Supplemental Information

Six Heterocyclic Metabolites from the Myxobacterium Labilithrix luteola

Lucky S. Mulwa^{1,2}, Rolf Jansen¹, Dimas F. Praditya³, Kathrin I. Mohr^{1,2}, Joachim Wink², Eike Steinmann³ and Marc Stadler^{1,*}

¹ Department of Microbial Drugs, Helmholtz Centre for Infection Research and German Centre for Infection

Research (DZIF), partner site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany; luckymulwa@gmail.com (L.S.M.); Rolf.Jansen@helmholtz-hzi.de (R.J.); dimas.praditya@twincore.de (D.F.P); Kathrin.Mohr@helmholtz-hzi.de (K.I.M.); eike.steinmann@twincore.de (E.S.); Joachim.Wink@helmholtz-hzi.de (J.W); Marc.Stadler@helmholtz-hzi.de (M.S.)

² Work group Microbial Strain Collection (MISG), Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany

³ TWINCORE- Centre for Experimental and Clinical Infection Research (Institute of Experimental Virology) Hanover. Feodor-Lynen-Str. 7-9, 30625 Hannover, Germany. Tel: +49(0)511-220027-133

Correspondence: marc.stadler@helmholtz-hzi.de; Tel.: +49 531 6181-4240; Fax: +49 531 6181 9499

Pos.	$\delta c(N)$	XHn	δн 1	nult. (J	[Hz])	COSY	N/ROESY	'H in HMBC
1	(133.1)	NH						7, 10
2	134.3	С						10, 8
3	106.03	С						10, 8, 9, 4
3a	129.4	С						10, 8, 5, 7, 4
4	118.1	CH	7.41 0	dt (7.7, 0	0.95)	5,7	8, 5, 9	6
5	120.0	CH	6.97 o	ddd (7.8	3, 7.0, 1.4)	6,4	4	7
6	121.8	CH	7.02	ddd (8.1	l, 7.0, 1.2))5 <i>,</i> 7	7	5,4
7	111.6	CH	7.23	dt (7.9, 0	0.93)	6, 4	6	5, 6, 4
7a	137.3	С						6, 4
8	24.0	CH ₂	3.38 t	: (7.10)		10, 9	10, 9, 4	9
9	76.8	CH ₂	4.62 t	: (7.32)		8	8, 4	8
10	11.3	CH ₃	2.35 s	5		8	8	-
11	(388.2)	Ν						9, 8
				$^{1}\mathrm{H}$	/ ¹³ C/ ¹⁵ N a	at 500/	125.8/50.7	MHz

Table S1. NMR data of Labindole A (1) in CD₃OD.

Figure S1. NMR correlations Labindole A (1)

(blue COSY, green HMBC, purple N/ROESY)

Figure S2. ¹H NMR spectrum of 2-methyl-3-(2-nitro-ethyl)-1H-indole (1) in CD₃OD

Figure S3. ¹³C NMR spectrum of 2-methyl-3-(2-nitro-ethyl)-1H-indole (1) in CD₃OD.

Pos.	$\delta_{\rm C(N)}$ XH1	n $\delta_{\rm H}$ mult.	(J [Hz]))COSY	'N/ROESY	TH in HMBC
1	(141.4)NH	8.56br s			10, 7	7, 10
2	144.2C					10, 8
3	106.5C					10, 4, 9
3a	125.7C					10, 5, 7, 4, 8
4	120.1 CH	7.71m		5,7	5,9	6
5	122.6CH	7.30m		6,4	4	7
6	123.6CH	7.29m		5,7		4
7	111.4CH	7.38m		6, 4	1	5
7a	135.9C					6, 4
8	132.6CH	8.35d (13.	3)	9	10	9
9	131.8CH	7.80d (13.	3)	8	4, 10	8
10	12.5CH ₃	3 2.66s		8	8, 9, 1	
11	(375.3)N					9, 8
		$^{1}\text{H}/^{13}\text{C}/^{13}$	⁵ N NM	R at 50	0.3/125.8/5	50.7 MHz

Table S2. NMR data of Labindole B (2) in CDCl₃.

Figure S4. Correlations in the NMR data of Labindole B (2)

(blue and red COSY, green HMBC)

Figure S5. ¹H NMR spectrum of 2-methyl-3-(2-nitro-vinyl)-1*H*-indole (**2**) in CDCl₃.

Figure S6. ¹³C NMR spectrum of 2-methyl-3-(2-nitro-vinyl)-1H-indole (2) in CDCl₃.

Table S3. NMR data of 9H-carbazole (3) in CDCl₃

Pos.	$\delta_{C(N)}$	XHr	$\delta_{\rm H}$ Mult	.COSY	H to C HMBC
1a, 8a	139.5	С			3, 6, 7, 2, 5, 4
3, 6	119.4	СН	7.25 m	7, 2, 8, 1, 5, 4	17, 2, 5, 4
4a, 5a	123.3	С			3, 6, 8, 1, 5, 4
5,4	120.3	СН	8.10m	3, 6	3, 6, 7, 2
2,7	125.8	СН	7.43 m	3, 6, 8, 1	3, 6, 8, 1, 5, 4
1,8	110.5	СН	7.44 m	9, 3, 6, 7, 2	3, 6, 5, 4
9	(108.5))NH	8.11br s	8, 1	
		$^{1}\mathrm{H}$	$^{/13}C$ at 500	0.3/125.8 MHz	

Figure S7. Correlations in the 2D NMR spectra of 9H-carbazole (3) in CDCl₃

(blue arrows = COSY, green arrows = HMBC).

12/18/2017 12:50:46

Figure S8. ¹H NMR spectrum of 9H-carbazole (**3**) in CDCl₃ (500.3 MHz)

Figure S9. ¹³C NMR spectrum of 9H-carbazole (**3**) in CDCl₃ (125.8 MHz)

Atom#	C Shif	tXHr	H Shift	tH Multiplicity	COSY	H to C HMBC	C to H HMBC
1	109.0	NH				10, 6	
2	139.9	С				11, 13	
3	125.7	С				10, 9	
4	123.6	С				8, 6, 13	
5	142.3	С				7, 9	
6	112.1	CH	7.44	dt (8.1, 0.9)	7	8,9	8, 4
7	127.5	CH	7.39	ddd (8.1, 7.0, 1.2)	8,6	8,9	9, 5
8	120.2	CH	7.16	ddd (7.9, 7.0, 1.1)	7,9	6	6, 9, 4, 7
9	121.3	CH	8.03	dt (7.8, 0.8)	8	8,7	6, 3, 7, 5
10	113.0	CH	7.40	dd (8.7, 0.5)	11		12, 3, 11
11	126.6	CH	7.32	dd (8.5, 2.1)	10, 13	10, 13	13, 12, 2
12	125.2	С				11, 10, 13	
13	120.7	CH	8.03	dd (2.1, 0.4)	11	11	4, 12, 11, 2

Table S 4. NMR Data of 3-chloro-9H-carbazole (4) in CD₃OD (¹H/¹³C 500.3/125.8 MHz)

Figure S10. Correlations in the 2D NMR spectra of 3-chloro-9H-carbazole (4) in CD₃OD.

(blue and red COSY, green HMBC)

Figure S11. ¹H NMR spectrum of 3-chloro-9*H*-carbazole (4) in CD₃OD (500.3 MHz)

Figure S12. ¹³C NMR spectrum of 3-chloro-9H-carbazole (4) in CD₃OD (125.8 MHz)

C Atom#	C Shift	XHn	H Shift	H Multiplicity	COSY	H to C HMBC	C to H HMBC
11	61.479	CH2	5.240	d (0.76)	3	3	3, 5, 4
3	118.130	СН	7.565	dd (5.42, 0.99)	11, 2	11, 2	11, 2
6	122.854	СН	7.961	dd (8.39, 0.76)	7.58	7.72	8, 10
5	125.767	С				11, 7, 9	
7	126.812	СН	7.577	td (7.02, 7.02, 1.22)	8,6		5,9
8	129.462	СН	7.723	ddd (8.39, 6.94, 1.30)	7,9	6	6, 10
9	129.629	СН	8.142	d (8.54)	8	7	5
4	146.866	С				11	
10	147.313	С				8, 6, 2	
2	150.026	СН	8.850	d (4.43)	3	3	3, 10
1		Ν				11, 3, 9, 2	

Table S 5. NMR Data of 4-hydroxymethyl-quinoline (**5**)

Figure S13. Correlations in the 2D NMR spectra of 4-hydroxymethyl-quinoline (5) in CD₃OD. (blue and red COSY, green HMBC)

Figure S14. ¹H NMR spectrum of 4-hydroxymethyl-quinoline (5) in CD3OD (500.3 MHz)

Figure S15. ¹³C NMR spectrum of 4-hydroxymethyl-quinoline (5) in CD3OD. (500.3 MHz

C Atom#	C Shift	XHn	H Shift	H Multiplicity	COSY	H to C HMBC	C C to H HMBC
		NH	12.33	br s			
1	120.6	СН	7.10	m		3	
3	35.4	CH2	3.75	S			1, 9, 5, 4
3'	38.3	CH2	3.91	S	8', 6', 7'	8', 6', 7'	9', 5', 4', 1', 2'
1', 2'	156.0	С				3'	
4	137.4	С				9', 5', 3	
2, 4'	138.1	С				3', 8', 6', 7'	
7	126.1	СН	7.17	m	8, 6	8,6	
8,6	126.7	СН	7.23	m	7	9, 5, 7	7
9', 5'	128.5	СН	7.30	m		5,9	5,9
9, 5	128.7	СН	7.30	m		3	8,6
8', 6', 7'	128.2	СН	7.24	m	3'		3', 4'

Table S 6. NMR Data of 3,6-Dibenzylpyrazin-2(1*H*)-one (6) (¹H/¹³C 500.3/125.8 MHz)

Figure S16. Correlations in the 2D NMR spectra of 3,6-Dibenzylpyrazin-2(1H)-one (6) in DMSO-d6.

(blue and red COSY, green HMBC)

Figure S17. ¹H NMR spectrum of 3,6-dibenzylpyrazin-2(1H)-one (6) in DMSO-d₆ (700.4 MHz).

Figure S18. ¹³C NMR spectrum of 3,6-dibenzylpyrazin-2(1H)-one (6) in DMSO-d₆ (176.1 MHz).

Normalized HCV Infectivity

The assay was performed in quadruplicate (L1-L2) and triplicate (L3-L6) and is presented as the mean \pm standard deviation. *** P \leq 0.05.