
molecules

Article

A Novel Dicyanoisophorone-Based Ratiometric
Fluorescent Probe for Selective Detection of Cysteine
and Its Bioimaging Application in Living Cells

Hengrui Zhang, Nan Qin and Zhijie Fang *

School of Chemical Engineering, Nanjing University of Science & Technology, 200 Xiao Ling Wei,
Nanjing 210094, China; zhrlab201@163.com (H.Z.); qnlab408@126.com (N.Q.)
* Correspondence: zjfang@njust.edu.cn; Tel.: +86-025-84314906

Received: 10 January 2018; Accepted: 11 February 2018; Published: 22 February 2018

Abstract: A selective and ratiometric turn-on fluorescent probe was designed and synthesized by
using a novel dicyanoisophorone-based derivative and acrylate moiety. The probe displayed high
stability and good selectivity to cysteine (Cys) over homocysteine (Hcy) and glutathione (GSH).
It also exhibited rapid response to Cys within 180 s. Most importantly, the fluorescence intensity ratio
at 590 and 525 nm (I590/I525) was linearly dependent on the Cys concentration in the range from 0 to
40 µM and the detection limit calculated to be 0.48 µM. This probe was also applied for bioimaging
of intracellular Cys in living HeLa cells with low cytotoxicity.
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1. Introduction

As an important kind of biological thiols, cysteine (Cys) plays a crucial role in many significant
cellular functions [1–3]. Abnormal level of Cys is closely related to many diseases, including slow
growth, skin lesions and weakness, loss of muscle and fat, hair depigmentation, edema, metabolic
disorders and so on [4–6]. Therefore, much effort has been given to develop selective and sensitive
assays for the detection of Cys in biological samples [7–9]. Fluorescent chemosensors are highly
desirable in practical applications, based on their merits of convenience, high sensitivity and rapid
performance [10–14].

Ideal fluorescent probes should possess good selectivity and lower interference. Owing to the
similarities among molecular backbone and reaction of Cys and homocysteine (Hcy)/glutathione
(GSH), the key challenge of fluorescence bioimaging for Cys is to detect Cys specifically over other
biologically relevant thiols [15–17]. Various groups have been employed as the recognition unit,
including thiophenols [18], maleic anhydride [19], acrylate [20,21]. Among these, the conjugate
addition-cyclization of Cys to acrylate moiety was considered as one of the most efficient strategy
to design Cys-selective fluorescent probes. Another challenge is that fluorescence intensity-based
measurements tend to be affected by sample environment, instrumental efficiency and probe molecule
concentration [22–24]. These limits can be addressed by ratiometric fluorescent response, which is
more suitable for use in biosystems. However, sofar only a few Cys selective ratiometric fluorescent
have been reported [25–28].

In recent years, many dicyanoisophorone-based probes have rapidly been developed due to
its good fluorescence properties and simplicity [29–33]. Since our group has synthesized several
fluorescent probes [34–36], as a continuation of our work in this field, we herein designed and
synthesized a novel dicyanoisophorone-based fluorescent probe 1 for detecting Cys accurately.
The probe showed high selectivity and sensitivity for Cys over various analytes including Hcy and
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GSH. Moreover, the probe displayed ratiometric detection of Cys and was applied to fluorescent
imaging of intracellular Cys in living cells.

2. Results and Discussion

2.1. Synthesis and Characterization of Probe 1

Probe 1 was synthesized by using esterification reaction of compound 3 with acryloyl chloride
in 83% yield. The important intermediate compound 3 was prepared from compound 2 and
6-hydroxy-2-naphthaldehyde by a condensation reaction in 86% yield. Isophorone was used as
the raw material to synthesis compound 2 in 61% yield (Scheme 1). Moreover, Compound 3 had not
been reported before. The chemical structure of probe 1 was fully identified by 1H-NMR, 13C-NMR and
HRMS. Detailed synthetic procedures and structure characterizations were given in the experimental
section and supporting information.
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Scheme 1. Synthesis of probe 1.

2.2. Rapid and Ratiometric Optical Response of Probe 1 to Cys

The response of probe 1 for Cys was studied in PBS/DMSO solution (1:1, v/v, pH = 7.4, 10 mM).
When 50 µM of Cys was added to the solution containing probe 1 (10 µM), the color changed from
pale yellow to orange rapidly. What’s more, probe 1 exhibited a maximum absorption peak at 410 nm.
Upon the addition of Cys toprobe 1, the absorption peak at 410 nm disappeared, accompanied by
the emergence of a new absorption peak at 445 nm (Figure 1a). In the fluorescence spectra, it can be
seen that probe 1 showeda weak fluorescence under an excitation wavelength at 445 nm. From the
fluorescence spectra recorded upon exciation at 445, it can be seen that the initial emission maximum
of probe 1 changes from approx. 550 nm to 590 nm upon the addition of cysteine, accompanied with
a naked-eye-visible appearance of the orange colour (Figure 1b). One of the possible explanations
for this fluorescence change might be a restoration of the internal charge transfer (ICT) process upon
the removal of the acrylate protecting group from the phenolate moiety(this is just a speculation,
and has not been investigated in detail). To ensure that the observable changes in the fluorescent
properties were not influenced by the insolubility/aggregation effects, the linearity of absorbance
and fluorescence against probe 1 concentration (without the addition of Cys) were verified in the
concentration range of 1–100 µM (Figure S1).

Then the fluorescence properties of probe 1 with different concentrations of Cys (0–40 µM) were
investigated. The fluorescence intensity at 525 nm gradually decreased, and the emission at 590 nm
increased dramatically with increasing concentrations of Cys until reaching saturation (Figure 1c).
The fluorescence intensity ratio at 590 and 525 nm (I590/I525) exhibited a good linear correlation
(R2 = 0.9964) with the Cys concentrations in range of 0–40 µM with the detection limit was 0.48 µM
(Figure S2). In addition, the fluorescence intensity ratio at 590 and 525 nm (I590/I525) increased from
0.64 to 5.19, which corresponded to an ~8-foldenhancement. Finally, the fluorescence intensity ratio at
590 and 525 nm (I590/I525) gradually increased to a plateau within 180 s (3 min) in the presence of Cys
(Figure 1d).
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Figure 1. (a) UV-vis spectra changes and (b) fluorescence spectra changes of probe 1 (10 μM) before 
and after incubation with Cys (50 μM) in PBS buffer (10 mM, pH 7.4) at 37 °C for 20 min. Fluorescence 
and color photographs of probe 1 in the absence (a,c) and presence (b,d) of Cys are inserted; (c) 
Fluorescence spectra of 1 (10 μM) in the presence of various concentrations of Cys from 0 to 40 μM; 
(d) Time-dependent fluorescence ratio changes of probe 1 in the presence (red) and absence (black) of 
Cys (50 μM). Data was recorded every 30 s. For fluorescence measurement,  
λex = 410 nm, dex = 3 nm, dem = 5 nm. 
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other analytes in probe 1 solution induced small or no fluorescence change at 590 nm, even if the 
training time was up to 60 min (Figure S3). Subsequently, the detections of Cys with probe 1 in the 
presence of these amino acids and ions were also effective, indicating that probe 1 was highly 
selective for Cys over Hcy, GHS and other analytes (Figure 2b). Probe 1 showed small changes at 
millimolar level of GSH, which is important for Cys detection in living systems, because the abundant 
GSH in living cells could be the main source of interference during detection of Cys. All these results 
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Figure 1. (a) UV-vis spectra changes and (b) fluorescence spectra changes of probe 1 (10 µM)
before and after incubation with Cys (50 µM) in PBS buffer (10 mM, pH 7.4) at 37 ◦C for 20 min.
Fluorescence and color photographs of probe 1 in the absence (a,c) and presence (b,d) of Cys are
inserted; (c) Fluorescence spectra of 1 (10 µM) in the presence of various concentrations of Cys from 0
to 40 µM; (d) Time-dependent fluorescence ratio changes of probe 1 in the presence (red) and absence
(black) of Cys (50 µM). Data was recorded every 30 s. For fluorescence measurement, λex = 410 nm,
dex = 3 nm, dem = 5 nm.

2.3. The Optical pH Range and Selectivity of Probe 1 to Cys

In addition, the pH effect on the probe was also evaluated. These experiments were carried out
at a pH range from 2 to 12 with the concentration of probe 1 (10 µM) and Cys (50 µM). Experimental
results showed that the fluorescence intensity of probe 1 itself was unaffected over a wide pH range,
which indicated that the probe was quite stable (Figure 2a).However, while in the presence of Cys,
the ratio value (I590/I525) was enhanced greatly in the pH range from 6 to 8 and exhibited relatively
weak change in the pH ranges (<6 and >8). The probable explanation is the change in the protonation
state, which affects the reactivity of Cys at different pH. All results indicated that probe 1 hada good
fluorescence response toward Cys in the neutral pH range.

The selectivity of probe 1 (10 µm) for Cys over Hcy, GHS, and other amino acids, such as leucine
(Leu), tyrosine (Tyr), argnine (Arg), glutamic acid (Glu), lysine (Lys), threonine (Thr), and serine (Ser),
and various ions, such as Al3+, Cu2+, Fe3+, NO3

−, NO2
−, SO4

2−, SO3
2−, S2O3

2−, F2−, Cl−, were also
investigated. Remarkable fluorescent enhancement could be observed upon the addition of Cys;
the presence of other analytes in probe 1 solution induced small or no fluorescence change at 590 nm,
even if the training time was up to 60 min (Figure S3). Subsequently, the detections of Cys with probe 1
in the presence of these amino acids and ions were also effective, indicating that probe 1 was highly
selective for Cys over Hcy, GHS and other analytes (Figure 2b). Probe 1 showed small changes at
millimolar level of GSH, which is important for Cys detection in living systems, because the abundant
GSH in living cells could be the main source of interference during detection of Cys. All these results
demonstrated that probe 1 had high selectivity for Cys.
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control experiment, when the cells were pretreated with N-ethylmaleimide(NEM, a thiol blocking 
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analytes (1–19 represent: 1. Al3+, 2. Cu2+, 3. Fe3+, 4. NO3
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Each spectrum was collected after 5 min of mixing each analyte with probe 1 in DMSO/PBS solution
(1/1, v/v, pH = 7.4, 10 mM) at 37 ◦C. λex = 410 nm, dex = 3nm, dem = 5 nm.

2.4. Proposed Mechanism of Probe 1 for Cys

The acrylate moiety would conjugate addition with Cys to generate thioethers and then
intramolecular cyclization to yield compound 3 and compound 4 (Scheme 2). To verify the above
proposed reaction mechanism, fluorescence spectroscopic, MS, and HPLC studies were carried out
by adding excess Cys to a solution of probe 1. Firstly, the spectra of compound 3 were consistent
with probe 1 after treatment with Cys, suggesting that compound 3 was the product (Figure S4).
Furthermore, the peak at 176.06 and 341.03 corresponding to 3 and 4 were clearly observed during the
mass spectrum of the reaction mixture (Figure S5). This clearly indicated that compounds 3 and 4 were
formed in the reaction. Finally, the HPLC analysis of the reaction mixture showed that a new peak
with the same retention time (6.98 min) as the reference compound 3 (Figure S6), which confirmed
that the reaction of probe 1 with Cys produced fluorophore compound 3. These data were in good
agreement with the proposed mechanism. The high selectivity of probe 1 for Cys over Hcy and GSH
can be explained by the fact that probe 1 had much faster kinetic rate of the intramolecular cyclization
reactions for Cys.
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2.5. Cellular Imaging

Inspired by the above results, the potential application of probe 1 to Cys in live cell imaging
was examined. Firstly, the cell viability indicated that the probe had low toxicity and superior
bio-compatibility towards cultured cell lines (Figure S7). When HeLa cells were incubated with probe
1, strong and weak fluorescence was observed in the red channel and green channel respectively.
As a control experiment, when the cells were pretreated with N-ethylmaleimide (NEM, a thiol blocking
agent, 100 µM) and then incubated with probe 1 for 20 min, they showed weak fluorescence in the
green channel and almost no fluorescence signal in the red channel, resulting in a distinct enhancement
of emission ratio (Green/Red) in the stained cells (Figure S8). Moreover, when the cells were firstly
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incubated with NEM, then incubated with 50 µM of Cys for 20 min and finally incubated with probe 1
for the last 20 min, it was found that these cells displayed marked fluorescence enhancement in the red
channel and decrease in the green channel (Figure 3). The quantified data of the ratio (Green/Red)
of fluorescence intensity showed remarkable decrease. These results suggest that probe 1 has great
potential for biological applications.
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Figure 3. Bright-field and fluorescence images of HeLa cells stained with the probe 1: (A–C) bright-field
and fluorescence images of cells incubated only with the probe (10 µM) for 20 min; (D–F) bright-field
and fluorescence images of cells incubated with NEM (100 µM) for 30 min, and then treated with the
probe (10 µM) for 20 min; (G–I) bright-field and fluorescence images of the cells incubated with NEM
(100 µM) for 30 min, then incubated with Cys (50 µM) for 20 min and incubated with probe 1 (10 µM)
for last 20 min. Scale bar, 200 µm.

3. Materials and Methods

3.1. Materials and Apparatus

All chemical reagents and solvents were purchased from commercial suppliers and used without
further purification. Buffers for optical studies were prepared with ultrapure water. TLC analysis was
carried out on silica gel plates (GF-254). 1H- and 13C-NMR spectra were obtained on Bruker Avance III
500 MHz spectrometer (Bruker, Karlsruhe, Germany). MS spectra were obtained on a Thermo Scientific
DSQII GC/MS spectrometer (Thermo Fisher Scientific, Waltham, MA, USA). HRMS spectra were
obtained on a Bruker ApexII by means of the ESI technique (Bruker, Karlsruhe, Germany). Absorption
spectra were obtained on a Lambda 35 UV-vis spectrophotometer (Perkin Elmer, Waltham, MA, USA).
Fluorescence spectra were obtained on aShimadzuRF-5301PC Fluorescence Spectrometer (Shimadzu,
Tokyo, Japan). All titrations were carried out in PBS/DMSO solution (1:1, v/v, pH = 7.4).

3.2. Synthesis of 2-(3,5,5-Trimethylcyclohex-2-en-1-ylidene)malononitrile (2)

Isophorone (6.91 g, 0.05 mol) and malononitrile (3.96 g, 0.06 mol) were dissolved in absolute
ethanol (100 mL), followed by addition of piperidine (0.25 mL, 2.5 mmol). Then the mixture was
refluxed for 6 h under nitrogen atmosphere. After the solvent was added to ice water, the precipitation
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was dissolved in dichloromethane, washed with water, and dried over MgSO4. Finally, the solvent
was evaporated under reduced pressure and the crude product was purified by silica column
chromatography (petroleum/ethyl acetate = 3:1, v/v) to give compound 2 (7.78 g, 83% yield).
m.p.: 71–72 ◦C, 1H-NMR (500 MHz, CDCl3) δ6.62 (1H, d, J = 1.1 Hz), 2.51 (2H, s), 2.17 (2H, s),
2.03 (3H, s), 1.01 (6H, s) ppm; 13C-NMR (126 MHz, CDCl3) δ 170.93, 160.08, 119.55, 111.08, 77.10,
44.65, 41.65, 33.55, 26.83, 24.35 ppm. HRMS [M + H]+: Calcd. for C12H14N2 186.1157, Found 187.1230.

3.3. Synthesis of (E)-2-(3-(2-(6-Hydroxynaphthalen-2-yl)vinyl)-5,5-dimethylcyclohex-2-en-1-ylidene)
Malononitrile (3)

Compound 2 (1.86 g, 0.1 mol) and 6-Hydroxy-2-naphthaldehyde (1.72 g, 0.01 mol) were
dissolved in ethanol (40 mL), followed by five drops of piperidine. The mixture was refluxed
overnight under a nitrogen atmosphere until TLC indicated the end of the reaction. After cooling
to room temperature, red precipitate was produced, and then filtered to give compound 3 (2.93 g,
86% yield). m.p.: 223–224 ◦C, 1H-NMR (500 MHz, DMSO) δ 10.02 (1H, s), 8.01 (1H, s), 7.77 (3H, m,
J = 5.1 Hz), 7.39 (2H, m, J = 16.1 Hz), 7.21 (2H, m), 6.86 (1H, s), 2.56 (2H, s), 2.53 (2H, s), 1.01 (6H, s);
13C-NMR (126 MHz, DMSO) δ 169.63, 156.34, 155.58, 137.64, 134.80, 130.04, 129.67, 128.64, 127.80,
126.92, 126.23, 123.72, 121.49, 118.93, 113.29 112.66, 109.16, 75.11, 41.74, 37.64, 32.72, 26.63 ppm.
The purity of compound 3 was 99.8%, which was determined by HPLC analysis using a VP-ODS
column, H2O/EtOH = 15:85, 1 mL/min, retention time = 6.984 min (Figure S10). HRMS [M + H]+:
Calcd. for C23H20N2O340.1576, Found 341.1648.

3.4. Synthesis of (E)-6-(2-(3-(Dicyanomethylene)-5,5-dimethylcyclohex-1-en-1-yl)vinyl)naphthalen-2-yl
Acrylate (1)

Compound 3 (0.34 g, 0.001 mol) and triethylamine (0.5 mL) were dissolved in dichloromethane
(20 mL) at 0 ◦C. A solution of acryloyl chloride (0.27 g, 0.003 mol) in 10 mL dichloromethane was
added to the mixture in 30 min. The mixture was stirred at 0 ◦C for 1 h, and then stirred at room
temperature for 2 h. The organic phase was washed with water, and dried over MgSO4, then filtered and
concentrated under reduced pressure. The crude solid was purified by silica column chromatography
(dichloromethane/methanol = 20:1, v/v) to give probe 1 (0.24 g, 61% yield). m.p.: 197–198 ◦C, 1H-NMR
(500 MHz, DMSO) δ 8.15 (1H, s), 7.92 (3H, m, J = 8.9 Hz), 7.71 (1H, d, J = 2.1 Hz), 7.51 (1H, d, J = 16.1 Hz),
7.45 (2H, m), 6.89 (1H, s), 6.56 (1H, d, J =10.0 Hz), 6.43 (1H, m, J =10.3 Hz), 6.16 (1H, d, J = 10.3 Hz),
2.56 (4H, d, J = 18.2 Hz), 0.99 (6H, s); 13C-NMR (126 MHz, DMSO) δ = 169.74, 163.74, 155.16, 148.23,
136.76, 134.17, 130.59, 129.52, 128.75, 124.29, 122.51, 121.68, 118.14, 112.91, 76.02, 41.77, 37.66, 31.16,
26.93. The purity of probe 1 was 96.0%, which was determined by HPLC analysis using a VP-ODS
column, H2O/EtOH = 15:85, 1 mL/min, retention time = 10.874 min (Figure S9). HRMS [M + H]+:
Calcd. for C26H22N2O2394.1681, Found 395.1754.

3.5. Absorption and Fluorescence Spectroscopy

Stock solution of probe 1 (2.0 × 10−3 M) was prepared in DMSO. Stock solutions (1 mM) of the
analytes including: Cys, Hcy, GHS, Al3+, Cu2+, Fe3+, NO3

−, NO2
−, SO4

2−, SO3
2−, S2O3

2−, F−, Cl−,
Leu, Tyr, Arg, Glu, Lys, Thr, Ser were prepared in ultrapure water. For a typical optical study, the probe
1 (10 µM) solution in PBS/DMSO solution (1:1, v/v, pH = 7.4, 10 mM) was prepared. Then 3.0 mL of
the solution was placed in a quartz cuvette at room temperature. For fluorescence measurements, slit
width was set at dex = 3 nm, dem = 5 nm.

3.6. Cell Incubation and Imaging

HeLa cells were provided by the Chinese Academy of Science. HeLa cells were cultured in
Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum (FBS)
at 37 ◦C under an atmosphere of 5% CO2. The images of cells were visualized and photographed
by a fluorescence microscope (Nikon, Tokyo, Japan). In the experiment of cell imaging, cells were
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incubated with 10 µM of probe 1 for 20 min at 37 ◦C and washed three times with pre-warmed
PBS, and then imaged. For N-ethylmaleimide (NEM, a thiol blocking agent)-treated experiments,
the HeLa cells were pretreated with 500 µM NEM at 37 ◦C for 30 min, washed with PBS for three times,
then incubated with 10 mM probe 1 at 37 ◦C for 20 min. Moreover, the cells were firstly incubated
with NEM, then incubated with 50 µM of Cys for 20 min and finally incubated with probe 1 for the
last 20 min. Cell imaging was then carried out after washing cells with pre-warmed PBS buffer in
each case.

4. Conclusions

In summary, we have developed a novel ratiometric probe for detection of Cys. This probe can be
prepared in three steps with an overall yield of 44%. Upon the addition of Cys, a large fluorescence
enhancement was observed within 180 s, and the detection limit was 0.48 µM. Importantly, this probe
showed a selective detection process for Cys with distinct turn-on signal changes over various analytes,
including the similarly structured Hcy and GSH. In addition, this probe had low cytotoxicity, and could
be applied to imaging intracellular Cys with fluorescence enhancement. Overall, this probe can be
used as a new valuable research tool for Cys detection.

Supplementary Materials: The following are available online.
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