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Abstract: Thirty-seven commercial aldehydes containing aliphatic chains and aromatic rings as well
as heteroaromatic rings were evaluated for their inhibitory activities against Chinese amaranth
(Amaranthus tricolor L.) and barnyardgrass (Echinochloa crus-galli (L.) Beauv). Polysorbate 80
(Tween® 80) was used as a surfactant and the research was preliminarily conducted at 400 µM
of all aldehydes. Among these aldehydes, (E)-cinnamaldehyde (7) showed the greatest inhibitory
effect on seed germination, shoot and root growth of Chinese amaranth by 54.55%, 75.53%, and 85.13%
respectively. Similarly, (E)-crotonaldehyde (5), a related α,β-unsaturated aldehyde, inhibited the
germination and seedling growth of the tested species at a high percentage. Apart from these two
unsaturated aldehydes, no other aliphatic aldehydes had a harmful effect on Chinese amaranth.
In terms of benzaldehyde (6), it had no effect on the tested plant; however, many of its derivatives
displayed some inhibitory activity. Furthermore, for the ten common heteroaromatic aldehydes,
picolinaldehyde (32) had a high inhibitory effect on Chinese amaranth which closely related to
the effect of (E)-crotonaldehyde (5) and (E)-cinnamaldehyde (7), whereas, other heteroaromatic
aldehydes showed lower effects. In the case of a monocot plant, barnyardgrass, no tested aldehydes
reduced seed germination, however, (E)-cinnamaldehyde (7), 2,4,6-trimethoxybenzaldehyde (16)
and 4-(dimethylamino)benzaldehyde (24) could inhibit the seedling growth of the plant with low to
moderate levels. The herbicidal effects of the most active aldehydes were then further investigated
in order to find the minimum concentration of these aldehydes suppressing the germination and
growth of the tested plants. At concentrations as low as 50–100 µM some aldehydes could inhibit
the seedling growth of the tested species. The structure-activity relationship (SAR) study reported
here demonstrates the chemical clues governing the inhibitory activity of aldehydes which could be
utilized in the development of highly effective herbicides in the near future.
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1. Introduction

Weeds are a major problem on the yield of agricultural crops. They compete with crop plants
for water, nutrients, space or even sunlight, causing the crop plants to grow slowly or even die [1,2].
Therefore, in order to achieve high crop production and yields, it is crucially important to control
these unwanted species. In general, weed management practices vary widely depending upon
climatic and environmental conditions as well as weed species. Overall, the main methods of
weeding are manual, mechanical, chemical and biological controls respectively [3–5]. Among those
methods, chemical control is one of the most popular procedures. Moreover, the use of natural
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compounds or allelochemicals for weeding has been studied extensively [3,6–15]. Allelochemicals are
substances released from plants or microorganisms to control the growth of other plants or other small
organisms [14,16]. Usually, it is believed that natural products or naturally-occurring compounds are
safer than synthetic chemicals, comparably easy to decompose and environmentally friendly [12,13,17].
Also, they could be conveniently used in a form of both pure chemical and crude extract. Xanthoxyline
and (±)-odorine are two examples of such allelochemicals which were successfully isolated in our
research group from Makhwaen (Zanthoxylum limonella Alston) fruits and Prayong (Aglaia odorata Lour.)
leaves [18,19]. Both natural compounds inhibited well the seed germination and seedling growth of
tested plants, Chinese amaranth, and barnyardgrass. In addition to those examples mentioned above,
there are numerous reports showing the diverse groups of allelochemicals or natural products which
are used as herbicides [6,13,14,20–24]. For examples, fatty acids, essential oil, amino acids, peptides,
alkaloids, flavonoids and phenolics etc. These compounds could inhibit seed germination and seedling
growth of tested weeds, algae and microorganisms. Although, the herbicidal properties of these
chemicals have been studied for many years, a thorough investigation of allelopathic potentials of each
specific chemical class is still required. Commonly, purification and identification of bioactive natural
products are time-consuming and quite expensive, especially, with the limited natural resources [9,14].
Frequently, only minute quantities of allelochemicals are obtained. Moreover, several of them have
complex chemical structures which lead to expensive, long and difficult synthetic procedures to access.
Their structure-activity relationship (SAR) studies, therefore, are difficult to accomplish.

In this study we are interested in investigating the herbicidal activities of a variety of aldehydes
(both aliphatic and aromatic aldehydes (Figure 1) as well as heteroaromatic aldehydes (Figure 2)) on
seed germination and seedling growth of two tested plants, Chinese amaranth (Amaranthus tricolor L.)
and barnyardgrass (Echinochloa crus-galli (L.) Beauv). Both species were chosen as representatives
of dicot and monocot plants, respectively. We selected an aldehyde chemical class since there are
several reports indicating that natural and synthetic aldehydes [25–36] or crude extracts containing
aldehydes [37–44] could interrupt the germination, growth, and development of plants, algae,
and microorganisms. Furthermore, numerous aldehydes are commercially available in pure form
which can be directly purchased. Positive results of the current research could be applied in the
development of new and highly reactive herbicides.
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2. Results and Discussion

2.1. Inhibitory Effects of Thirty-Seven Aldehydes on Germination and Seedling Growth of Chinese Amaranth

In the preliminary investigation, Chinese amaranth was selected as a representative dicotyledon.
According to our previous study [45] 0.25% (v/v) aqueous solution of Tween® 80 (Sigma-Aldrich,
Singapore) was used as a surfactant. A basic structure-activity relationship (SAR) study was
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performed by using three groups of aldehydes namely; aliphatic, aromatic and heteroaromatic
respectively. The results revealed that (Figure 3), four aliphatic aldehydes containing 2–6 carbon
atoms (acetaldehyde (1), propionaldehyde (2), butyraldehyde (3) and hexanal (4)) had no effect on
germination and seedling growth of Chinese amaranth. Fortunately, unsaturated aliphatic aldehyde
such as (E)-crotonaldehyde (5) could inhibit seed germination, shoot, and root elongation by 24.24,
48.89, and 59.88% respectively. In comparison with butyraldehyde (3) which is similarly composed of
four carbon atoms, (E)-crotonaldehyde (5) showed much higher inhibitory activity. Moreover, the size
of a substituent attached to an α,β-unsaturated part could possibly determine the inhibitory effect
of the compound. Accordingly, (E)-cinnamaldehyde (7) showed a greater herbicidal effect against
Chinese amaranth than (E)-crotonaldehyde (5) did. At a concentration of 400 µM, (E)-cinnamaldehyde
(7) inhibited seed germination, shoot and root length of the tested plant by 54.55, 75.53, and 85.13%
respectively, which indicates the most reactive chemical among all aldehydes.Molecules 2018, 23, x FOR PEER REVIEW  5 of 15 
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germination (A), shoot length (B), and root length (C) of Chinese amaranth. A 0.25% (v/v) aqueous
solution of Tween® 80 was used as a control. * Result from a previous study [45], the effect of vanillin
(17) on Chinese amaranth.
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In terms of aromatic aldehydes, both benzaldehyde (6) and its derivatives bearing alkyl
substituents (aldehydes 8–9) and halogen substituents (aldehydes 10–13) had no inhibitory effect on
Chinese amaranth. However, for the derivatives containing methoxy-substituent (compounds 14–16)
it turned out that position and number of the substituents affected the activity which meta-position
(m-anisaldehyde 15) expressed higher effect than para-position (p-anisaldehyde 14) and tri-substituted
(2,4,6-trimethoxybenzaldehyde 16) had a greater effect than monosubstituted (aldehydes 14–15).

For derivatives having hydroxyl-substituents (compounds 17–19), the para-position
(4-hydroxybenzaldehyde 18) seemed to have greater effect of herbicidal potential than the
ortho-position (salicylaldehyde 19). Nevertheless, vanillin (17) containing both a para-hydroxyl
group and a meta-methoxy group had very low phytotoxicity against the tested plant.
3-Nitrobenzaldehyde (20), likewise, had no effect on the tested plant. Next, the effect of
a carboxyl substituent (compound 21–23) was investigated and it appeared that the substitution
on the chain outside the benzene ring (aldehyde 23) had more effect than the substitution on
the ring (aldehydes 21–22). Among aldehydes with amino-substituent (compounds 24–27),
4-(dimethylamino)benzaldehyde (24) exhibited a moderate inhibitory effect on the tested plant. In the
case of heteroaromatic aldehydes 28–37, picolinaldehyde (32) inhibited seed germination, shoot and
root growths of Chinese amaranth by 36.36, 46.87, and 81.28% respectively. The derivatives 28, 30 and
35 showed some activities, but other heteroaromatics had no effect.

According to the results mentioned above, (E)-crotonaldehyde (5), (E)-cinnamaldehyde (7) and
picolinaldehyde (32) are the three most reactive chemicals towards Chinese amaranth. In order to
know the minimum molar concentration at which all three compounds could suppress the germination
and seedling growth of the tested dicot, these substances were then investigated at concentrations
of 12.5–400 µM (Figure 4). It revealed that at 200 µM only (E)-cinnamaldehyde (7) could inhibit seed
germination of the tested plant. Aldehyde 7 at the other concentrations and aldehydes 5 and 12 at
12.5–200 µM showed no effect. In terms of shoot length, although at 400 µM, aldehyde 5 and 32 could
inhibit shoot growth, at 12.5–200 µM these two substances had no adverse effect on shoot length.
(E)-Cinnamaldehyde (7), however, could inhibit shoot length at the concentrations as low as 50 µM.
In the case of root development, at concentrations lower than 400 µM, (E)-crotonaldehyde (5) had no
effect on root growth. Picolinaldehyde (32) could inhibit root length at the concentrations down to
100 µM. At concentrations of 50, 100 and 200 µM, the most reactive substance, (E)-cinnamaldehyde (7),
inhibited root length by 22.18, 33.52, and 62.69% respectively.

The results stated above reveal the importance of an unsaturated structure on the herbicidal
activity of aldehydes. This is consistent with numerous reports on the effects of some
polyunsaturated aldehydes (PUAs) on diatoms, planktons, and algae [31,46–52]. For example,
Casotti and coworkers [52] investigated the effects of three diatom-produced PUAs, 2E,4E-decadienal,
2E,4E-octadienal and 2E,4E-heptadienal, on six phytoplankton. The result showed that the
reduction of growth rate of tested plankton was concentration-dependent and species-specific.
Also, the longer-chained aldehydes had stronger effects on the plankton growth than the
shorter-chained aldehydes which is in agreement with our result that (E)-cinnamaldehyde (7) showed
greater adverse effect than (E)-crotonaldehyde (5). Vaughn and Spencer [53] examined the inhibitory
effect of some naturally-occurring aromatic aldehydes and thymol on potato tuber sprouting and found
that most tested compounds inhibited sprouting of tubers exposed up to 10 days. Moreover, direct
application of 1% cinnamaldehyde (7) and 10% benzaldehyde (6) completely suppressed sprouting
for 14 days after treatment without apparent tuber damage. Apart from PUAs, some unsaturated
aldehydes are also found in reactive fractions of plant crude extracts. For instance, Song and
coworkers [42] reported the allelopathic effects of crude extracts from the green peel of Juglans
mandshurica Maxim. on three plants; Brassica chinesis, Raphanus sativus, and Medicago sativa. It was
revealed that the alcohol extract and its ethyl acetate soluble fraction showed good inhibitory activity.
After GC-MS analysis of the extracts it uncovered that aside from a major allelochemical component,
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juglone, some aldehydes such as 4 butoxybenzaldehyde, 5-(hydroxymethyl)-2-furancarboxaldehyde
and 4-hydroxy-2-methoxycinnamaldehyde were also found in the active fractions.Molecules 2018, 23, x FOR PEER REVIEW  7 of 15 
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germination (A), shoot length (B), and root length (C) of Chinese amaranth. A 0.25% (v/v) aqueous
solution of Tween®80 was used as a control. (D) Chinese amaranth in small vials.

Others have shown that (E)-cinnamaldehyde (7) also has antimicrobial activity [26,35,54,55].
For example, Zhang and coworkers [35] studied the structure-activity relationships (SAR) of
cinnamaldehyde (7) and eugenol derivatives against two plant pathogenic fungi, Rhizoctonia solani and
Fusarium oxysporum. It displayed that many derivatives showed good activities against both fungi.
Interestingly, the fungicidal potential of cinnamaldehyde derivatives could be related to conjugated
double bond and the length of CH chain outside the ring. Moreover, the authors suggested that the
presence of the lipophilic part would be influent on the toxicity of phenylpropenes.

Regarding detrimental effects of heteroaromatic aldehydes, among those tested substances,
furfural (28) and picolinaldehyde (32) seemed to have the greatest inhibition on Chinese amaranth.
The reason behind this is still unclear; however, the allelopathic effects of natural products containing
heteroaromatic parts have been extensively documented [56–67]. For examples of pyridyl and furanyl
bearing compounds, Rizvi and coworkers [64] investigated the alellopathic activity of a pyridine
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containing alkaloid, nicotine, on maize (Zea mays) and rice (Oryza sativa) and found that nicotine
adversely affected the germination, radicle and plumule length and seedling vigor of rice. On the
other hand, it favorably affected the growth of maize by increasing the height, specific leaf weight,
and chlorophyll content. Komai and coworkers [61] isolated a plant growth inhibitor, perilla ketone,
from Egoma plant (Perilla frutescens var. japonica) and investigated its inhibitory effect on lettuce
(Lactuca sativa L. c.v. new york.) and large crabgrass (Digitaria adsendens Henr.). Apparently, this ketone
inhibited the radicle elongation of the tested plants at concentrations of 50–100 ppm. However, it did
not inhibit seed germination of lettuce. In 2017, Chahal and coworkers [62] determined the chemical
compositions of root and rhizosphere soil extracts of allelopathic plant, Marigold (Tagetes patula L.)
using GC-MS analysis method. Twenty-five and twenty-seven compounds were identified in the two
fractions. 5-Hydroxymethylfurfural was one of the major components in the methanol root extract
which comprised of 21.81%. Eventually, the authors suggested that those leached compounds would
be responsible for the allelopathic potential of this plant.

2.2. Effects of Tween® 80 Surfactant on Germination and Seedling Growth of Barnyardgrass

Although Tween® 80 helps emulsifying organic compound in an aqueous solution, it could also
affect the germination and growth of plants depending upon the applied concentrations [45]. Therefore,
the minimum quantity of this surfactant that influences the germination and growth of barnyardgrass
have to be evaluated. The concentrations of the aqueous solution of Tween® 80 being investigated were
0.06–1.0% and distilled water was used as a control treatment (Figure 5). Clearly, at concentrations of
0.06–0.25% Tween® 80 had no significant effect on germination and seedling growth of barnyardgrass.
However, at concentrations of 0.5 and 1.0%, this surfactant highly inhibited the germination and
development of barnyardgrass. Therefore, Tween® 80 at a concentration of 0.25% was chosen to use as
a proper surfactant in the next section.
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2.3. Inhibitory Effects of Thirty-Seven Aldehydes on Germination and Seedling Growth of Barnyardgrass

Inhibitory effect of aldehydes at 400 µM on monocotyledon plant, barnyardgrass, was investigated
by utilizing an aqueous solution of Tween® 80 as a surfactant (Figure 6).
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solution of Tween® 80 was used as a control.

Results showed that all tested aldehydes had no effect on seed germination of barnyardgrass.
In terms of shoot growth, (E)-cinnamaldehyde (7) and 4-(dimethylamino)benzaldehyde (24) moderately
inhibited shoot length by 27.83 and 25.80% respectively but other aldehydes showed very low or
no harmful effects. For root growth, (E)-cinnamaldehyde (7), 2,4,6-trimethoxybenzaldehyde (16),
and 4-(dimethylamino) benzaldehyde (24) inhibited root growth of the tested plant by 46.20, 32.21 and
72.77% respectively but other aldehydes, again, had very low or no effects.
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As mentioned above, (E)-cinnamaldehyde (7) and 4-(dimethylamino)benzaldehyde (24) are the
most reactive chemicals toward barnyardgrass. In order to know the minimum concentration that the
two compounds could inhibit the germination and seedling growth of a monocot plant; these two
substances were then tested at concentrations of 12.5–400 µM (Figure 7). It revealed that at 200 µM
aldehydes 7 and 24 inhibited shoot growth by 26.62 and 23.93% respectively but at other lower
concentrations, both compounds showed no effect. In the case of root length, both chemicals could
inhibit root growth at the concentrations down to 100 µM. Compound 7 and compound 24 at the
concentration of 200 µM inhibited root length by 23.81 and 36.31% respectively and at the concentration
of 100 µM inhibited root elongation by 18.00 and 23.72% respectively. However, at lower concentrations
both compounds showed no inhibition.
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80 was used as a control. (D) Shoot and root growth of barnyardgrass.

The inhibitory effect of those thirty-seven aldehydes on dicot and monocot seeds has been
unclosed in the present study. A comparison between the two species of plants showed that this group
of chemicals tends to exhibit a stronger effect on Chinese amaranth than barnyardgrass. This is in
agreement with our previous work [18] that we investigated the allelopathic effect of Makhwaen fruits
on germination and growth of Chinese amaranth and barnyardgrass and eventually led us to isolate
an active phenolic, xanthoxyline. After evaluation of the allelopathic activity of this compound on the
tested plants we found that the germination of the dicot plant was totally inhibited at a concentration
of 2,500 µM. However, at the same applied concentration, this compound showed a lower inhibitory
effect on barnyardgrass. Furthermore, in the present study, most aldehydes affected root growth more
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than shoot growth and all of the tested compounds had no effect on seed germination of barnyardgrass.
Similarly, in 2016, Gauda and coworkers [30] conducted a study on the herbicidal activity of a variety
of monoterpenes against barnyardgrass. They found that, generally, these monoterpenes were more
effective against seedling growth than seed germination of the plant. Besides, the inhibition of root
development by all compounds was greater than that of shoot growth. Our results here indicated that
4-(dimethylamino)benzaldehyde (24) exhibited the greatest detrimental effect on the root length of
barnyardgrass but this substance had a low inhibitory effect on the germination and seedling growth
of Chinese amaranth. Also, the herbicidal potentials of the tested aldehydes relied on the applied
concentrations. These suggested that the inhibitory effect of these chemicals is species-specific and
concentration dependent.

3. Experimental

3.1. Chemicals

Tween® 80, acetaldehyde (1), propionaldehyde (2), butyraldehyde (3), (E)-crotonaldehyde (5),
(E)-cinnamaldehyde (7), o-tolualdehyde (8), cuminaldehyde (9), 2-(trifluoromethyl)benzaldehyde (10),
2-fluorobenzaldehyde (11), 2,4-dichlorobenzaldehyde (12), 3-bromobenzaldehyde (13), p-anisaldehyde (14),
m-anisaldehyde (15), 2,4,6-trimethoxybenzaldehyde (16), vanillin (17), 3-nitrobenzaldehyde (20),
2-formylbenzoic acid (21), 4-formylbenzoic acid (22), 2-(2-formylphenoxy) acetic acid (23),
4-(dimethylamino)benzaldehyde (24), 4-((2-hydroxyethyl)(methyl)amino) benzaldehyde (25),
4-(bis(2-hydroxyethyl)amino)benzaldehyde (26), furfural (28), 1H-pyrrole- 2-carbaldehyde (29),
thiophene-2-carbaldehyde (30), 1-methyl-1H-pyrrole-2-carbaldehyde (31), picolinaldehyde (32),
2-bromonicotinaldehyde (33), oxazole-4-carbaldehyde (34), thiazole-2-carbaldehyde (35),
1H-indole-3-carbaldehyde (36) and 1H-pyrrolo[2,3-b]pyridine-2-carbaldehyde (37) were purchased
from Sigma-Aldrich (Singapore). Hexanal (4), benzaldehyde (6) and 4-hydroxybenzaldehyde (18) were
purchased from Fluka (Buchs, Switzerland). Salicylaldehyde (19) and 4-morpholinobenzaldehyde (27) were
purchased from Tokyo Chemical Industry (TCI, Tokyo, Japan). All compounds were reagent grade and
used without further purification.

3.2. Preparation of Aqueous Solutions of Tween® 80 at Concentrations of 0.06–1.00% (v/v)

As previously described [45], to a 100 mL-beaker, 1 mL of Tween® 80 surfactant and 40 mL of
distilled water were added. The mixture was well mixed by continuous stirring at room temperature
for about 10 min. Then, the clear solution was transferred to a 100 mL–volumetric flask. Adjust the
volume of the flask by adding distilled water, and followed by inverting the flask many times to obtain
a 1% (v/v) Tween® 80 stock solution. Other required concentrations were prepared by a dilution
method to afford the aqueous solutions of Tween® 80 at 0.50, 0.25, 0.13, and 0.06% (v/v) respectively.

3.3. Preparation of Aqueous Solutions of Aldehydes at 400 µM

Into a 100 mL-beaker, forty micromoles of a pure aldehyde and 0.25 mL of Tween® 80 were added.
The mixture was blended until it became clear (or no solid sample remains). To the mixture, 40 mL
of distilled water was added, and the mixture was continuously stirred for 10 min. This thoroughly
mixed solution was transferred to a 100 mL-volumetric flask and the volume of the flask was
adjusted with distilled water to obtain a 400 µM of a pure aldehyde which contained 0.25% (v/v) of
Tween® 80 surfactant.

3.4. Preparation of Aqueous Solutions of Aldehydes at 400, 200, 100, 50, 25 and 12.5 µM

The 400 µM stock solutions of aldehydes 5, 7, 24 and 32 were prepared as described in Section 3.3.
Aqueous solutions of compounds 5, 7, 24 and 32 at concentrations of 200, 100, 50, 25 and 12.5 µM were
prepared by diluting the stock solutions with 0.25% (v/v) aqueous solution of Tween® 80.
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3.5. Tested Plants

Seeds of Chinese amaranth and barnyardgrass were used in the assessment of the herbicidal
activity. Chinese amaranth seeds were purchased from Thai Seed & Agriculture Co. Ltd., Bangkok,
Thailand, and barnyardgrass seeds were collected from rice fields in Phitsanulok Province, Thailand,
in August 2016. The seed germination tests of both species were found to be >80%.

3.6. Seed Germination and Seedling Growth Bioassay

As previously described [45], to a small glass vial (4.5 cm × 2 cm) lined with germination paper,
0.5 mL of an aqueous solution of aldehydes were added. Ten seeds of a tested plant were then placed
on the germination paper. The vials were sealed with Parafilm® (in order that the solution does not dry
out) and maintained at 28–30 ◦C in a growth chamber (cool white 840 Climacell 707, Munich, Germany).
The chamber was set with a 12/12 h dark/light photoperiod, a light intensity of 100 µmol m−2·s−1,
and around 80% of relative humidity. An aqueous solution of Tween® 80 at a concentration of 0.25%
(v/v) was used as a control experiment. The treatments and control group were replicated four times.
After 7 days, numbers of seed germination were counted, shoot length and root length were measured,
and percentages of inhibition were calculated as follows:

Inhabition(% o f control) = 100 − (aldehyde)
(control)

× 100 (1)

3.7. Statistical Analysis

For the effect of Tween® 80 on seed germination and seedling growth of barnyardgrass,
a completely randomized design (CRD) was used. Data were subjected to the analysis of variance and
comparisons were made between treatments at probability level p ≤ 0.05 using Tukey’s studentized
range test.

4. Conclusions

In the present SAR study, the allelopathic effects of a variety of aldehydes were investigated
by using Chinese amaranth as a representative of dicot plant and barnyardgrass as a representative
of monocot plant. Factors determining the reactivity of those aldehyde allelochemicals were found
to be unsaturation of structures, type, number and position of substituents and concentrations of
aldehydes. Most aliphatic aldehydes had no allelopathic effect but α,β-unsaturated compounds
showed supreme activity, especially the most reactive aldehyde, (E)-cinnamaldehyde (7) which could
inhibit both dicot and monocot species. Aromatic aldehydes with methoxy-, hydroxyl- and alkylamino-
substituents in the right position could also inhibit seed germination and seedling growth of the
tested plants. Regarding heteroaromatic aldehydes, picolinaldehyde (32) impressively effected the
germination and growth of the dicot plant in comparison with other related chemicals. Interestingly,
4-(dimethylamino)benzaldehyde (24) showed chemical clues suggesting a species-specific compound.
Obviously, this substance highly inhibited root growth of barnyardgrass. Further research is still
needed to find a mode of actions of these reactive aldehydes and also to develop potential natural
product based herbicides in agrochemical industry.
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