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Abstract: Oridonin, a diterpenoid natural product commonly used in East Asian herbal medicine,
is garnering increased attention in the biomedical community due to its extensive biological activities
that include antitumor, anti-inflammatory, antimicrobial, hepatic fibrosis prevention, and neurological
effects. Over the past decade, significant progress has been made in structure activity relationship and
mechanism of action studies of oridonin for the treatment of cancer and other diseases. This review
provides a brief summary on oridonin and its analogs in cancer drug discovery and antiinflammation
and highlights its emerging therapeutic potential in neuroprotection applications.
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1. Introduction

Natural products derived from animals, plants, and microbes have played an important role in
the treatment of human diseases since the dawn of medicine. Natural products have high chemical
diversity, bio-compatible characteristics, and other molecular properties that make them advantageous
as lead scaffolds for drug discovery [1–4]. A detailed analysis of first-in-class drugs approved by
the US Food and Drug Administration (FDA) from 1999 to 2013 revealed 31 (28%) of those drugs
(112) were natural products or their derivatives [5]. Rabdosia rubescens, a herbal plant also known
as Donglingcao, was used in East Asian traditional medicine for the treatment of inflammation and
cancer [6]. Oridonin (1, Figure 1), an ent-kaurane diterpenoid isolated from Rabdosia rubenscens,
was first identified as an antitumor compound in 1967 [7,8]. It has since attracted considerable
attention due to its various pharmacological and physiological properties including antitumor [9–17],
anti-inflammatory [18–20], antimicrobial [21], and hepatic fibrosis prevention actions [22–25], and its
effects in the central nervous system (CNS) [26–28]. Over the past decade, significant progress has
been made in structural optimization and mechanism of action studies of oridonin for the treatment
of cancer and other diseases [29–31]. For example, Hengrui Medicine Co. Ltd. (Lianyungang, China)
was recently given approval to advance HAO472 [32] (2, L-alanine-(14-oridonin)ester trifluoroacetate,
Figure 1) into a Phase I human clinical trial (CTR20150246; www.chinadrugtrails.org.cn) in China for
the treatment of acute myelogenous leukemia. In this review, we will first provide a summary of
oridonin, its analogs, and their promising potential in cancer drug discovery and antiinflammation,
and second, we will highlight its emerging therapeutic potential for neuroprotection. To our knowledge,
this will be the first review article in the field that discusses the oridonin class of compounds as
potential neurotherapeutics.
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Figure 1. The structures of oridonin and HAO472. 

2. Oridonin and Its Analogs for Cancer Drug Discovery 

The antitumor activity of oridonin has been widely investigated and evidence suggests that 
oridonin may effectively inhibit the proliferation of multiple cancer cell types, including human 
breast cancer [9], gastric cancer [10], leukemia [11], gallbladder cancer [12], cervical carcinoma [13], 
and hepatocellular carcinoma [14]. Previous studies have revealed mechanisms by which oridonin 
can trigger autophagy, enhance phagocytosis, arrest cell cycle progression, and promote apoptosis 
by modulation of relevant signaling pathways (Figure 2) associated with the regulation of 
intracellular reactive oxygen species (ROS), Bcl-2/Bax, p53/p21, JNK, nuclear factor-kappa B (NF-κB), 
MAPK, PI3K, and fatty acid synthesis pathways [30,31,33].  

 
Figure 2. Oridonin regulates multi-signaling pathways related to autophagy, apoptosis, phagocytosis, 
and cell cycle arrest. 

In a human prostate cell line, DU-145, oridonin upregulates p53 and Bax and downregulates Bcl-
2 expression in a dose-dependent manner [34]. In Hela cells, oridonin-induced autophagy is 
negatively regulated by Ras but positively regulated by p38 and JNK MAPKs [13]. Additionally, in 
HepG2 cells, oridonin was reported to increase the expression levels of p-JNK, p-p38, p-p53, and p21 
and elevate the level of cyclin B1/p-Cdc2 (Tyr15) complex, which results in G2/M cell cycle arrest and 
apoptosis through MAPK and p53 pathways [35]. Oridonin also induces apoptosis via inhibiting 
PTK-mediated Ras-Raf-JNK [36] and PI3K-Akt [37] survival pathways in L929 and cervical carcinoma 
Hela cells, respectively. Moreover, oridonin can trigger apoptosis through activating both classic 
extrinsic pathways, such as Fas/FasL and Apo2L/DR5-mediated signaling pathways, and 

Figure 1. The structures of oridonin and HAO472.

2. Oridonin and Its Analogs for Cancer Drug Discovery

The antitumor activity of oridonin has been widely investigated and evidence suggests that
oridonin may effectively inhibit the proliferation of multiple cancer cell types, including human
breast cancer [9], gastric cancer [10], leukemia [11], gallbladder cancer [12], cervical carcinoma [13],
and hepatocellular carcinoma [14]. Previous studies have revealed mechanisms by which oridonin
can trigger autophagy, enhance phagocytosis, arrest cell cycle progression, and promote apoptosis by
modulation of relevant signaling pathways (Figure 2) associated with the regulation of intracellular
reactive oxygen species (ROS), Bcl-2/Bax, p53/p21, JNK, nuclear factor-kappa B (NF-κB), MAPK, PI3K,
and fatty acid synthesis pathways [30,31,33].
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Figure 2. Oridonin regulates multi-signaling pathways related to autophagy, apoptosis, phagocytosis,
and cell cycle arrest.

In a human prostate cell line, DU-145, oridonin upregulates p53 and Bax and downregulates
Bcl-2 expression in a dose-dependent manner [34]. In Hela cells, oridonin-induced autophagy is
negatively regulated by Ras but positively regulated by p38 and JNK MAPKs [13]. Additionally,
in HepG2 cells, oridonin was reported to increase the expression levels of p-JNK, p-p38, p-p53,
and p21 and elevate the level of cyclin B1/p-Cdc2 (Tyr15) complex, which results in G2/M cell cycle
arrest and apoptosis through MAPK and p53 pathways [35]. Oridonin also induces apoptosis via
inhibiting PTK-mediated Ras-Raf-JNK [36] and PI3K-Akt [37] survival pathways in L929 and cervical
carcinoma Hela cells, respectively. Moreover, oridonin can trigger apoptosis through activating
both classic extrinsic pathways, such as Fas/FasL and Apo2L/DR5-mediated signaling pathways,
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and mitochondrial-mediated intrinsic pathways in several cancer cells [38–41]. In U937 cells, oridonin
was reported to activate NF-κB via Ras/Raf1/ERK signaling pathway-dependent IκBα degradation
and subsequently regulate oridonin-enhanced phagocytosis [42]. In colorectal cancer cells, oridonin has
been shown to increase the intracellular hydrogen peroxide level and reduce the glutathione content
in a dose-dependent manner [43]. It was also reported that oridonin induces a rapid and significant
generation of ROS in L929 cells and subsequently upregulates the expression of phospho-p53 and
increases expression ratio of Bax/Bcl-2 [44]. Modulations of these pathways in different cell models
may explain the broad range of anticancer activities of oridonin.

Although oridonin has a unique, relatively safe, and extensive anticancer profile, its clinical
development for cancer therapy has historically been hindered by its moderate potency, limited
aqueous solubility, and poor bioavailability. To overcome these obstacles and yield oridonin analogs
with increased druglikeness, iterative medicinal chemistry efforts have been made by multiple research
groups and a portion of that work is discussed herein. Over the past several years, our group has
synthesized a series of oridonin derivatives primarily focused on A-ring system modifications.

Compound 3 (Figure 3), with an N-allyl substituted thiazole moiety, exhibits potent
antiproliferative activities against human breast cancer MCF-7 (IC50 = 0.2 µM) and MDA-MB-231
(IC50 = 0.2 µM) cells, which are approximately 33-fold and 147-fold more potent than oridonin,
respectively [45]. The aqueous solubility of 3 has been significantly improved with a saturated
concentration of 42.4 mg/mL, which is approximately 32-fold better than that of oridonin (1.29 mg/mL).
Moreover, 3 significantly suppresses MDA-MB-231 xenograft tumor growth in vivo (5 mg/kg, ip,
tumor growth inhibition >66%), while oridonin shows no significant efficacy at the same dose.
Among the dihydropyran-fused derivatives, 4 shows the highest inhibition potency against MCF-7
(IC50 = 0.44 µM), MDA-MB-231 (IC50 = 0.54 µM), and MDA-MB-468 (IC50 = 0.52 µM) cell lines
and an improved ability to overcome chemoresistance in a MCF-7/ADR cell line (IC50 = 1.6 µM) [46].
Our group also synthesized a series of dienone derivatives of oridonin with additional α,β-unsaturated
ketone system diversely installed in the A-ring [47]. Dienone analogues 5–9 display significant
antiproliferative effects relative to oridonin against MCF-7 and MDA-MB-231 cells with low micromolar
to submicromolar potency. Compared to oridonin, 8 shows lower toxicity in normal mammary
epithelial cells and increased antitumor efficacy at a dose of 5.0 mg/kg (ip, growth inhibition >55%)
with no significant loss of body weight in an MDA-MB-231 xenograft tumor model. Our group
developed efficient and concise synthetic approaches to rapidly and diversely introduce azide
functionalities at the C-1, C-2, or C-3 positions of oridonin in a highly regio- and stereospecific manner.
Subsequent functionalization of these azides through click chemistry yielded triazole derivatives.
These derivatives with 1,2,3-triazole installed in the A-ring system exhibit significantly improved
activities against breast cancer cells compared to oridonin. Among them, 1-triazole derivative 10
displays the most potent inhibitory activities against MCF-7 (IC50 = 0.38 µM) and MDA-MB-231
(IC50 = 0.48 µM) cell lines [48].

The B-ring is inert due to the low reactivity of the 7-hydroxy group and the hydrogen bond of
6-hydroxy group with the 15-carbonyl group. The α,β-unsaturated ketone in the D-ring is the active
pharmacophore of oridonin, and studies have shown that reduction or opening will significantly
reduce the antiproliferative effect of oridonin [49–51]. Alternatively, the esterification of the hydroxyl
in the C-ring is an efficient way to enhance the antiproliferative activity of oridonin other than the
modifications on A-ring. HAO472 (Figure 2) was designed with an alanine ester trifluoroacetate at
the C-14 position to improve its aqueous solubility (i.e., 165 mg/mL). HAO472 was said to maintain
the anticancer activities of oridonin (data not disclosed), while also being less likely to cause vascular
injury [32,52]. Thus, in China, HAO472 has been advanced into Phase I human clinical trials for
the treatment of acute myelogenous leukemia (80–320 mg/d, iv, CTR20150246). Xu and colleagues
designed and synthesized a fluorescent oridonin probe 11 (Figure 4) using a linker to connect the
14-hydroxyl group of oridonin with a coumarin moiety [49]. When tested, 11 exhibited more potent
antiproliferative activities compared to oridonin in HepG2 (IC50 = 2.6 µM), A549 (IC50 = 5.1 µM) and
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Hela (IC50 = 2.0 µM) cell lines. 11 was used to confirm that a mitochondrial pathway is involved in
oridonin-mediated apoptosis and that cytochrome C plays an important role in the oridonin-mediated
apoptotic process. Compound 13, bearing 1-ene and a trans-cinnamic acid moiety on the 14-position
designed and synthesized from compound 12, is 200-fold (IC50 = 0.08 µM) more potent than oridonin
against MCF-7 cancer cells [53]. 13 significantly decreased tumor volume and reduced tumor weight
by 69.8% at a dose of 20 mg/kg/day (iv) in an MCF-7 breast cancer xenograft nude mice model,
which was greater than that of the positive control, cyclophosphamide (64.6%).
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As oridonin is abundant in natural sources and is commercially available, it can also be used as
an advantageous starting material to semi-synthesize other types of diterpenoid derivatives that
are otherwise rare [54–59], such as spirolactone-type diterpenoid and enmein-type diterpenoid
derivatives. Spirolactone-type diterpenoid derivatives 14–15 [54,55] and enmein-type diterpenoid
derivatives 16–18 [56,57], synthesized from oridonin by oxidative rearrangements around C-6 and
C-7 positions, showed improved antiproliferative activities against a panel of human cancer cell lines
(Figure 5). Administration of salts of water-soluble compound 18 at a dose of 40 mg/kg was found to
exhibit greater anti-gastric cancer effects (ip, growth inhibition = 64.8%) when compared to oridonin
(ip, growth inhibition = 37.3%) in mice [57]. The synthesis of these ent-kaurane diterpenoid derivatives
with simpler structures and retained bioactivities serves as another key research direction for oridonin
modification and diversification. The antiproliferative activities of compounds 1–18 against various
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human cancer cell lines are summarized in Table 1, which indicates that oridonin is a privileged
scaffold with chemical space for diverse structural optimization and drug property enhancement.Molecules 2018, 23, x  5 of 15 

 

 
Figure 5. Spirolactone-type and enmein-type diterpenoid derivatives generated from oridonin. 

Table 1. The antiproliferative effects of compounds 1–18 against various human cancer cell lines. 

Compd. IC50 Ref.
Oridonin 

(1) 
MCF-7: 6.6 μM; MDA-MB-231: 29.4 μM; MDA-MB-468: 5.3 μM; MCF-7/ADR: 

34.8 μM; HepG2: 15.2 μM; MGC-803: 9.06 μM; Bel-7402: 5.41 μM; K562: 4.33 μM 
[45–49,53] 

HAO472 
(2) 

Not disclosed 
Phase I (CTR20150246) in China: leukemia 

* 

3 MCF-7: 0.2 μM; MDA-MB-231: 0.2 μM; AsPC1: 1.1 μM; Panc-1: 1.1 μM; DU145: 
1.2 μM 

[45] 

4 MCF-7: 0.44 μM; MDA-MB-231: 0.54 μM; MDA-MB-468: 0.52 μM; MCF-7/ADR: 
1.6 μM 

[46] 

5 MCF-7: 0.56 μM; MDA-MB-231: 3.49 μM; MCF-7/ADR: 5.03 μM [47] 
6 MCF-7: 1.31 μM; MDA-MB-231: 2.23 μM; MCF-7/ADR: 5.82 μM [47] 
7 MCF-7: 1.28 μM; MDA-MB-231: 3.46 μM; MCF-7/ADR: 6.55 μM [47] 
8 MCF-7: 0.98 μM; MDA-MB-231: 5.60 μM; MCF-7/ADR: 6.02 μM [47] 
9 MCF-7: 3.48 μM; MDA-MB-231: 9.39 μM [47] 

10 MCF-7: 3.48 μM; MDA-MB-231: 9.39 μM [48] 
11 HepG2: 2.6 μM; A549: 5.1 μM; Hela: 2.0 μM [49] 
12 MCF-7: 1.99 μM; MGC-803: 1.22 μM; Bel-7402: 1.59 μM; K562: 0.22 μM [53] 
13 MCF-7: 0.08 μM; MGC-803: 1.03 μM; Bel-7402: 1.03 μM; K562: 0.29 μM [53] 
14 K562: 1.22 μM; MGC-803: 2.66 μM; CaEs-17: 2.01 μM; Bel-7402: 2.89 μM [54] 
15 K562: 0.39 μM; MGC-803: 1.28 μM; CaEs-17: 0.60 μM; Bel-7402: 1.39 μM [55] 
16 K562: 0.14 μM; MGC-803: 0.61 μM; CaEs-17: 0.45 μM; Bel-7402: 1.01 μM [56] 
17 K562: 0.14 μM; MGC-803: 0.34 μM; CaEs-17: 0.34 μM; Bel-7402: 0.89 μM [57] 
18 K562: 1.74 μM; MGC-803: 1.16 μM; CaEs-17: 3.54 μM; Bel-7402: 0.71 μM [57] 

* http://www.chinadrugtrials.org.cn/. 

3. Antiinflammation Effects of Oridonin and Its Analogs 

The effect on immune and pro-inflammatory mediators is another important bioactivity of 
oridonin (Figure 6). Studies have shown that oridonin can promote the differentiation of T cells 
towards CD4+/CD5+ Tregs, increase the secretion of IL-10, and modulate the Th1/Th2 balance via 
inducing HO-1 [19]. The effect of oridonin on intracellular tumor necrosis factor-α (TNF-α) 
expression was investigated and results showed that oridonin enhances endogenous pro-TNF-α 
expression and increases its upstream protein IκB phosphorylation [60]. Oridonin was reported to 
suppress the expression of inducible nitric oxide (iNOS) and cyclooxygenase-2 (COX-2) by inhibiting 

Figure 5. Spirolactone-type and enmein-type diterpenoid derivatives generated from oridonin.

Table 1. The antiproliferative effects of compounds 1–18 against various human cancer cell lines.

Compd. IC50 Ref.

Oridonin (1) MCF-7: 6.6 µM; MDA-MB-231: 29.4 µM; MDA-MB-468: 5.3 µM; MCF-7/ADR:
34.8 µM; HepG2: 15.2 µM; MGC-803: 9.06 µM; Bel-7402: 5.41 µM; K562: 4.33 µM [45–49,53]

HAO472 (2) Not disclosed
Phase I (CTR20150246) in China: leukemia *

3 MCF-7: 0.2 µM; MDA-MB-231: 0.2 µM; AsPC1: 1.1 µM; Panc-1: 1.1 µM;
DU145: 1.2 µM [45]

4 MCF-7: 0.44 µM; MDA-MB-231: 0.54 µM; MDA-MB-468: 0.52 µM;
MCF-7/ADR: 1.6 µM [46]

5 MCF-7: 0.56 µM; MDA-MB-231: 3.49 µM; MCF-7/ADR: 5.03 µM [47]

6 MCF-7: 1.31 µM; MDA-MB-231: 2.23 µM; MCF-7/ADR: 5.82 µM [47]

7 MCF-7: 1.28 µM; MDA-MB-231: 3.46 µM; MCF-7/ADR: 6.55 µM [47]

8 MCF-7: 0.98 µM; MDA-MB-231: 5.60 µM; MCF-7/ADR: 6.02 µM [47]

9 MCF-7: 3.48 µM; MDA-MB-231: 9.39 µM [47]

10 MCF-7: 3.48 µM; MDA-MB-231: 9.39 µM [48]

11 HepG2: 2.6 µM; A549: 5.1 µM; Hela: 2.0 µM [49]

12 MCF-7: 1.99 µM; MGC-803: 1.22 µM; Bel-7402: 1.59 µM; K562: 0.22 µM [53]

13 MCF-7: 0.08 µM; MGC-803: 1.03 µM; Bel-7402: 1.03 µM; K562: 0.29 µM [53]

14 K562: 1.22 µM; MGC-803: 2.66 µM; CaEs-17: 2.01 µM; Bel-7402: 2.89 µM [54]

15 K562: 0.39 µM; MGC-803: 1.28 µM; CaEs-17: 0.60 µM; Bel-7402: 1.39 µM [55]

16 K562: 0.14 µM; MGC-803: 0.61 µM; CaEs-17: 0.45 µM; Bel-7402: 1.01 µM [56]

17 K562: 0.14 µM; MGC-803: 0.34 µM; CaEs-17: 0.34 µM; Bel-7402: 0.89 µM [57]

18 K562: 1.74 µM; MGC-803: 1.16 µM; CaEs-17: 3.54 µM; Bel-7402: 0.71 µM [57]

* http://www.chinadrugtrials.org.cn/.

http://www.chinadrugtrials.org.cn/
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3. Antiinflammation Effects of Oridonin and Its Analogs

The effect on immune and pro-inflammatory mediators is another important bioactivity of
oridonin (Figure 6). Studies have shown that oridonin can promote the differentiation of T cells
towards CD4+/CD5+ Tregs, increase the secretion of IL-10, and modulate the Th1/Th2 balance via
inducing HO-1 [19]. The effect of oridonin on intracellular tumor necrosis factor-α (TNF-α) expression
was investigated and results showed that oridonin enhances endogenous pro-TNF-α expression and
increases its upstream protein IκB phosphorylation [60]. Oridonin was reported to suppress the
expression of inducible nitric oxide (iNOS) and cyclooxygenase-2 (COX-2) by inhibiting NF-κB DNA
binding activity in HepG2, RAW264.7, and Jurkat cells [61,62]. Several groups have shown that
oridonin and its water-soluble derivative (HAO472, Figure 1) might ameliorate TNBS-induced colitis
by decreasing Th1/Th17 via inhibiting NF-κB signaling, subsequently reducing TNF-α, TNF-γ, IL-17A,
iNOS/COX-2, and lymphocyte proliferation [52,63].
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Additionally, it has been reported that oridonin and derivatives 7 (Figure 3) and 12 (Figure 4)
exhibited anti-fibrogenic activities for the treatment of hepatic fibrosis [22–25]. The anti-fibrogenic
effects of oridonin, 7 and 12 were investigated in the activated human LX-2 and rat HST-T6 stellate cell
lines. The results showed that 7 and 12 significantly inhibited LX-2 cell proliferation in a dose- and
time-dependent manner with IC50 values of 0.7 µM and 0.49 µM for 48 h, which were respectively
10-fold and 15-fold higher potency than oridonin (7.5 µM). Similar results were observed for 7 and 12
when compared to oridonin in HSC-T6 cells. However, no significant antiproliferative effects were
observed on the human hepatocyte cell line C3A. These two derivatives were found to induce LX-2 cell
apoptosis and S-phase cell cycle arrest and were associated with the activation of p53, p21, and cleaved
caspase-3. It was also shown that 7 and 12 may mitigate endogenous production of α-SMA and ECM
proteins type I collagen and fibronectin and inhibit TGF-β induced type I collagen and fibronectin
production at much lower concentrations compared to oridonin. Thus, oridonin and its derivatives
may hold great potential as antifibrogenic agents for the treatment of hepatic fibrosis.

4. Neuroinflammation and Neuroprotection Activities

Based on the anti-inflammatory properties of oridonin, its effects on neuroinflammation have been
investigated by several research groups [27,64]. Microglia is regarded as the resident macrophage-like
cell in the CNS, and can be activated by brain injury, infection, and various neuroinflammatory
stimuli, consequently releasing proinflammatory and cytotoxic factors including nitric oxide
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(NO), TNF-α, interleukin-1β (IL-1β), interleukin-6 (IL-6), ROS, and eicosanoids [65–69]. Microglial
activation has been observed in many neurological disorders and is noteworthy for its inflammatory
and/or neurotrophic effects [69–71]. In LPS-activated microglia, oridonin pretreatment inhibits the
release of proinflammatory mediators including NO, TNF-α, IL-1β, and IL-6 [64]. Suppression
of proinflammatory mediators is accompanied by the inhibition of NF-κB DNA binding activity.
Additionally, oridonin upregulates the expression of nerve nuclear growth factor (NGF), an essential
neurotrophic factor for neuron survival and differentiation. These findings suggest that oridonin may
have anti-neuroinflammatory and neuroregulatory effects (Figure 7) through modulation of multiple
microglial pathways.
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Oridonin was reported to suppress microglia and astrocyte activation in the hippocampus of
the Aβ1–42 induced Alzheimer’s disease (AD) mouse model [27]. A range of activities were reported
including decreasing the mRNA levels of IL-1β, IL-6, COX-2, iNOS, TNF-α, and MCP-1, upregulating
the expression of IL-10, inhibiting NF-κB p65 nuclear translocation via attenuating Aβ1–42 induced IκBα
phosphorylation and degradation, attenuating mitochondrial dysfunction, and reducing cognitive
impairment in an Aβ1–42 induced AD mouse model [27]. In conclusion, this study has provided
evidence that oridonin and its new analogues may inhibit neuroinflammation and attenuate memory
deficits induced by Aβ1–42.

β-Amyloid (Aβ)-mediated synaptic dysfunction plays a critical role in the pathophysiology of AD,
but the underlying mechanisms for this process remain unknown [72–75]. Xu and colleagues found
that oridonin diminished synaptic dysfunction induced by Aβ1–42 in vivo and in vitro and rescued the
dendritic morphological changes observed in the hippocampus of an AD mouse model. In addition,
oridonin increased the expression of PSD-95 and synaptophysin and ameliorated the Aβ-induced
reduction of mitochondrial activity in the synaptosomes of an AD mouse model [26]. The expression
of BDNF and its receptor TrkB is ubiquitous in the brain, and the BDNF/TrkB signaling pathway has
been shown to mediate the survival and differentiation of neurons, long-term potentiation, as well as
plasticity [76,77]. In addition, the BDNF/TrkB pathway has been shown to play a modulatory role
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in learning and memory [78]. Oridonin was found to activate the BDNF/TrkB pathway and increase
p-CREB expression in the hippocampus of the Aβ-induced AD mouse model, providing insight to
a possible mechanism for its neuroprotective effects [26]. Additionally, in the Morris water maze test,
oridonin suppressed escaping latency and searching distance and increased the number of platform
crosses in the AD mouse model. These results support that oridonin can attenuate synaptic loss and
promote behavioral measures in an Aβ1–42 induced AD mouse model.

5. Oridonin for Neurodegenerative Diseases

Neurodegenerative disorders are a heterogeneous group of diseases that display diverse
etiologies and may impact both the CNS and the peripheral nervous system (PNS) [79–81].
Major neurodegenerative diseases include AD, Parkinson’s disease (PD), Huntington’s disease,
multiple sclerosis, and the prion diseases. Characteristic symptoms of these diseases may include
anxiety, depression, motor dysfunction, memory loss, and cognitive impairment. The causes of
neurodegenerative diseases are highly diverse and may include both hereditary or environmental
factors and toxic, metabolic, or infectious processes [82]. Neuronal cell damage or death is
an important factor in the progression of various neurodegenerative disorders. Thus, oxidative
stress, neuroinflammation, mitochondrial dysfunction, and apoptosis are major pathways responsible
for neurodegeneration [83]. Several transcription factors play a role in the pathophysiology of
neuronal cell damage including Nrf2, NF-κB, MAPKs, CREB, Wnt, JAK/STAT, and TLR-4, etc. [84–86].
Multiple therapeutic options are available that attempt to slow disease progression or control
disease symptoms, such as dopaminergic treatments, acetylcholinesterase inhibitors, NMDA receptor
antagonists, antipsychotic drugs, and brain stimulation [87–90]. In addition, riluzole, non-steroidal
anti-inflammatory drugs, CERE-120, and caffeine A2A receptor antagonists have been used to reduce
the risk of neurodegenerative diseases onset [91]. However, none of these therapies has been effective
in halting the progression of neurodegenerative diseases such as AD and PD, due to their complex
pathological underpinnings. The long-term use of these drugs may also produce various negative
side effects. Hence, there is a need to develop safer, multi-targeted, and more effective drugs for the
treatment of neurodegenerative diseases [92,93].

Oridonin was found to inhibit LPS-activated microglia inflammation and Aβ1–42 induced
neuroinflammation, prevent synaptic loss, suppress the NF-κB pathway, and activate BDNF/TrkB/CREB
and Nrf2 signaling pathways [26,27,64,94–97]. These neuroprotective effects suggest that oridonin may
hold promise for the treatment of neurodegenerative diseases, especially AD (Figure 8).
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AD, the primary cause of dementia, is an irreversible neurodegenerative disorder with progressive
cognitive dysfunction, memory impairment, and behavioral maladaptions. The pathological features
of AD are comprised of Aβ plaques (deposition of extracellular Aβ) and neurofibrillary tangles (NFTs,
accumulation of intracellular hyperphosphorylated tau protein). The interesting possibility for oridonin
to treat AD has already been investigated in animal models by several groups. For instance, oridonin
attenuates memory and cognitive deficits in Aβ1–42 induced AD mouse models [26,27]. An oral
administration of an oridonin suspension significantly attenuated Aβ aggregation, plaque-associated
APP expression, and microglial activation in both the cortex and hippocampus of transgenic
APP/PS1 mice at 5 months of age [28]. Further, injection of an oridonin-nanoemulsion suppressed
deficits in nesting (an important affiliative behavior) and social interaction. These pathological and
behavioral effects of oridonin may be due to its polypharmacology and to its modulation of multiple
mechanisms/factors including reduced inflammatory activation of glial cells and immune cells,
decreased Aβ deposition and APP expression directly or indirectly, as well as possible neuroprotective
effects via modulating microglial function and reducing local production of proinflammatory factors.
With continued research, oridonin holds potential to be developed as a therapeutic option for human
AD or other neurodegenerative disorders.

6. Conclusions and Future Directions

Oridonin, a natural product commonly used in East Asian herbal medicine, has drawn increased
attention in recent years due to its extensive biological activities and potential in the treatment of
various diseases. Its unique, relatively safe, and remarkable anticancer pharmacological profile are
noteworthy for drug discovery campaigns. A number of oridonin derivatives were designed and
synthesized to pursue more potent and drug-like candidates for cancer therapy [30]. However, the exact
mechanisms by which oridonin exerts these activities were inadequately understood. During the
process of investigating oridonin’s mechanism of action, a variety of potential targets and signaling
pathways associated with oridonin have been identified [31]. Recently, oridonin was found to
ameliorate TNBS-induced colitis and inhibit HSC proliferation and fibrogenesis [25,63]. Several
studies have shown that oridonin inhibits neuroinflammation, prevents synaptic loss, and regulates
several targets and signaling pathways involved in the pathophysiology of neurodegenerative
diseases [26,27,64]. In addition, it may ameliorate neuropathological changes and behavioral deficits
in a mouse model of cerebral amyloidosis [28]. These results suggest oridonin may have the potential
to treat human AD or other neurodegenerative disorders.

Oridonin displays limited aqueous solubility, low bioavailability via oral administration (F = 4.3%)
or intraperitoneal injection (F = 12.6%), and high first-pass effects [45,98]. Although high lipophilicity
is favorable for blood-brain barrier (BBB) permeability, limited aqueous solubility and bioavailability
will decrease resultant therapeutic effects in vivo. These properties of oridonin will hamper its
further clinical development as a neuroprotective agent. The accumulated SAR studies show that
modifications on the A-ring system and C-14 position of oridonin may significantly improve its
biological activities and aqueous solubility. Compound 3 with a thiazole fused A-ring and an additional
nitrogen-containing side chain displays improved potency and aqueous solubility [45]. In addition,
the introduction of hydrophilic groups (e.g., HAO472) or PEGylation at the C-14 position could
also be a promising method to improve the absorption and distribution properties of oridonin
derivatives [32,99,100]. Another useful strategy is the use of nanotechnology-based drug delivery
approaches that may enhance drug solubility and bioavailability, improve permeability, and control
drug release [101–108]. Additionally, nanostructured carriers such as nanosuspension, nanogels,
and nanoparticles may prove to be an interesting strategy to afford a safe and effective delivery
vehicle to overcome oral and CNS barriers [101]. In short, more attention should be directed
towards the enhancement of pharmacokinetic properties in developing oridonin and its derivatives as
neuroprotective agents. We believe that oridonin and its analogs have the potential to extend their
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application from anticancer and antiinflammation to neuroprotection, and may open new avenues to
potential neurotherapeutics that can eventually benefit the patients with CNS disorders.
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α-SMA α-Smooth muscle actin
APP Amyloid precursor protein
Bax Bcl-2-associated X protein
Bcl-2 B-cell lymphoma 2
BDNF Brain-derived neurotrophic factor
CREB cAMP response element-binding protein
ECM Extracellular matrix
HSC Hepatic stellate cell
ip Intraperitoneal
iv Intravenous
JAK Janus kinase
JNK c-Jun N-terminal kinase
MAPK Mitogen-activated protein kinase
MCP-1 Monocyte chemotactic protein 1
NMDA N-Methyl-D-aspartic acid
Nrf2 Nuclear factor erythroid-derived 2 (NFE2) related factor 2
p21 p21Cip1 protein
p53 Tumor protein p53
PI3K Phosphatidylinositide 3-kinases
SAR Structure-activity relationship
STAT Signal transducer and activator of transcription
TLR-4 Toll-like receptor 4
TNBS 2,4,6-Trinitrobenzenesulfonic acid
TrkB Tropomysin receptor kinase B
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