ± 0.03 19.8 ± 0.4 (CNS+) 
huprine Y 8 0.18 ± 0.01 23.8 ± 2.7 (CNS+) 

1 IC50 (half maximal inhibitory concentration) towards human recombinant AChE and human serum 
BChE. Values are expressed as mean ± standard error of the mean (SEM) of at least three experiments, 
each performed in duplicate; 2 Permeability values (Pe) from the PAMPA-BBB assay and prediction 
of BBB permeation. Data are the mean of three independent experiments ± SD. High BBB permeation 
(CNS+) is expected for compounds with Pe > 5.19, whereas low BBB permeation (CNS−) is expected 
for compounds with Pe < 2.07; 3 IC50 hAChE = 59.2 nM (±5.7); 4 IC50 hBChE = 54.8 nM (±1.6); 5 IC50 
hAChE = 7.18 nM (±0.29); 6 IC50 hBChE = 45.8 nM (±3.0); 7 IC50 hAChE = 14.5 nM (±0.9); 8 IC50 hAChE = 
1.07 nM (±0.05). 

On the basis of the results obtained, some structure‒activity relationships (SAR) can be derived: 
(i) quaternization of the potent inhibitors tacrine, 6-chlorotacrine, and huprine Y to the quinolinium 
derivatives 4‒6 results in a drop in their inhibitory potency towards both hAChE and hBChE; (ii) the 
ranking of potencies for the quinolinium derivatives remains the same as that found for the 
noncharged parent compounds, i.e., huprine derivative 6 > 6-chlorotacrine derivative 5 > tacrine 
derivative 4 for hAChE inhibition and tacrine derivative 4 > huprine derivative 6 > 6-chlorotacrine 
derivative 5, for hBChE inhibition, with the well-known contribution of the chlorine atom on the 
benzene ring of tacrine and huprine derivatives, which is positive for hAChE inhibition [35], and 
detrimental for hBChE inhibition [36,37], being retained in the quinolinium derivatives; (iii) 
introduction of the triazole-containing side chain at position 9 of tacrine and 6-chlorotacrine results 
in a slight drop in inhibitory activity towards both hAChE and hBChE for compounds 9 and 10; (iv) 
however, when the triazole-containing side chain is terminated with a polyphenol-like aromatic ring, 
the resulting compounds, 15 and 16, are slightly more potent hAChE and hBChE inhibitors than the 
parent tacrine and 6-chlorotacrine, likely as a result of multi-site binding within both these 
cholinesterases; (v) the positive and negative effects of the chlorine atom in the tacrine derivatives on 
hAChE and hBChE inhibitory activities, respectively, also operates in the triazole series.  

Inhibition of AChE at the neuromuscular junction results in an extended lifetime of the 
neurotransmitter ACh in the synaptic cleft, which repetitively activates the nicotinic AChRs that, in 
myasthenia gravis, are affected by autoantibodies. This compensates for the reduction in nicotinic 
AChR density, thereby rescuing muscle function. Conversely, inhibition of BChE, which is localized 
on the surface of terminal Schwann cells, key components of the neuromuscular junction, not only 
does not have an effect on synaptic ACh lifetime, but depresses ACh release into the synaptic cleft, 
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via activation of α7 nicotinic AChRs, which co-localize with BChE on terminal Schwann cells [38,39]. 
Thus, selective inhibitors of AChE are the preferred option for the functional improvement of muscle 
function in myasthenia gravis, as compared to non-selective inhibitors, for which concomitant 
inhibition of BChE counteracts the positive effect produced by AChE inhibition. In this context, the 
huprine and triazole derivatives 6, 10 and 16 are those with the most potent and selective hAChE 
inhibitory activity, with IC50 values of 59.2 nM, 200 nM and 7.18 nM, respectively, and selectivities 
for hAChE over hBChE inhibition of 55, 16, and 40, respectively. Most important, these compounds 
are 23-, 7- and 192-fold more potent and 37-, 11- and 27-fold more selective hAChE inhibitors than 
pyridostigmine, the most widely used drug for treatment of myasthenia gravis and other myasthenic 
syndromes [40].  

To assess whether the two strategies to increase polarity that were used in the design of the 
target compounds could produce the expected selective peripheral distribution, preventing entry into 
the central nervous system, we evaluated the brain permeability of these compounds by the widely 
used in vitro parallel artificial membrane permeability assay for BBB (PAMPA-BBB) [41], using a lipid 
extract of porcine brain membrane. As expected, the experimentally determined permeability values 
(Pe) of the new polar tacrine and huprine derivatives were, in most cases, in the desired range of low 
BBB penetration. The sole exception was the huprine-based quinolinium derivative 6, which, despite 
showing a clearly lower Pe value than the parent noncharged compound, huprine Y (Pe 10.90 vs. 23.8 
(10‒6 cm/s)), was nevertheless still in the range of high BBB permeation (Table 1, see also Table 2 for 
Pe values of commercial drugs uses in assay validation). 

Even though most of the novel compounds would be expected to display the desired low brain 
penetration, more thorough physicochemical and pharmacokinetic characterization will be necessary 
to assess their druglikeness and to address potential ADMET issues, especially in the case of the 
higher molecular weight compounds 9, 10, 15, and 16 [42]. 

2.3. Structural Characterization of Complexes of Compounds 5, 6, and 16 with TcAChE 

To obtain insight into the binding mode of the novel quinolinium and triazole derivatives within 
the active-site gorge of AChE, these compounds were subjected to co-crystallization trials with 
TcAChE and structure determination was attempted for the crystalline complexes thus obtained. 
Crystals were soaked for 12 h in mother liquor supplemented with a 1 mM solution of the compound. 
Only the co-crystals obtained with compounds 5, 6 and 16 diffracted satisfactorily, thus permitting 
solution of their crystal structures. Data collection, structure determination and refinement are 
further detailed under Materials and Methods (see also Table 3). 

In the crystal structure of TcAChE complexed with the 6-chlorotacrine-based quinolinium 
derivative 5, we found three molecules of 5 bound to each of the two monomers present in the 
asymmetric unit. In the active site, the binding mode of 5 is different from that of 6-chlorotacrine in 
a hybrid derivative described by Nepovimova et al. (pdb code 4TVK) [43]. While the conjugated 
system of the molecule is sandwiched between Trp84 and Phe330, making a π-stacking interaction 
with Trp84, the orientation of the chlorine atom is quite unusual. Indeed, several crystal structures of 
acetylcholinesterase with 6-chlorotacrine, or even with the closely related compound, huprine X, the 
9-ethyl analog of huprine Y [35], all share a common feature, in which the chlorine atom fits into a 
hydrophobic groove contributed by Phe330, Tyr334, Trp432, Met437 and Ile439 (see also, below, the 
complex of TcAChE with the 6-chlorotacrine-based triazole derivative 16). In the TcAChE/5 complex, 
the chlorine atom faces the opposite side of the gorge, pointing towards the main-chain of residues 
116‒118 (Figure 2A). To fully validate this new orientation, a Polder map [44], the new generation of 
the Phenix omit map, was calculated. This map validated our modeling of 5 within the active site of 
TcAChE, with a 13.2 σ electron density peak coinciding with the position of the modeled chlorine. In 
this orientation, the nitrogen of the exocyclic amino group H-bonds to the carbonyl of catalytic His440 
(2.73 Å), and the methyl group points towards the entrance of the gorge. The loss of the important 
interactions of the chlorine atom in the above-mentioned hydrophobic pocket is most probably at the 
origin of the 300-fold drop of potency when compared to 6-chlorotacrine. 
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Figure 2. Binding mode of 5 within the TcAChE active site (A,B), and at the PAS (C,D). In the active 
site, the major pose is represented in (A), with the conjugated system of 5 π-stacked between Phe330 
and Trp84. However, the Cl atom does not point towards Trp432, as usually observed for 6-
chlorotacrine derivatives, and the nitrogen of the exocyclic amino group is H-bonded to the carbonyl 
group of catalytic His440. A minor pose has also been modeled, with the Cl atom towards the 
hydrophobic pocket. In this orientation, the methyl group makes close contact (2.7 Å) with catalytic 
His440, and potentially interacts via a weak H-bond [45]. At the peripheral site, two orientations are 
also observed, and were refined with identical occupancies (0.5). Hydrophobic interactions are 
represented as dashed gray lines, π-stacking interactions are in green, and hydrogen bonds are in red. 

A closer inspection of the Polder map revealed a bump in the density that was not satisfactorily 
modeled with this unique orientation. In the refinement cycles following the addition of 5 in the 
model, this positive density bump was retained in the mFo-DFc maps. This bump would perfectly fit 
the position of the Cl atom in the usual orientation of 6-chlorotacrine within the AChE active site. We 
decided, therefore, to model a second, minor, orientation in the active site of TcAChE (Figure 2B). In 
this orientation, the nitrogen atom of the exocyclic amino group is H-bonded to water molecules, 
while the methyl group faces the main chain of catalytic Ser200 (2.74 Å). This close contact of the 
methyl group with the protein is probably the reason that this conformation is poorly populated. 

Other large electron density blobs in the mFo-DFc maps indicated the presence of a second copy 
of 5 at the PAS. 5 was modeled, making a π–π stacking with Trp279, but in two alternate 
conformations, with the Cl atom pointing either into or out of the gorge (Figure 2C,D). Finally, a third 
molecule of 5 was modeled sandwiched between the aforementioned 5 molecules at the PAS and a 
symmetry-related protein molecule of the crystal (Figure 2C). The presence of this third copy of 5 at 
the PAS thus appears to be a consequence of crystal packing interactions (not shown). 

In the crystal structure of TcAChE complexed with the 6-chlorotacrine-based triazole derivative 
16, the 6-chlorotacrine moiety binds as previously observed, with the conjugated system π-stacked 
to Trp84, and the Cl atom fitting into the hydrophobic groove comprising Phe330, Tyr334, Trp432, 
Met437, and Ile439. Along the linker, the triazole ring is engaged in two perpendicular π-stacking 
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interactions with Tyr334 and Phe300, and in H-bonds with Tyr121 and Asp72. From this point 
onwards, the observed conformations of the phenolic moiety of 16 differ in the two TcAChE 
monomers of the asymmetric unit. In monomer A (Figure 3A), the phenolic moiety makes a π-
stacking interaction with Trp279 in the PAS. In monomer B (Figure 3B), the ether oxygen of the 
phenolic moiety H-bonds to the main carbonyl of Arg289. 

 
Figure 3. Binding mode of 16 within the active site of TcAChE in the two copies of the monomer in 
the asymmetric unit. The binding of the 6-chlorotacrine moiety and of the linker up to the triazole 
ring are similar. The binding of the phenolic moiety differs. In (A), the phenolic moiety is stabilized 
via a parallel π-stacking interaction, and is thus more stable than in monomer B (B), in which only the 
ether oxygen atom of the phenolic moiety is H-bonded to the main chain nitrogen atom of Arg289. 
Parallel and perpendicular π-stacking interactions are shown in green and magenta respectively, 
while H-bonds are depicted in red. 

Finally, the crystal structure of the complex of TcAChE with the huprine-based quinolinium 
derivative 6 shows that the modified huprine moiety binds at the bottom of the gorge, in the choline-
binding pocket, via π-stacking interactions with both Trp84 and Phe330 (Figure 4), similarly to the 
parent huprines W, X and Y [35,46,47]. However, to accommodate the additional methyl group, the 
huprine plane is slightly shifted away from the catalytic His440, and upwards towards Phe330. When 
compared to the previously solved structure of the TcAChE/huprine X complex (pdb code 1e66) [35], 
the chlorine atom barely moves (0.3 Å, for an overall RMSD of 0.2 Å for 222 superimposed Ca atoms), 
but the deviation increases up to 0.7 Å at the other extremity of the huprine moiety. The extra methyl 
group constrains accommodation of the huprine moiety in the active site, resulting in close contact 
with the carbonyl group of His440 (2.7–2.8 Å) and Phe330 (distances of 3.2 and 3.3 Å observed in the 
π-stacking interactions, while the short-range repulsion distance between two carbon atoms is 3.4 Å). 
Taken together, these repulsive close contacts, generated by the addition of the methyl group, could 
account for the 55-fold reduction in inhibitory potency of 6 relative to the parent huprine Y. 
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Figure 4. Binding of 6 to TcAChE. (A) 2mFO-DFc map, contoured at 1 σ, of 6 within the active site of 
TcAChE. Clear electron density is observed for the extra methyl group of 6; (B) 6 is depicted in space-
filling format, and the gorge surface is shown in gray. A close contact is observed with the carbonyl 
group of His440 (yellow dashed line). Introduction of the methyl group also resulted in reorientation 
of some atoms of 6 that are in close proximity to Phe330 (red arrows in panel (B)). 

3. Materials and Methods 

3.1. Chemistry  

General Methods 

Solvents to be used for syntheses were purified with a dry solvent station MB-SPS-800 (MBraun) 
immediately prior to use. All reagents were obtained from commercial suppliers (Sigma Aldrich 
(Madrid, Spain; Saint Quentin Fallavier, France), Acros (Belgium), TCI (Japan)) unless otherwise 
stated, and used without further purification. The reactions were monitored by thin-layer 
chromatography (TLC) using silica gel (60 F254) plates. Compounds were visualized by UV 
irradiation and/or spraying with 1% aqueous KMnO4, followed by charring at 150 °C. Flash column 
chromatography was performed on silica gel 60 (230–400 mesh, 0.040–0.063 mm) and silica gel 200 
(0.060–0.200 mm). Melting points of the new compounds were measured with a MFB 595010M 
Gallenkamp apparatus. 1H-NMR (300 or 400 MHz) and 13C-NMR (75 or 101 MHz) spectra were 
recorded on Bruker 300 (Billerica, Massachusetts, MA, USA) or Varian Mercury 400 spectrometers 
(Palo Alto, California, CA, USA) at the Centres Científics i Tecnològics of the University of Barcelona 
(CCiTUB) and at the Laboratory COBRA of the University of Rouen; chemical shifts are reported in 
ppm (δ scale) relative to residual solvent signals (CD3OD, DMSO-d6 or CDCl3 at 3.31/49.0, 2.50/39.5, 
or 7.26/77.1 ppm, respectively, in the 1H/13C-NMRspectra) and coupling constants are reported in 
Hertz (Hz). The syn (anti) notation of the protons at position 13 of the huprine derivative 6 means that 
the corresponding proton at position 13 is on the same (different) side of the quinoline moiety with 
respect to the cyclohexene ring. Mass spectra were recorded using the electrospray ionisation 
technique (ESI). High-resolution mass spectra (HRMS) were obtained with Varian MAT 311 or 
LC/MSD TOF Agilent Technologies spectrometers, using electrospray analysis. The purity of the 
novel compounds was determined by analytical HPLC on an Agilent 1100 Series instrument (method 
A, (NH4)2HPO4/MeOH pH 7.7, flow rate 1 mL/min, det. 254 nm) or on a Thermo Scientific Surveyor 
Plus instrument equipped with a PDA detector (method B, MeCN/H2O/0.10% TFA, flow rate 1 
mL/min, det. 254 and 330 nm). Semi-preparative RP-HPLC was performed on a Thermo Scientific 
SPECTRASYSTEM liquid chromatography system (P4000) equipped with a UV-visible 2000 detector 
(method C, Varian Kromasil C18 column, 10 μm, 21.2 mm × 250 mm, with MeCN and 0.1% aq. TFA 
as eluents, 0% MeCN (5 min), followed by linear gradients of 0‒30% (40 min), 30‒40% (50 min), and 
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40‒80% (110 min) MeCN, at a flow rate of 20.0 mL/min. Elution profiles were monitored at 250 and 
340 nm. 

9-Amino-1,2,3,4-tetrahydro-10-methylacridin-10-ium iodide (4). A solution of tacrine, 1 (300 mg, 1.51 
mmol), in methyl ethyl ketone (25 mL) was heated to 80 °C, and then treated dropwise with 
iodomethane (6.67 mL, 15.2 g, 107 mmol). The reaction mixture was stirred under reflux overnight 
and cooled to room temperature. The resulting precipitate was collected by filtration under vacuum 
and was washed with methyl ethyl ketone (3 × 25 mL). The tacrine-based pyridinium derivative 4 
(465 mg, 91% yield) was thus obtained as a white solid: m.p. > 290 °C (dec); IR (ATR) ν 3319, 3185 (N-
H st), 1645, 1619, 1592, 1554, 1532 (ar-C-C, ar-C-N st); 1H-NMR (400 MHz, DMSO-d6) δ 1.75‒1.90 
(complex signal, 4H, 2-H2, 3-H2), 2.58 (m, 2H, 1-H2), 3.09 (m, 2H, 4-H2), 3.99 (s, 3H, 10-CH3), 7.69 (m, 
1H, 7-H), 7.97 (m, 1H, 6-H), 8.16 (d, J = 8.8 Hz, 1H, 5-H), 8.42 (br s, 2H, 9-NH2), 8.54 (d, J = 8.0 Hz, 1H, 
8-H); 13C-NMR (101 MHz, DMSO-d6) δ 20.3 (CH2), 21.5 (CH2), 23.9 (CH2) (C1, C2, C3), 29.0 (CH2, C4), 
35.9 (CH3, 10-CH3), 110.8 (C, C9a), 115.6 (C, C8a), 118.2 (CH, C5), 123.9 (CH), 125.7 (CH) (C7, C8), 
133.6 (CH, C6), 138.8 (C, C10a), 154.1 (C), 154.8 (C) (C4a, C9); HRMS (ESI), calculated for C14H17N2 
[M]+ 213.1386, found 213.1339; HPLC purity 99.5% (tR = 15.0 min, method A). 

9-Amino-6-chloro-1,2,3,4-tetrahydro-10-methylacridin-10-ium iodide (5). It was prepared as described for 
4. From 6-chlorotacrine, 2 (300 mg, 1.29 mmol), the 6-chlorotacrine-based pyridinium derivative 5 
(442 mg, 91% yield) was obtained as a white solid: m.p. >290 °C (dec); IR (ATR) ν 3301, 3187 (N-H st), 
1642, 1615, 1588, 1553, 1520 (ar-C-C, ar-C-N st); 1H-NMR (400 MHz, DMSO-d6) δ 1.75‒1.90 (complex 
signal, 4H, 2-H2, 3-H2), 2.55 (t, J = 6.0 Hz, 2H, 1-H2), 3.07 (t, J = 6.0 Hz, 2H, 4-H2), 3.97 (s, 3H, 10-CH3), 
7.78 (dd, J = 9.2 Hz, J’ = 2.0 Hz, 1H, 7-H), 8.15 (br s, 1H, 9-NHA), 8.28 (d, J = 2.0 Hz, 1H, 5-H), 8.54 (d, J 
= 9.2 Hz, 1H, 8-H), 8.95 (br s, 1H, 9-NHB); 13C-NMR (101 MHz, DMSO-d6) δ 20.2 (CH2), 21.4 (CH2), 23.9 
(CH2) (C1, C2, C3), 29.0 (CH2, C4), 36.3 (CH3, 10-CH3), 111.5 (C, C9a), 114.2 (C, C8a), 117.9 (CH, C5), 
126.0 (CH), 126.2 (CH) (C7, C8), 138.7 (C), 139.6 (C) (C6, C10a), 154.6 (C), 154.9 (C) (C4a, C9); HRMS 
(ESI), calculated for C14H1635ClN2 [M]+ 247.0997, found 247.0999; HPLC purity 99.7% (tR = 17.7 min, 
method A). 

12-Amino-3-chloro-6,7,10,11-tetrahydro-5,9-dimethyl-7,11-methanocycloocta[b]quinolin-5-ium iodide (6). It 
was prepared as described for 4. From huprine Y, 3 (300 mg, 1.05 mmol), the huprine-based 
pyridinium derivative 6 (346 mg, 77% yield) was obtained as a white solid: m.p. 283‒285 °C (dec); IR 
(ATR) ν 3314, 3188 (N-H st), 1649, 1611, 1585, 1522 (ar-C-C, ar-C-N st); 1H-NMR (400 MHz, DMSO-
d6) δ 1.52 (s, 3H, 9-CH3), 1.77 (br d, J = 12.0 Hz, 1H, 13-Hsyn), 1.87 (d, J = 17.6 Hz, 1H, 10-Hendo), 
superimposed in part 1.86‒1.92 (m, 1H, 13-Hanti), 2.40 (dd, J = 17.6 Hz, J’ = 3.6 Hz, 1H, 10-Hexo), 2.80 (br 
s, 1H, 7-H), 3.03 (d, J = 18.0 Hz, 1H, 6-Hendo), 3.23 (dd, J = 18.0 Hz, J’ = 6.0 Hz, 1H, 6-Hexo), 3.40 (br s, 1H, 
11-H), 3.97 (s, 3H, 5-CH3), 5.50 (br d, J = 5.6 Hz, 1H, 8-H), 7.80 (dd, J = 9.2 Hz, J’ = 2.0 Hz, 1H, 2-H), 
8.27 (d, J = 2.0 Hz, 1H, 4-H), 8.36 (br s, 1H, 12-NHA), 8.58 (d, J = 9.2 Hz, 1H, 1-H), 8.94 (br s, 1H, 12-
NHB); 13C-NMR (101 MHz, DMSO-d6) δ 23.0 (CH3, 9-CH3), 26.0 (CH), 26.6 (CH) (C7, C11), 26.7 (CH2, 
C13), 34.7 (CH2), 35.7 (CH2) (C6, C10), 36.4 (CH3, 5-CH3), 114.6 (C), 115.1 (C) (C11a, C12a), 117.8 (CH, 
C4), 124.2 (CH, C8), 126.1 (CH), 126.2 (CH) (C1, C2), 132.8 (C, C9), 138.6 (C, C3), 139.7 (C, C4a), 153.7 
(C), 154.1 (C) (C5a, C12); HRMS (ESI), calculated for C18H2035ClN2 [M]+ 299.1310, found 299.1316; 
HPLC purity 99.7% (tR = 22.1 min, method A). 

2-{1-[2-(1,2,3,4-Tetrahydroacridin-9-ylamino)ethyl]-1H-1,2,3-triazol-4-yl}ethanol (9). To a solution of azide 
7 (50 mg, 187 μmol) in acetonitrile (HPLC grade, conc = 0.06 M), 3-butyn-1-ol (16 mg, 224 μmol) was 
added via a syringe. The reaction flask was then protected from light, and CuI (36 mg, 187 μmol) was 
introduced. The reaction mixture was stirred at room temperature for 16 h. The solvent was 
evaporated, and the crude product was directly purified by column chromatography (silica gel, 
CH2Cl2/MeOH mixtures, gradient elution, 100:0 to 95:5, 90:10 and 85:15) to afford the triazole 
derivative 9 (40 mg, 63% yield) as an orange-brown oil; Rf (CH2Cl2/MeOH 9:1) 0.53; 1H-NMR (300 
MHz, CD3OD) δ 1.89‒1.91 (m, 4H, tacrine 2-H2, 3-H2), 2.62 (t, J = 6.0 Hz, 2H, tacrine 1-H2), 2.77 (t, J = 
6.9 Hz, 2H, 2-H2), 2.96 (t, J = 5.7 Hz, 2H, tacrine 4-H2), 3.60 (t, J = 6.9 Hz, 2H, 1-H2), 4.15 (t, J = 5.4 Hz, 
2H, NH-CH2-CH2-N), 4.60 (t, J = 5.4 Hz, 2H, NH-CH2-CH2-N), 7.41 (ddd, J = 7.8 Hz, J’ = 6.9 Hz, J” = 
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1.2 Hz, 1H, tacrine 7-H), 7.58 (s, 1H, triazole 5-H), 7.62 (ddd, J = 8.1 Hz, J’ = 6.9 Hz, J” = 1.2 Hz, 1H, 
tacrine 6-H), 7.75 (d, J = 7.8 Hz, 1H, tacrine 8-H), 7.98 (d, J = 8.1 Hz, 1H, tacrine 5-H); 13C-NMR (75 
MHz, CD3OD) δ 22.9 (CH2, tacrine C2), 23.6 (CH2, tacrine C3), 25.7 (CH2, tacrine C1), 29.7 (CH2, C2), 
32.6 (CH2, tacrine C4), 48.8 (CH2, NH-CH2-CH2-N), 51.7 (CH2, NH-CH2-CH2-N), 61.9 (CH2, C1), 116.9 
(C, tacrine C9a), 120.1 (C, tacrine C8a), 124.4 (CH, triazole C5), 124.5 (CH, tacrine C5), 125.3 (CH, 
tacrine C8), 125.8 (CH, tacrine C7), 131.3 (CH, tacrine C6), 144.7 (C, triazole C4), 146.2 (C, tacrine 10a), 
154.2 (C, tacrine C9), 157.1 (C, tacrine C4a); MS (ESI+) 338 [M + H]+; HRMS (ESI+), calculated for 
C19H24N5O [M + H]+ 338.1981, found 338.1978; HPLC purity 99.9% (tR = 17.4 min, method B). 

2-{1-[2-(6-Chloro-1,2,3,4-tetrahydroacridin-9-ylamino)ethyl]-1H-1,2,3-triazol-4-yl}ethanol (10). It was 
prepared as described for 9. From azide 8 (40 mg, 133 μmol), the triazole derivative 10 (40 mg, 81% 
yield) was obtained as an orange-brown oil; Rf (CH2Cl2/MeOH 9:1) 0.27; 1H-NMR (300 MHz, CD3OD) 
δ 1.89‒1.91 (m, 4H, tacrine 2-H2, 3-H2), 2.61 (t, J = 6.0 Hz, 2H, tacrine 1-H2), 2.74 (m, 2H, 2-H2), 2.95 (t, 
J = 5.7 Hz, 2H, tacrine 4-H2), 3.65 (m, 2H, 1-H2), 4.11 (t, J = 5.7 Hz, 2H, NH-CH2-CH2-N), 4.59 (t, J = 5.7 
Hz, 2H, NH-CH2-CH2-N), 7.36 (dd, J = 9.3 Hz, J’ = 2.1 Hz, 1H, tacrine 7-H), 7.57 (s, 1H, triazole 5-H), 
7.75 (d, J = 2.1 Hz, 1H, tacrine 5-H), 7.94 (d, J = 9.3 Hz, 1H, tacrine 8-H); 13C-NMR (75 MHz, CD3OD) 
δ 23.0 (CH2, tacrine C2), 23.6 (CH2, tacrine C3), 25.8 (CH2, tacrine C1), 29.7 (CH2, C2), 33.3 (CH2, tacrine 
C4), 48.8 (CH2, NH-CH2-CH2-N), 51.7 (CH2, NH-CH2-CH2-N), 61.9 (CH2, C1), 117.7 (C, tacrine C9a), 
118.9 (C, triazole C4), 120.7 (C, tacrine C8a), 124.3 (CH, triazole C5), 125.1 (CH, tacrine C5), 125.9 (CH, 
tacrine C7), 126.4 (CH, tacrine C8), 136.6 (C, tacrine C6), 146.5 (C, tacrine 10a), 153.4 (C, tacrine C9), 
159.2 (C, tacrine C4a); MS (ESI+) 372 [M + H]+; HRMS (ESI+), calculated for C19H2335ClN5O [M + H]+ 
372.1591, found 372.1586; HPLC purity 99.1% (tR = 17.9 min, method B). 

N-[4-(tert-Butyldimethylsilyloxy)-3-methoxybenzyl]-3-butynamide (12). To a solution of [4-(tert-
butyldimethylsilyloxy)-3-methoxyphenyl]methanamine, 11 (2.10 g, 7.85 mmol), in dichloromethane 
(40 mL), 3-butynoic acid (0.66 g, 7.85 mmol) and N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide 
hydrochloride, EDC·HCl (1.18 g, 6.16 mmol), were successively added. The reaction mixture was 
stirred at room temperature for 2 h, diluted with water, and extracted with dichloromethane (2 × 100 
mL). The combined organic phases were washed with water, then with brine, dried over anhydrous 
MgSO4, and concentrated under reduced pressure. The crude product was purified by flash column 
chromatography (silica gel, cyclohexane/EtOAc, 80:20 to 70:30) to yield the alkynamide 12 (950 mg, 
36% yield) as a yellow-orange solid. The isomerization allene derivative was also isolated (430 mg, 
16% yield) as an off-white solid. 12: 1H-NMR (300 MHz, CDCl3) δ 0.14 [s, 6H, OSi(CH3)2C(CH3)3], 0.98 
[s, 9H, OSi(CH3)2C(CH3)3], 2.33 (t, J = 2.7 Hz, 1H, 4-H), 3.26 (d, J = 2.7 Hz, 2H, 2-H2), 3.79 (s, 3H, 3′-
OCH3), 4.39 (d, J = 5.7 Hz, 2H, CONHCH2), 6.67‒6.85 (complex signal, 3H, 2′-H, 5′-H, 6′-H); 13C-NMR 
(75 MHz, CDCl3) δ −4.5 [2CH3, OSi(CH3)2C(CH3)3], 18.6 [C, OSi(CH3)2C(CH3)3], 25.8 [3CH3, 
OSi(CH3)2C(CH3)3], 27.5 (CH2, C2), 43.9 (CH2, CONHCH2), 55.6 (CH3, 3′-OCH3), 74.4 (CH, C4), 77.5 
(C, C3), 111.9 (CH, C2′), 120.2 (CH, C5′), 121.0 (CH, C6′), 131.1 (C, C1′), 144.7 (C, C4′), 151.2 (C, C3′), 
166.0 (C, C1); MS (ESI+) 334 [M + H]+. 

N-[4-(tert-Butyldimethylsilyloxy)-3-methoxybenzyl]-2-{1-[2-(1,2,3,4-tetrahydroacridin-9-ylamino)ethyl]-
1H-1,2,3-triazol-4-yl}acetamide (13). It was prepared as described for 9. From azide 7 (40 mg, 150 μmol), 
the triazole derivative 13 (89 mg, 99% yield) was obtained as a brown oil; Rf (CH2Cl2/MeOH 9:1) 0.30; 
1H-NMR (300 MHz, CD3OD) δ 0.05 [s, 6H, OSi(CH3)2C(CH3)3], 0.90 [s, 9H, OSi(CH3)2C(CH3)3], 1.65‒
1.95 (complex signal, 4H, tacrine 2-H2, 3-H2), 2.59 (t, J = 6.0 Hz, 2H, tacrine 1-H2), 2.93 (t, J = 6.0 Hz, 
2H, tacrine 4-H2), 3.57 (s, 2H, 2-H2), 3.72 (NH), 3.77 (s, 3H, Ph-3-OCH3), 4.06 (t, J = 5.4 Hz, 2H, NH-
CH2-CH2-N), 4.24 (s, 2H, CONHCH2), 4.60 (t, J = 5.4 Hz, 2H, NH-CH2-CH2-N), 6.64‒6.75 (complex 
signal, 2H, Ph-5-H, Ph-6-H), 6.82 (s, 1H, Ph-2-H), 7.37 (br t, J = 7.5 Hz, 1H, tacrine 7-H), 7.58 (br t, J = 
7.5 Hz, 1H, tacrine 6-H), 7.69 (s, 1H, triazole 5-H), 7.74 (br d, J = 8.4 Hz, 1H, tacrine 8-H), 7.90 (br d, J 
= 8.5 Hz, 1H, tacrine 5-H); 13C-NMR (75 MHz, CD3OD) δ −3.6 [2CH3, OSi(CH3)2C(CH3)3], 18.8 [C, 
OSi(CH3)2C(CH3)3], 23.1 (CH2, tacrine C2), 23.7 (CH2, tacrine C3), 25.8 (CH2, tacrine C1), 26.2 [3CH3, 
OSi(CH3)2C(CH3)3], 33.1 (CH2, tacrine C4), 33.6 (CH2, C2), 44.2 (CH2, CONHCH2), 48.8 (CH2, NH-CH2-
CH2-N), 51.7 (CH2, NH-CH2-CH2-N), 56.3 (CH3, Ph-3-OCH3), 112.5 (CH, Ph-C2), 116.1 (CH, Ph-C5), 
117.6 (C, tacrine C9a), 120.7 (Ph-C6, tacrine C8a), 124.2 (CH, tacrine C5), 125.4 (CH, triazole C5), 125.6 
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(CH, tacrine C7), 126.4 (CH, tacrine C8), 130.7 (CH, tacrine C6), 131.1 (C, Ph-C1), 142.9 (C, triazole 
C4), 145.9 (C, Ph-C4), 146.8 (C, tacrine C10a), 148.9 (C, Ph-C3), 153.2 (C, tacrine C9), 158.1 (C, tacrine 
C4a), 171.4 (C, C1); MS (ESI+) 601 [M + H]+. 

N-[4-(tert-Butyldimethylsilyloxy)-3-methoxybenzyl]-2-{1-[2-(6-chloro-1,2,3,4-tetrahydroacridin-9-ylamino) 
ethyl]-1H-1,2,3-triazol-4-yl}acetamide (14). It was prepared as described for 9. From azide 8 (110 mg, 
365 μmol), the triazole derivative 14 (138 mg, 60% yield) was obtained as a brown oil; Rf 
(cyclohexane/AcOEt 6:4) 0.10; 1H-NMR (300 MHz, DMSO-d6) δ 0.08 [s, 6H, OSi(CH3)2C(CH3)3], 0.93 
[s, 9H, OSi(CH3)2C(CH3)3], 1.78 (complex signal, 4H, tacrine 2-H2, 3-H2), 2.59 (t, J = 5.8 Hz, 2H, tacrine 
1-H2), 2.88 (br s, 2H, 2-H2), 3.50 (m, 2H, tacrine 4-H2), 3.69 (s, 3H, Ph-3-OCH3), 3.84 (m, 2H, NH-CH2-
CH2-N), 4.19 (s, 2H, CONHCH2), 4.54 (m, 2H, NH-CH2-CH2-N), 5.75 (NH-CH2-CH2-N), 6.66 (complex 
signal, 2H, Ph-5-H, Ph-6-H), 6.85 (s, 1H, Ph-2-H), 7.32 (d, J = 9.0 Hz, 1H, tacrine 7-H), 7.76‒8.03 
(complex signal, 3H, triazole 5-H, tacrine 5-H and 8-H), 8.49 (CONHCH2); 13C-NMR (75 MHz, DMSO-
d6) δ −4.8 [2CH3, OSi(CH3)2C(CH3)3], 18.1 [C, OSi(CH3)2C(CH3)3], 22.0 (CH2, tacrine C2), 22.3 (CH2, 
tacrine C3), 24.7 (CH2, tacrine C4), 25.5 [3CH3, OSi(CH3)2C(CH3)3], 32.7 (CH2, C2), 33.2 (CH2, tacrine 
C1), 40.2 (CH2, NH-CH2-CH2-N), 47.6 (CH2, NH-CH2-CH2-N), 49.6 (CH2, CONHCH2), 55.2 (CH3, Ph-
3-OCH3), 111.5 (CH, Ph-C2), 117.1 (C, tacrine C9a), 118.7 (C, triazole C4), 119.3 (C, tacrine C8a), 119.4 
(CH, Ph-C5), 120.1 (CH, Ph-C6), 123.8 (2CH, tacrine C7, triazole C5), 125.2 (CH, tacrine C8), 126.3 
(CH, tacrine C5), 132.7 (C, Ph-C1), 132.9 (C, tacrine C-6), 147.1 (C, Ph-C4), 149.9 (C, tacrine C10a), 
150.3 (C, Ph-C3), 152.4 (C, tacrine C9), 159.3 (C, tacrine C4a), 168.8 (C, C1); MS (ESI+) 635 [M]+. 

N-[4-(hydroxy)-3-methoxybenzyl]-2-{1-[2-(1,2,3,4-tetrahydroacridin-9-ylamino)ethyl]-1H-1,2,3-triazol-4-
yl}acetamide (15). Camphorsulfonic acid (34 mg, 146 μmol) was added to a solution of the TBDMS-
protected triazole derivative 13 (89 mg, 148 μmol) in MeOH (5 mL), and the reaction mixture was 
stirred at room temperature for 18 h. The solvent was evaporated at reduced pressure, and the crude 
product was directly purified by column chromatography (silica gel, AcOEt/MeOH mixtures, 
gradient elution, from 100:0 to 90:10, 80:20 and 50:50), to afford impure triazole derivative 15. After 
re-purification by RP-HPLC (Kromasil, MeCN/H2O (0.1% TFA), 40 min, gradient method C), 
compound 15 (11 mg, 15% yield) was obtained as a light brown solid; Rf (AcOEt/MeOH 1:1) 0.63; 1H-
NMR (300 MHz, CD3OD) δ 1.92‒2.05 (complex signal, 4H, tacrine 2-H2, 3-H2), 2.62 (m, 2H, tacrine 1-
H2), 3.01 (m, 2H, tacrine 4-H2), 3.56 (s, 2H, 2-H2), 3.84 (s, 3H, Ph-3-OCH3), 4.28 (s, 2H, CONHCH2), 
4.45 (t, J = 5.7 Hz, 2H, NH-CH2-CH2-N), 4.77 (t, J = 5.7 Hz, 2H, NH-CH2-CH2-N), 6.72 (complex signal, 
2H, Ph-5-H, Ph-6-H), 6.85 (s, 1H, Ph-2-H), 7.58 (m, 1H, tacrine 7-H), 7.76‒7.89 (complex signal, 3H, 
triazole 5-H, tacrine 5-H and 6-H), 8.27 (d, J = 9.0 Hz, 1H, tacrine 8-H); 13C-NMR (75 MHz, DMSO-d6) 
δ 21.7 (CH2, tacrine C2), 22.8 (CH2, tacrine C3), 24.9 (CH2, tacrine C4), 29.4 (CH2, tacrine C1), 33.0 (CH2, 
C2), 44.2 (CH2, CONHCH2), 48.5 (CH2, NH-CH2-CH2-N), 51.1 (CH2, NH-CH2-CH2-N), 56.4 (CH3, Ph-3-
OCH3), 112.4 (CH, Ph-C2), 114.4 (C, tacrine C9a), 116.1 (CH, Ph-C5), 117.6 (C, tacrine C8a), 120.2 (CH, 
tacrine C8), 121.3 (CH, Ph-C6), 125.5 (CH, triazole C5), 125.9 (CH, tacrine C7), 126.9 (2CH, tacrine C5 
and C6), 131.1 (C, triazole C4), 134.2 (C, Ph-C1), 139.4 (C, Ph-C4), 146.9 (C, Ph-C3), 149.0 (C, tacrine 10a), 
152.7 (C, tacrine C9), 158.8 (C, tacrine C4a), 180.1 (C, C1); MS (ESI+) 487 [M]+; HRMS (ESI+), calculated 
for C27H31N6O3 [M + H]+ 487.2458, found 487.2455; HPLC purity 98.8% (tR = 20.6 min, method B). 

2-{1-[2-(6-Chloro-1,2,3,4-tetrahydroacridin-9-ylamino)ethyl]-1H-1,2,3-triazol-4-yl}-N-[4-(hydroxy)-3-
methoxybenzyl]acetamide (16). A solution of the TBDMS-protected triazole derivative 14 (114 mg, 179 
μmol) in anhydrous THF (1.8 mL) was cooled to 0 °C, and then treated dropwise with TBAF (0.10 
mL, 120 μmol). The reaction mixture was stirred at 0 °C for 1 h and at room temperature for an 
additional 1 h. To the resulting mixture AcOEt (15 mL) and 10% aqueous Na2CO3 were added. The 
phases were separated, and the aqueous phase was extracted with AcOEt/THF. The combined 
organic extracts were dried over anhydrous Na2SO4, and concentrated at reduced pressure. 
Purification of the crude product by column chromatography (silica gel, EtOAc/MeOH mixtures, 
gradient elution, from 100:0 to 90.10, 80:20, and 50:50) afforded the triazole derivative 16 (64 mg, 69% 
yield) as a green-brown oil; Rf (AcOEt/MeOH 1:1) 0.63; 1H-NMR (300 MHz, CD3OD) δ 1.82‒1.90 
(complex signal, 4H, tacrine 2-H2, 3-H2), 2.55 (m, 2H, tacrine 1-H2), 2.89 (m, 2H, tacrine 4-H2), 3.58 (s, 
2H, 2-H2), 3.77 (s, 3H, Ph-3-OCH3), 4.06 (t, J = 5.4 Hz, 2H, NH-CH2-CH2-N), 4.24 (s, 2H, CONHCH2), 
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4.59 (t, J = 5.4 Hz, 2H, NH-CH2-CH2-N), 6.68 (complex signal, 2H, Ph-5-H, Ph-6-H), 6.81 (s, 1H, Ph-2-
H), 7.29 (dd, J = 9.0 Hz, J’ = 1.5 Hz, 1H, tacrine 7-H), 7.68 (br s, 1H, tacrine 5-H), 7.74 (s, 1H, triazole 5-
H), 7.85 (d, J = 9.0 Hz, 1H, tacrine 8-H); 13C-NMR (75 MHz, DMSO-d6) δ 22.9 (CH2, tacrine C2), 23.5 
(CH2, tacrine C3), 24.8 (CH2, tacrine C4), 25.7 (CH2, tacrine C1), 33.0 (CH2, C2), 33.6 (CH2, CONHCH2), 
44.2 (CH2, NH-CH2-CH2-N), 51.6 (CH2, NH-CH2-CH2-N), 56.4 (CH3, Ph-3-OCH3), 112.4 (CH, Ph-C2), 
116.1 (CH, Ph-C5), 117.5 (C, tacrine C8a), 118.8 (C, tacrine C9a), 121.3 (CH, Ph-C6), 124.8 (2CH, 
triazole C5, tacrine C7), 126.0 (CH, tacrine C8), 126.5 (CH, tacrine C5), 131.1 (C, triazole C4), 133.5 (C, 
Ph-C1), 136.6 (C, tacrine C6), 146.1 (C, Ph-C4), 146.8 (C, Ph-C3), 148.9 (C, tacrine 10a), 153.6 (C, tacrine 
C9), 158.8 (C, tacrine C4a), 171.4 (C, C1); MS (ESI+) 521 [M]+; HRMS (ESI+), calculated for 
C27H3035ClN6O3 [M + H]+ 521.2068, found 521.2072; HPLC purity 95.9% (tR = 20.6 min, method B). 

3.2. Biological Profiling 

3.2.1. Evaluation of hAChE and hBChE Inhibitory Activity 

The inhibitory activity of the novel compounds on human recombinant AChE and on human 
serum BChE (Sigma, Milan, Italy) was evaluated spectrophotometrically by the method of Ellman et 
al. [34]. The AChE stock solution was prepared by dissolving human recombinant AChE lyophilized 
powder in 0.1% Triton X-100/0.1 M potassium phosphate, pH 8.0. The stock solution of human serum 
BChE was prepared by dissolving the lyophilized powder in aqueous 0.1% gelatine. The stock 
solutions of the novel compounds (1 mM) were prepared in MeOH. The assay solution contained 340 
μM 5,5′-dithiobis(2-nitrobenzoic acid) (DTNB), 0.02 unit/mL hAChE or hBChE, and 550 μM substrate 
(acetylthiocholine iodide or butyrylthiocholine iodide, for AChE and BChE, respectively), in 0.1 M 
potassium phosphate, pH 8.0. Assay solutions with and without inhibitor were preincubated at 37 
°C for 20 min, and then the substrate was added. Blank solutions containing all components except 
the enzymes were prepared in parallel to correct for non-enzymatic hydrolysis of the substrate. Initial 
rate assays were performed at 37 °C with a Jasco V-530 double beam spectrophotometer. At least five 
increasing concentrations of the inhibitors, which produced 20–80% inhibition of the enzymatic 
activity, were assayed. IC50 values were calculated using Microcal Origin 3.5 software (Microcal 
Software, Inc., Darmstadt, Germany). 

3.2.2. PAMPA-BBB Assay 

The brain permeability (Pe) of the target compounds was determined in vitro using the parallel 
artificial membrane permeation assay for blood-brain barrier penetration described by Di et al. [41], 
employing a lipid extract of porcine brain membrane in a mixture of PBS/EtOH 70:30. Assay 
validation was implemented by comparing the experimental and reported Pe values of a set of 
fourteen commercial drugs (Table 2). A good correlation was obtained: Pe (exp) = 1.5087 Pe (lit) − 
0.8974 (R2 = 0.9296). From this equation, and taking into account the limits established by Di et al. for 
BBB permeation, the following ranges of permeability were established: high BBB permeation 
(CNS+): Pe (10−6 cm s−1) > 5.13; low BBB permeation (CNS−): Pe (10−6 cm s−1) < 2.12, and uncertain BBB 
permeation (CNS±): 5.13 > Pe (10−6 cm s−1) > 2.12. 

Table 2. Experimental and reported BBB permeability (Pe 10−6 cm s−1) values of the commercial drugs 
used for assay validation. 

Compound Reported Pe 1 Experimental Pe 2 
Cimetidine 0.0 0.7 ± 0.1 

Lomefloxacin 1.1 0.8 ± 0.1 
Norfloxazin 0.1 0.9 ± 0.1 
Ofloxazin 0.8 1.0 ± 0.1 

Hydrocortison
e 

1.9 1.4 ± 0.1 

Piroxicam 2.5 1.8 ± 0.1 
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Clonidine 5.3 6.5 ± 0.1 
Corticosterone 5.1 6.7 ± 0.1 

Imipramine 13.0 12.3 ± 0.1 
Promazine 8.8 13.8 ± 0.3 

Progesterone 9.3 16.8 ± 0.3 
Desipramine 12.0 17.8 ± 0.1 
Testosterone 17.0 24.7 ± 1.4 

Verapamil 16.0 25.4 ± 1.6 
1 Taken from [41]; 2 Values are expressed as the mean ± SD of three independent experiments. 

3.3. Structural Biology 

3.3.1. Crystallization and Data Collection 

TcAChE (12 mg mL−1), purified according to Sussman et al. [48], was crystallized by the hanging-
drop vapor diffusion method. Equal volumes (1 μL) of protein solution and of 30% PEG 200/50 mM 
MES, pH 6.0, were mixed at 4 °C. Crystals appeared within a few days, and were harvested after 2–3 
weeks. The crystals were then soaked in the above-mentioned mother liquor complemented with the 
candidate compounds at a concentration of 1 mM, for at least 12 h. All data were collected on the 
ID30A1 beamline of the European Synchrotron Radiation Facility (ESRF, Grenoble, France) from 
crystals flash-frozen and stored in liquid nitrogen until utilized. 

3.3.2. Data Processing and Refinement 

Diffraction images were indexed and integrated using XDS, and intensities were further scaled 
and merged with XSCALE. Phases were retrieved using the molecular replacement technique with 
PHASER. PDB entry 2Xi4 served as the starting model of TcAChE that was employed. All data were 
obtained from orthorhombic TcAChE crystals, and two subunits were placed in the asymmetric unit 
of all complex structures. The model was refined by iterative cycles of refinement with phenix.refine 
and model building using Coot. With phenix.refine, refinement of atomic positions and individual 
isotropic temperature factors was performed in real space (against the experimental electron density 
map) and in reciprocal space (against experimental intenstities). All ligand topologies were generated 
with the PRODRG server and their occupancies were refined during the final cycles of refinement. 
The coordinates and structure factors have been deposited in the Protein Data Bank under accession 
code 6FOT, 6FOU, and 6FOV, for structures of complexes of 5, 6 and 16, respectively, with TcAChE. 
Data collection and refinement statistics are presented in Table 3. 

Table 3. Data collection and refinement statistics. 1 

 5 6 16 

Resolution range (Å) 44.04–1.79  
(1.854–1.79) 

46.03–1.82  
(1.82–1.89) 

45.7–1.9 
(1.968–1.9) 

Space group P 21 21 21 P 21 21 21 P 21 21 21 
Unit cell (Å) 91.44 106.61 150.53  91.74 106.44 150.68 91.82 106.81 151.67 

Total reflections 634,220 (58,489) 642,785 (63,116) 1,072,187 (87,007) 
Unique reflections 138,453 (13,737) 130,469 (12,879) 117,742 (11,618) 

Multiplicity 4.6 (4.3) 4.9 (4.9) 7.7 (7.5) 
Completeness (%) 99.66 (99.75) 98.4 (91.8) 99.71 (99.38) 
Mean I/sigma(I) 12.9 (1.5) 12.6 (1.6) 8.8 (1.0) 

Wilson B-factor (Å2) 24.63 24.09 29.21 
R-merge 0.067 (0.943) 0.075 (1.054) 0.128 (1.286) 

CC1/2 0.998 (0.686) 0.999 (0.719) 0.998 (0.588) 
Reflections used in refinement 138,303 (13,721) 159,670 (14,805) 117,502 (11,589) 

Reflections used for R-free 6854 (681) 7990 (773) 5876 (580) 
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R-work 0.1797 (0.3422) 0.1896 (0.3100) 0.1880 (0.3357) 
R-free 0.2125 (0.3788) 0.2193 (0.3114) 0.2177 (0.3411) 

Number of non-hydrogen 
atoms 9962 9719 9640 

macromolecules 8591 8583 8564 
ligands 321 153 163 
solvent 1040 983 916 

Protein residues 1067 1064 1068 
RMS (bonds) (Å) 0.006 0.007 0.007 
RMS (angles) (°) 0.88 0.86 0.88 

Ramachandran favored (%) 96.29 96.30 96.03 
Ramachandran allowed (%) 3.71 3.70 3.88 
Ramachandran outliers (%) 0.00 0.00 0.09 

Rotamer outliers (%) 0.74 1.40 2.40 
Clashscore 4.19 3.67 3.45 

Average B-factor (Å2) 31.03 31.94 35.77 
macromolecules 29.49 30.88 34.72 

ligands 45.26 45.93 50.66 
solvent 39.32 38.98 42.98 

1 Statistics for the highest-resolution shell are shown in parentheses. 

4. Conclusions 

Starting from the chemical structures of the potent brain-permeable AChE inhibitors tacrine, 6-
chlorotacrine, and huprine Y, which are of interest in the context of Alzheimer’s disease treatment, 
we have designed and synthesized two series of derivatives of increased polarity with the aim of 
precluding their penetration into the central nervous system, thus confining their anticholinesterase 
action to the peripheral level for potential therapeutic use against myasthenia gravis. In one of the 
series, we increased polarity by the classic approach based on quaternization by alkylation of a 
nucleophilic nitrogen atom, which produced the quinolinium derivatives of tacrine, 6-chlorotacrine, 
and huprine Y 4‒6. In a second series, we increased polarity by installation of a 1,2,3-triazole ring 
within a side chain at position 9 of tacrine and 6-chlorotacrine (compounds 9 and 10), and of an 
additional polyphenol-like moiety in compounds 15 and 16. In general, these structural changes lead 
to decreased AChE and BChE inhibitory activities relative to the parent compounds, with the 
exception of the triazole-containing compound 16, which is a more potent AChE and BChE inhibitor 
than the parent 6-chlorotacrine, likely as a result of multi-site binding within the active-site gorge of 
the enzyme, as confirmed by the crystal structure of its complex with TcAChE. Despite their lower 
anticholinesterase potencies compared with the parent compounds, most of the novel derivatives are 
clearly more potent than pyridostigmine, the preferred drug for symptomatic treatment of 
myasthenia gravis, and have been found to display low brain permeability values in the PAMPA-
BBB assay, thus possessing favorable pharmacodynamic and pharmacokinetic attributes for the 
intended use against myasthenia gravis. 
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