Supplementary file

- ¹ Supporting Information for: Radical Chemistry in a Femtosecond Laser Plasma: Photochemical
- ² Reduction of Ag⁺ in Liquid Ammonia Solution

Table S1. solution pH and fractional concentration of H_2O_2 for different ammonia concentrations.

[NH ₃] (mM)	pH	fractional yield of H_2O_2
0		1.00 ± 0.00
0.0625	5.71	
0.125	6.74	
0.25	6.98	
0.375	7.18	
0.5	7.67	
0.75	8.42	
1	9.47	0.91 ± 0.16
2.5	9.85	
5	10.25	0.61 ± 0.04
10	10.62	0.71 ± 0.05
20	10.93	
50	11.19	0.42 ± 0.05
75	11.34	
100	11.42	0.34 ± 0.03

Figure S1. AgNO₃ solution with no NH₃, (a) in-situ spectra over time shows that no particles are formed in this solution, (b) shows the $(TiSO_4)/H_2O_2$ spectra of AgNO₃ and AgClO₄ compared to one of just water irradiated under the same conditions. The fractional amount of H₂O₂ formed in the 0.1 mM AgNO₃ solution was 0.86 ± 0.11 and in the AgClO₄ was 0.85 ± 0.03 .

Table S2. All solutions contained 0.1 mM $AgNO_3$ and the indicated concentrations of NH_3 . AgNP SPR growth rate constant *k* is shown for samples in which AgNPs formed

[NH ₃] (mM)	pН	$k ({ m s}^{-1})$
0	5.71	
0.0625	7.12	0.026 ± 0.002
0.125	7.19	0.029 ± 0.007
0.25	8.13	0.02 ± 0.01
0.375	8.83	0.010 ± 0.007
0.5	8.93	0.0049 ± 0.0008
0.75	9.18	0.0040 ± 0.0008
1	9.53	0.0041 ± 0.0006
2.5	10.23	0.0038 ± 0.0007
5	10.51	0.0037 ± 0.0008
10	10.78	0.0040 ± 0.0006
20	10.96	0.0030 ± 0.0005
50	11.22	
75	11.36	
100	11.44	

Table S3. Solutions contained 0.1 mM of silver salt, with the indicated concentrations of NH_3 . The AgNP SPR growth rate constant k is shown for samples where AgNPs formed

[NH ₃] (mM)	Ag salt	pH	$k ({ m s}^{-1})$
0	AgClO ₄	6.67 ± 0.44	
0	AgNO ₃	6.15 ± 0.14	
1	AgClO ₄	9.71 ± 0.10	0.0033 ± 0.0004
1	AgNO ₃	9.53 ± 0.14	0.0041 ± 0.0006

Figure S2. Representative spectra of irradiated 100 mM NH₃ solutions with (a) and without (b) Ag. Average O.D. after 600 s with no Ag is 0.09 ± 0.01 . with Ag: 0.11 ± 0.02 . Comparative decay rates of the 302 nm peak over time (c).

Figure S3. TEM image of AgNPs formed in 0.25 mM ammonia solution

Figure S4. TEM image of AgNPs formed in 1 mM ammonia solution

Figure S5. TEM image of AgNPs formed in 10 mM ammonia solution

