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Abstract: The Protein Kinase Receptor type 2 (RIPK2) plays an important role in the pathogenesis
of inflammatory diseases; it signals downstream of the NOD1 and NOD2 intracellular sensors
and promotes a productive inflammatory response. However, excessive NOD2 signaling
has been associated with various diseases, including sarcoidosis and inflammatory arthritis;
the pharmacological inhibition of RIPK2 is an affinity strategy that demonstrates an increased
expression of pro-inflammatory secretion activity. In this study, a pharmacophoric model based on
the crystallographic pose of ponatinib, a potent RIPK2 inhibitor, and 30 other ones selected from
the BindingDB repository database, was built. Compounds were selected based on the available
ZINC compounds database and in silico predictions of their pharmacokinetic, toxicity and potential
biological activity. Molecular docking was performed to identify the probable interactions of the
compounds as well as their binding affinity with RIPK2. The compounds were analyzed to ponatinib
and WEHI-345, which also used as a control. At least one of the compounds exhibited suitable
pharmacokinetic properties, low toxicity and an interesting binding affinity and high fitness compared
with the crystallographic pose of WEHI-345 in complex with RIPK2. This compound also possessed
suitable synthetic accessibility, rendering it a potential and very promising RIPK2 inhibitor to be
further investigated in regards to different diseases, particularly inflammatory ones.
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1. Introduction

The protein kinase receptor type 2 (RIPK2) plays an essential role in the immune response and
has been suggested to be a target in inflammatory diseases such as Crohn’s disease, inflammatory
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bowel disease, asthma and arthritis [1]. RIPK2 signals downstream of the NOD1 and NOD2
intracellular sensors promote a productive inflammatory response. However, excessive NOD2
signaling has been associated with various diseases including sarcoidosis and inflammatory arthritis;
the pharmacological inhibition of RIPK2 is an affinity strategy that demonstrates an increased
expression of pro-inflammatory secretion activity [1].

Drugs that inhibit RIPK2 may be quite effective at treating many different inflammatory diseases.
According to Canning et al. [2], the compound ponatinib provided a structural base, when identifying
an allosteric site, for the development of new inhibitors at this target. Characterization of ponatinib
reveals desirable clinical features in treatment with tyrosine kinase inhibitors and a small molecule
inhibitor of said protein [3]. However, because ponatinib is associated with side effects, has ruled
against its consumption. Its dermatological side effects include rashes, erythematous and dermatitis,
dry skin and erythema nodosum [4]. WEHI-345, shown in Figure 1, has been identified as a potent
and selective inhibitor for RIPK2 [5]. WEHI-345 is an ATP analog and binds to the ATP binding pocket
of RIPK2, IC50: 0.13 µM [5].
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Figure 1. 2D chemical structure of compound WEHI-345. 

This study presents the design of novel potential drugs with anti-inflammatory activity in 
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Data Bank (PDB, code 4C8B) and the BindingDB web server, respectively. We used the ZINC compounds 
database and predicted the in silico pharmacokinetic and toxicological properties of all of the compounds 
using virtual screening. This methodology was also employed by Leung and Ma [9] and Shoichet [10]. 
Furthermore, we assessed the potential biological activity for all of the novel compounds and the main 
enzyme-inhibitor interactions and binding affinity (kcal/mol). Yang et al. [11] and Kitchen et al. [12] also 
followed this technique. At least one of the compounds exhibited suitable pharmacokinetic 
properties, low toxicity and an interesting binding affinity and high fitness compared with the 
crystallographic pose (conformation + orientation) of WEHI-345 in complex with RIPK2. This 
compound also possesses suitable synthetic accessibility, rendering it a potential and very promising 
RIPK2 inhibitor to be further investigated with respect to different diseases, particularly 
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Figure 1. 2D chemical structure of compound WEHI-345.

This study presents the design of novel potential drugs with anti-inflammatory activity in
rheumatoid arthritis. Pharmacophore- and structure-based virtual screening approaches have been
employed, as in similar studies conducted by Cichero et al. [6,7] and Liessi et al. [8]. In this analysis,
the ponatinib as a template as well as 30 reported RIPK2 inhibitors, were selected from the Protein
Data Bank (PDB, code 4C8B) and the BindingDB web server, respectively. We used the ZINC
compounds database and predicted the in silico pharmacokinetic and toxicological properties of
all of the compounds using virtual screening. This methodology was also employed by Leung
and Ma [9] and Shoichet [10]. Furthermore, we assessed the potential biological activity for all of
the novel compounds and the main enzyme-inhibitor interactions and binding affinity (kcal/mol).
Yang et al. [11] and Kitchen et al. [12] also followed this technique. At least one of the compounds
exhibited suitable pharmacokinetic properties, low toxicity and an interesting binding affinity and
high fitness compared with the crystallographic pose (conformation + orientation) of WEHI-345 in
complex with RIPK2. This compound also possesses suitable synthetic accessibility, rendering it a
potential and very promising RIPK2 inhibitor to be further investigated with respect to different
diseases, particularly inflammatory ones.

2. Results and Discussion

2.1. Pharmacophore Perception

We used the GALAHAD software [13] to generate pharmacophoric models based on known
RIPK2 inhibitors (Figure 2). We allowed their torsional angles to vary, consistent with work by different
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authors [13–15]. We analyzed different sets and arrays of features for each pharmacophoric model that
was generated (Table 1). Among the 10 pharmacophore models that we generated, five were discarded
based on deformation energy criteria (<100 kcal mol).

Table 1. Features of each pharmacophoric model generated using GALAHAD.

Model Specificity N_Hits Features Pareto Energy (kcal/mol) Sterics HBond Mol_QRY

01 2.399 03 07 00 1215.88 541.80 57.00 3.29
02 3.069 01 09 00 90.97 532.10 54.00 2.22
03 3.875 00 06 00 303, 52.40 537.80 55.30 5.78
04 3.676 01 05 00 31.35 529.70 55.30 0.58
05 2.993 03 05 00 30.33 472.30 54.60 2.25
06 1.900 03 04 00 148.83 533.80 52.90 2.67
07 5.526 00 08 00 187, 147.79 547.20 56.80 0.53
08 3.939 01 06 00 4453, 411.50 549.30 56.50 1.67
09 3.068 03 05 00 45.49 536.90 54.60 0.22
10 3.082 04 04 00 72.56 514.90 55.20 0.80

Comparison of the Pareto indices revealed that they were statistically equivalent, although Model
07 indicated a high index of discrimination of the expected molecules (specificity > 5) compared with
each model. Despite this fact, Model 07 did not satisfy the active training set as well as Model 03.
Considering that the Mol_qry values reflect the agreement observed between the tuplet query and the
hypermolecule generated, several studies have suggested that this parameter can be used to select the
best pharmacophoric models. However, useful models can also have low Mol_qry values [16].

To circumvent this limitation, a well-established approach was used to select favorable
pharmacophoric models. We relied on the ability to differentiate true binders from false positives [13].
Using such a strategy, we identified the pharmacophore model with the highest specificity and
sensitivity and the ability to detect/select RIPK2 inhibitors instead of congenital molecules lacking
activity. A dataset containing 17 RIPK2 inhibitors and 850 false positives was used to build ROC
curves and to analyze the respective areas under the curve (AUC-ROC) using the QFIT value (0–100)
(UNITY module alignment result, implemented in SYBYL-X 2.0 software) [17]. An AUC-ROC equal to
1.0 would be found in a model with impeccable specificity and sensitivity, and AUC = 0.5 would be
associated with models with a poorer selection ability that was more pronounced than a random one.
AUC > 0.70 may be considered to be a moderate predictive ability [18,19] (Figure 3). Therefore, Model
05 (AUC = 0.72) was selected as the most reliable pharmacophore for further analysis (Figure 2).
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Figure 2. Best pharmacophore model here obtained for RIPK2 inhibitors. This model has two
hydrophobic centers (cyan spheres), two hydrogen bond acceptors (green spheres) and a hydrogen
bond donor (magenta dotted sphere). The size of the beads varies according to the tolerance radius
calculated using GALAHAD. All the distances are measured in Angstroms.
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In Figure 2, Model 05 has two hydrophobic centers (cyan spheres), two hydrogen bond acceptors
(green spheres) and one hydrogen bond donor (dotted magenta spheres). As observed across the kinase
family, RIPK2 is characterized by a conserved domain; Glu66 and Asp164 residues allow hydrogen
bonds with donor groups, and they are oriented towards a hydrophobic arrangement that offers an
opportunity to optimize the selectivity of inhibitors [20].

Several authors have reported the importance of the polar interactions established by 25 residues
for binding affinity; they have also noted that Ser176 plays an important role in modulating RIPK2
activity [2,5]. Among the common functional groups of molecules aligned generation of a common
pharmacophoric pattern, the hydrophobic and hydrogen bond donor and/or acceptor ones can interact
with the kinase domain, such as observed in Model 05.
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The diagonal line represents a model that would not be better than a randomic one (AUC < 0.5).

In addition to the predictive ability of the pharmacophoric model to recognize active compounds
and false positives, model power measurement is essential information for virtual screening of new
potential RIPK2 inhibitors. We assessed the ability of Model 05 to recognize inhibitors according to
potency. By analyzing the conserved domain of kinases, we visualized the requirement of inhibitors
containing hydrogen bond donor and acceptor groups and hydrophobic ones. Although compounds
satisfied these pharmacophoric requirements to be potent RIPK2 inhibitors (Figure 4a), there was
weak alignment between the inhibitor and Model 05 (Figure 4b). Despite the lack of a pharmacophore
model for RIPK2 being reported thus far, the search for compounds fitting the pharmacophoric model
that can make polar interactions with conserved catalytic residues increases the possibility of finding
new hits. These compounds must possess characteristics that can be recognized by the active domain,
and research is exploring the chemical diversity by enlarging the chemical space known thus far.

Once the Model 05 was chosen as the more reliable pharmacophoric one, virtual screening
simulations we carried out virtual screening simulations in the ZINC compounds database [21] and
found 1637 compounds with molecular groups that fit such a pharmacophore pattern. Thereafter,
the pharmacokinetic predictions were subsequently performed for all of the compounds that we
screened; 871 compounds were filtered/selected at this stage of the design process. In sequence,
toxicological analyses were carried out using the next filter Derek 10.0.2 [22]; 414 “survivor”
compounds were obtained.
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Figure 4. Potent RIPK2 inhibitor (a) IC50 = 0.90 µM, Mol_qry value = 51.35; and (b) weak RIPK2
inhibitor IC50 = 1.40 µM, Mol_qry value = 04.10 superimposed to the pharmacophoric Model 05,
where green beads/spheres represents Hbond acceptor groups, magenta doted sphere represents
Hbond donor groups, while hydrophobic ones are shown in cyan spheres. The size of the beads
varies according to the tolerance radius calculated using GALAHAD. All the distances are measured
in angstroms.

2.2. Prediction of Activity Spectra for Substances

Prediction of potential biological activity was performed using the Prediction of Activity Spectral
for Substances (PASS) [23] web server, which resulted in 29 selected compounds. Table 2 lists the
characteristics/activity that we considered: anti-inflammatory activity, kinase inhibitor, autoimmune
disease and treatment of rheumatoid arthritis. Values of Pa and Pi varying from 0 to 1 refer to the
mean probability of being active or inactive, respectively. Estimates of the biological activity using
PASS were related to aspects of similarity with other bioactive substances [24].

According to Table 2, the compounds ZINC69349685, ZINC69349687, ZINC69431616,
ZINC69431621 (with autoimmune and/or anti-inflammatory activities) and ZINC91072217 (kinase
inhibitor), all with Pa > 0.5, were associated with the highest possibilities of being similar to other
known bioactive compounds [25]. However, other compounds with Pa < 0.5 have also been selected to
the next steps of the design process, when Pa > Pi, such as considered by Rodrigues and Silva [26].

Table 2. Prediction of biological activity of substances (PASS).

Compound (ZINC Code) Biological Activity Pa Pi

ZINC69349685

Autoimmune 0.84 0.005
Anti-inflammatory 0.538 0.046

Treatment of rheumatoid arthritis 0.434 0.019
Kinase Inhibitor 0.316 0.128

ZINC69349687

Autoimmune 0.784 0.005
Anti-inflamatória 0.538 0.046

Treatment of rheumatoid arthritis 0.434 0.019
Kinase Inhibitor 0.316 0.128

ZINC69431616

Autoimmune 0.790 0.005
Anti-inflammatory 0.573 0.038

Treatment of rheumatoid arthritis 0.436 0.019
Kinase Inhibitor 0.133 0.104

ZINC69431621

Autoimmune 0.790 0.005
Anti-inflammatory 0.573 0.038

Treatment of rheumatoid arthritis 0.436 0.019
Kinase Inhibitor 0.133 0.104

ZINC91072217
Kinase Inhibitor 0.572 0.023

Anti-inflammatory 0.259 0.203
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2.3. Molecular Docking: Molecular Interactions of the Selected Compounds

To validate the molecular docking approach that we used, the crystallographic pose of ponatinib,
derived from the RPIK2-ponatinib complex structure (PDB ID 4C8B), and the top-ranked docking pose
that we obtained were compared. The results are shown in Figure 5, which reveals the superposition
of the two binding poses of ponatinib inside the RIPK2 binding site. This superposition results in a
RMSD of superposition of 0.77. This result is below the well-established tolerance level of 2.0 Å, as has
been reported by Hevener et al. and others [27,28].
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site (derived from PDB ID 4C8B), obtained with the AutoDock software: in red, the crystallographic
pose; in green, the top-ranked docking pose. Inhibitor is represented in stick, whereas the RIPK2 active
site is represented as a Ribbons diagram (in lines).

In Table 3, only the interactions of RIPK2 with the crystallographic ponatinib or WEHI-345 are
listed. Interactions of RIPK2 and the potential inhibitors screened here are listed in Table 4.
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In Table 4, we list the binding affinity values calculated using AutoDock for the best-ranked
compounds selected with the virtual screening approach [29]. The binding affinity values ranged
from −7.80 kcal/mol (for ZINC81021663) to −11.00 kcal/mol (for ZINC90174766) relative to RIPK2.
In Figure 6, we show all the compounds with interesting potential affinity for RIPK2 and values similar
to the observed for ponatinib and WEHI-345.

Table 3. Interactions between RIPK2 (PDB 4C8B) and ponatinib or WEHI-345, obtained using the
AutoDock/Vina software are shown.

Compound Amino Acid Type Distance (Å) Binding Affinity (in kcal/mol)

Ponatinib

LYS47 Hydrogen Bond 3.09

−13.30

HIS144 Hydrogen Bond 3.12
ALA45 Alkyl 3.33
VAL32 Alkyl 4.98
LYS47 Alkyl 4.80
LEU70 Alkyl 5.42
HIS144 π-Alkyl 4.90
LYS47 π-Alkyl 4.23
LEU79 π-Alkyl 5.47
ALA45 π-Alkyl 4.03

ALA163 π-Alkyl 5.04

WEHI-345

ILE162 Hydrogen Bond 2.43

−7.50

GLU66 Hydrogen Bond 3.06
THR95 π-Donor 4.03

ALA163 Alkyl 4.17
ALA163 Alkyl 3.09
LEU70 Alkyl 3.60
LEU79 Alkyl 3.87
LEU79 Alkyl 5.08
ILE69 Alkyl 4.98
LEU70 π-Alkyl 4.600

ALA163 π-Alkyl 5.19
VAL32 π-Alkyl 4.50
ALA45 π-Alkyl 4.48
LYS47 π-Alkyl 3.82
ILE69 π-Alkyl 4.63

Table 4. Interactions between RIPK2 (from PDB ID 4C8B) and the following compounds are
shown, after docking calculations: ZINC90174766, ZINC91725665, ZINC69431616, ZINC12230819,
ZINC12230826, ZINC12230756, ZINC69431621, ZINC90174764, ZINC91881108, ZINC69349687,
ZINC91725663, ZINC89571615, ZINC87131463 and ZINC81021663.

Compound Amino Acid Type Distance (Å) Binding Affinity (in kcal/mol)

ZINC90174766

LEU70 π-Alkyl 5.12

−11.00
ALA163 πAlkyl 4.77
LEU79 π-Alkyl 5.23
ALA45 π-Alkyl 3.71
VAL32 π-Alkyl 5.14

ZINC91725665

VAL32 Alkyl 4.12

−10.80

ALA45 Alkyl 3.04
LEU79 Alkyl 4.42
LYS47 π-Alkyl 4.55

ALA163 Alkyl 2.94
GLU66 Hydrogen Bond 2.54
ILE69 π-Alkyl 5.11
LEU70 π-Alkyl 4.37
LYS47 π-Alkyl 5.29

ZINC69349685
LEU79 Alkyl 5.06

−10.40ALA163 π-Alkyl 5.48
ILE69 π-Alkyl 4.56
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Table 4. Cont.

Compound Amino Acid Type Distance (Å) Binding Affinity (in kcal/mol)

ZINC69431616

VAL32 π-Alkyl 5.10

−10.20
ALA45 π-Alkyl 3.65
LEU79 π-Alkyl 5.40
LEU70 π-Alkyl 4.28

ZINC12230819

GLU66 Hydrogen Bond 2.71

−9.80
ILE69 π-Alkyl 5.44
LYS47 Hydrogen Bond 2.79
LYS47 Hydrogen Bond 3.03

ZINC12230826

LYS47 Hydrogen Bond 2.81

−9.80
LYS47 Hydrogen Bond 2.64
GLU66 Hydrogen Bond 2.54
GLU66 Hydrogen Bond 3.32
HIS144 π-Alkyl 3.23

ZINC12230756

LYS47 Hydrogen Bond 2.78

−8.50

LYS47 Hydrogen Bond 2.33
GLU66 Hydrogen Bond 2.43
LEU70 Alkyl 4.82
ILE69 π-Alkyl 5.10
VAL32 π-Alkyl 5.04
ALA45 π-Alkyl 4.57
LYS47 π-Alkyl 4.55
LEU79 π-Alkyl 5.39

ZINC91881108

ASP164 Hydrogen Bond 2.53

−8.10

ILE162 Hydrogen Bond 2.18
GLU66 Hydrogen Bond 2.28
ALA45 Alkyl 3.84

ALA163 Alkyl 4.54
LEU70 Alkyl 5.24
LEU79 Alkyl 4.75
VAL32 Alkyl 4.31
LYS47 Alkyl 4.39

ZINC69349687

ALA163 π-Alkyl 5.08

−8.00

VAL32 π-Alkyl 4.78
ALA45 π-Alkyl 5.27
LYS47 π-Alkyl 4.84
LEU79 π-Alkyl 5.33

ALA163 π-Alkyl 5.45

ZINC89571615

LYS47 Hydrogen Bond 2.52

−7.90

GLU66 Hydrogen Bond 3.04
HIS144 Hydrogen Bond 2.70
GLU66 Hydrogen Bond 2.74
LEU70 Alkyl 4.93
ILE69 π-Alkyl 5.38

ZINC87131463
HIS144 Hydrogen Bond 3.62

−7.90ILE69 Alkyl 4.17
LEU70 Alkyl 3.73

ZINC81021663

ILE162 Hydrogen Bond 2.89

−7.80

LYS47 Alkyl 5.02
LEU70 Alkyl 5.06
LEU79 Alkyl 5.20

ALA163 Alkyl 4.00
LEU70 Alkyl 4.26
LEU79 Alkyl 4.69

A complete net of interactions and contacts between RIPK2 and the template compound, ponatinib,
is shown in Figure 7; a similar net of molecular interactions between RIPK2 and the compounds selected
after virtual screening, followed by docking single, is shown in Figure 8. Most of the interactions predicted
with docking for the 12 compounds (Figure 9) were the same as those observed for ponatinib (Table 4).
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and three π-alkyl interactions (with ALA45, LYS47 and LEU79) and one alkyl interaction with LEU70 
from the same human enzyme structure. ZINC91881108 has four alkyl interactions with RIPK2, via 
ALA45, LEU70, VAL32 and LYS47. ZINC69349687 interacts via π-alkyl bonds with ALA163, ALA45, 
LYS47, LEU79 and ALA163 from RIPK2. ZINC89571615 has two hydrogen bonds (LYS47 and 
HIS144) and an alkyl interaction (LEU70 from the same enzyme structure. ZINC87131463 interacts 
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Alkyl bonds with LYS47 and LEU70.  

Regarding the compound WEHI-345, all of the interactions observed with RIPK2 were also 
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with GLU66, and ZINC12230756 interacts via hydrogen bonds with GLU66 from RIPK2 and one 
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Figure 9. 2D chemical structures of 12 predicted molecules selected with molecular coupling:
(a) ZINC90174766; (b) ZINC91725665; (c) ZINC69349685; (d) ZINC69431616; (e) ZINC12230819;
(f) ZINC12230826; (g) ZINC12230756; (h) ZINC91881108; (i) ZINC69349687; (j) ZINC89571615;
(k) ZINC87131463 and (l) ZINC81021663.

ZINC90174766 interacts by π-alkyl with the ALA163, LEU79 and ALA45 residues from RIPK2,
and ZINC91725665 has two π-alkyl interactions with LYS47 and two alkyl interactions, with VAL32
and ALA45 from the same human enzyme structure. ZINC69349685 interacts only via the π-alkyl bond
with ALA163 from RIPK2, and ZINC69431616 has two π-alkyl interactions, with ALA45 and LEU79
from the same enzyme structure. For ZINC12230819, two hydrogen bond interactions with LYS47
from RIPK2 were observed, and ZINC12230826 interacts with RIPK2 LYS47 via two hydrogen bonds
and one π-alkyl with HIS144. ZINC12230756 has two hydrogen bonds with LYS47 from RIPK2 and
three π-alkyl interactions (with ALA45, LYS47 and LEU79) and one alkyl interaction with LEU70 from
the same human enzyme structure. ZINC91881108 has four alkyl interactions with RIPK2, via ALA45,
LEU70, VAL32 and LYS47. ZINC69349687 interacts via π-alkyl bonds with ALA163, ALA45, LYS47,
LEU79 and ALA163 from RIPK2. ZINC89571615 has two hydrogen bonds (LYS47 and HIS144) and an
alkyl interaction (LEU70 from the same enzyme structure. ZINC87131463 interacts via hydrogen bond
with RIPK2 HIS144 and an alkyl interaction with LEU70; ZINC81021663 has Alkyl bonds with LYS47
and LEU70.

Regarding the compound WEHI-345, all of the interactions observed with RIPK2 were also present
in the RIPK2-inihibitor complex formed with the compounds selected. ZINC90174766 has four π-alkyl
interactions with LEU70, ALA163, ALA45 and VAL32 from human RIPK2, and ZIN91725665 has a
hydrogen bond with GLU66 and four π-alkyl interactions (with LYS47, ILE69, LEU70 and LYS47)
and two alkyl interactions with LEU79 and ALA163 from the same enzyme structure. ZINC69349685
has an alkyl interaction with LEU79 and two π-alkyl interactions with ALA163 and ILE69 from
RIPK2. Docking for ZINC69431616 reveals three π-alkyl interactions with VAL32, ALA45 and LEU70
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from the same enzyme structure. For ZINC12230819, a hydrogen bond is observed with RIPK2
GLU66, as well as a π-alkyl with ILE69. ZINC12230826 has two hydrogen bonds with GLU66, and
ZINC12230756 interacts via hydrogen bonds with GLU66 from RIPK2 and one Alkyl interaction with
LEU70 as well as four π-alkyl bonds with ILE69, VAL32, ALA45 and LYS47 from the same enzyme
structure. ZINC91881108 has hydrogen bonds with ILE162 and GLU66 from RIPK2 and three other
alkyl interactions with ALA163, LEU70 and LEU79. ZINC69349687 interacts via five π-alkyl bonds
with ALA163, VAL32, ALA45, LYS47 and ALA163. For ZINC89571615, two hydrogen bonds are
observed with RIPK2 GLU66, one Pi-alkyl interaction with ILE69, and one alkyl interaction with the
same amino acid residue. ZINC87131463 has two alkyl interactions with RIPK2, via ILE69 and LEU70,
and ZINC81021663 has alkyl interactions with LEU70, LEU79 and ALA163 and one hydrogen bond
with ILE162 from the same enzyme structure.

2.4. Molecular Overlap of Screened Compounds with Ponatinib and WEHI-345

Similarity analysis of the molecular overlap of the compounds selected, after molecular docking,
with ponatinib WEHI-345 can be observed for the most promising compounds based on the data in
Tables 5 and 6, respectively. 100% steric (100ste) and 100% electronic (100elt), 60% steric (60est) and
40% electronic (40elt) and 50% steric and electronic (50est/elt) similarities to ponatinib are listed in
Table 5, and the same pairs of similarities compared with WEHI-345 are listed in Table 6.

Table 5. Similarity analyses for the molecular overlap of the compounds for 100ste, 100elt, 60est and
40elt, 50est/elt, relative to ponatinib.

Similarity of Overlay (%)

Compound 100ste 100elt 60est/40elt 40est/60elt 50est/elt

ZINC90174766 0.7169 0.3917 0.4757 0.3669 0.4202
ZINC91725665 0.7128 0.4167 0.4802 0.3666 0.4234
ZINC91881108 0.4865 0.5520 0.4701 0.4775 0.4740

Our analysis regarding the template compound (ponatinib) revealed the compounds
ZINC90174766, ZINC91725665 (100ste), ZINC91881108 (100elt) as exhibiting the highest values of
similarity of the molecular overlap (Table 5). According to Costa et al. [30], the closer the value of is to
1 the greater the degree of structural similarity between the compounds.

Analysis regarding to the WEHI-345 revealed that the compounds ZINC12230819, ZINC91881108
(100elt) and ZINC81021663 (60est/40elt; 40est/60elt; 50est/elt) exhibited the largest values of similarity
of overlay compared with the other ones (Table 6).

Table 6. Similarity analyses for the molecular overlap of the compounds for 100ste, 100elt, 60est and
40elt, 50est/elt, relative to WEHI-345.

Similarity of Overlay (%)

Compound 100ste 100elt 60est/40elt 40est/60elt 50est/elt

ZINC12230819 0.7824 0.3623 0.4717 0.3390 0.4036
ZINC91881108 0.6491 0.5645 0.4611 0.4131 0.4361
ZINC81021663 0.6802 0.3527 0.5687 0.5192 0.5438

It is worth noting that the compound ZINC91881108 stood out with the highest value for similarity
of molecular overlap, based on a 100% electronic analysis, compared with ponatinib and WEHI-345.

2.5. Overlap of Potential RIPK2 Inhibitors Regarding the Pharmacophoric Model

We evaluated the concordance between the pharmacophoric features and the groups found in
these new molecules. Then, by superimposing them on the model, in accordance with the respective



Molecules 2018, 23, 453 13 of 25

Cartesian coordinates and radii, we observed that only 10 of the 15 compounds successfully overlapped
with the model. The overlapping score (QFIT) ranged from 12.21–52.28, as indicated in Table 7.

Table 7. Compounds with QFIT > 0, which were analyzed using the CHEMGPS-NP server.

Compound QFIT Value

ZINC91881108 52.28
ZINC81021663 31.26
ZINC89571615 25.83
ZINC69349687 18.61
ZINC12230819 17.69
ZINC69349685 15.23
ZINC12230756 14.62
ZINC69431616 14.13
ZINC12230826 12.21

ZINC91881108 exhibited the best value of QFIT (52.28%). The aim of finding potential molecules
that overlap with the best model is to identify a promising compound that possesses the essential
stereo-electronic requirements for RIPK2 inhibition that is described/explained by the pharmacophoric
model. Figure 10 shows the 20 compounds aligned according to the established Cartesian coordinates.
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ponatinib exhibited a value of 73%. 

The apparent perception of absorption of drugs in the gastrointestinal tract using Caco-2 and 
MDCK cells (ACP and AMP, respectively) was investigated for values <25 (low) and >500 (optimum). 
Most of the molecules listed in Table 8 exhibit excellent values, except for the compounds 
ZINC12230819, ZINC12230826, ZINC89571615 and the template and control compounds (ponatinib 
and WEHI-345), which were considered to be intermediates. 

The parameter established to indicate inactivity for penetration into the blood-brain barrier and 
consequent CNS activity includes values below 1 (CBrain/CBlood < 1). In this work, all the compounds 

Figure 10. Representation of the ten compounds that fit to the pharmacophoric model, with QFIT > 0.
Green beads/spheres represent H-bond acceptor groups, magenta dotted spheres represent H-bond
donor groups, while hydrophobic centers are shown in cyan spheres. Size of the beads varies according
to the tolerance radius calculated using GALAHAD. All the distances are measured in angstroms
(a) ZINC91881108; (b) ZINC81021663; (c) ZINC89571615; (d) ZINC69349687; (e) ZINC12230819;
(f) ZINC69349685; (g) ZINC12230756; (h) ZINC69431616 and (i) ZINC12230826.

2.6. Analysis of the Physicochemical and Toxicological Properties of the Compounds

Pharmacokinetic properties are strictly related to the administration of a drug, and they involve
aspects of absorption, distribution, metabolism and excretion in the organism [31].

In Table 8, data are listed for eight molecular descriptors for analysis of 10 selected compounds.
These data include the following parameters: drug similarity (number of stars/violations), Lipinski
rule of five, percentage of human absorption (HOA%), Caco-2 and MDCK cell permeation,
hydrophilic/lipophilic balance (Qplog Po/w), central nervous system (CNS) activity and blood-brain
barrier permeability (Qplog BBB).

The parameter “stars” indicates descriptors that are outside (violations) the optimum range of
values described for 95% of known drugs contained in the QikProp database. In such analyses, all of
the selected compounds exhibited values equal to zero (no violations), indicating important similarity
with commercially available drugs. On the other hand, ponatinib exhibited violations.

The Lipinski rule of five represents a well-established form of simple limits for absorption and
permeability of drugs. In Table 8, data show that all the compounds selected exhibited interesting
increases in oral absorption in the organism. The percentage of human oral absorption (HOA%) was
considered to be high; all of the compounds exhibited values higher than 80%. On the other hand,
ponatinib exhibited a value of 73%.

The apparent perception of absorption of drugs in the gastrointestinal tract using Caco-2
and MDCK cells (ACP and AMP, respectively) was investigated for values <25 (low) and >500
(optimum). Most of the molecules listed in Table 8 exhibit excellent values, except for the compounds
ZINC12230819, ZINC12230826, ZINC89571615 and the template and control compounds (ponatinib
and WEHI-345), which were considered to be intermediates.
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The parameter established to indicate inactivity for penetration into the blood-brain barrier and
consequent CNS activity includes values below 1 (CBrain/CBlood < 1). In this work, all the compounds
exhibited values lower than 1. Ideally, these compounds can be thought as being inactive in the CNS
and therefore immune to side effects in humans [32]. In considering the permeability of drugs into the
CNS (calculating Qplog BBB)—negative values indicate a higher concentration of the compound in
the blood than in the brain—our results indicate that the compounds we investigated only exhibited
negative values. The parameter established as QPlog Po/w, with an optimum interval ranging from
−2.0 to 6.5, is related to the bioavailability and permeability of the compounds through the membranes
in the hydrophilic and lipophilic balance. To this end, all of the compounds that we investigated fell
within the given limits (Table 8).

Table 8. Pharmacokinetic properties of nine selected compounds as well as ponatinib and WEHI-345.

Compound Stars Rule of Five % HOA ACP (nm/s) AMP (nm/s) QPlog Po/w CNS QPlog BBB

Ponatinib 1 1 73.645 67.076 119.394 4.605 1 −0.026
WEHI-345 0 0 93.941 456.487 211.950 3.313 −2 −1.220

ZINC69349685 0 0 100.00 1300.94 3123.35 2.563 −1 −0.281
ZINC69431616 0 0 100.00 1695.74 4585.45 2.910 −1 −0.145
ZINC12230819 0 0 80.392 362.468 467.713 1.305 −2 −1.048
ZINC12230826 0 0 82.927 462.942 598.190 1.413 −1 −0.871
ZINC12230756 0 0 84.316 561.255 418.589 1.395 −1 −0.809
ZINC91881108 0 0 94.985 1169.73 586.063 2.242 0 −0.577
ZINC69349687 0 0 100.00 1297.59 3147.44 2.566 −1 −0.282
ZINC89571615 0 0 83.225 229.628 131.490 2.395 −2 −1.455
ZINC81021663 0 0 89.971 946.013 748.108 1.667 0 −0.526

In the toxicological in silico investigation of the nine selected compounds, which was performed
using DEREK Nexus software, potential toxicity (carcinogenicity, chromosomal damage, genotoxicity,
hepatotoxicity, HERG channel inhibition, irritation, mutagenicity, reproduction toxicity, respiratory
sensitization, skin sensitization, thyroid toxicity) was analyzed. We found that none of the compounds
analyzed had a potential toxic. On the other hand, the template compound (ponatinib) exhibited a
toxicophoric group (aryl piperazine) based on DEREK 10.0.2 Nexus software [22] analysis.

2.7. Prediction of Synthetic Accessibility

The synthetic accessibility of the compound ZINC91881108 had a computed score of 5.01
(moderately difficult) (Table 9). This finding is similar to that of ponatinib as well as WEHI-345,
leaving us to propose future synthesis and subsequent activity assays for such a compound.

Table 9. Prediction of synthetic accessibility of ponatinib, WEHI-345 and the selected compound ZINC91881108.

Compound Accessibility

Ponatinib 5.10
WEHI-345 4.86

ZINC91881108 5.01

2.8. Structure—Activity Relationship of the Promising Molecule

The biological response of a structurally specific drug depends necessarily on the identification of
the active site and its spatial mutuality. Therefore, analysis of the pharmacophore cluster enables the
stereo-electronic recognition that is fundamental to its pharmacological activity [33]. According to a study
by Canning et al. [2] of the crystallographic pose of the amino acid residue interactions of the RIPK2
complexed to ponatinib, there are hydrogen bonds (interactions with Glu66A, Asp164A, Met98A) and
hydrophobic interactions. Therefore, the pharmacophore (Figure 2) shares hydrophobic regions and the
promising molecule ZINC91881108 interacts with hydrogen bonds (Asp164 and Glu66) (Figure 11).
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When analyzing ponatinib (Figure 12) (1) (compound template), we observed that it had regions
characterized by an imidazole ring, which forms hydrogen bonds, and hydrophobically interacting
pyridazine. In Figure 11, we show the molecule ZINC91881108 possessing the pyridine derivative
group, which has anti-inflammatory activities. This finding has been reported by Sondhi et al. [34] and
Sangshetti et al. [35].
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The primary amine present in the compound and the hydroxyl is an important group because it
is capable of improving the solubility of the compound and modifying the chemical reactivity of the
drug-receptor interaction [36].

Molecules 2018, 23, x FOR PEER REVIEW  16 of 25 

 

pyridazine. In Figure 11, we show the molecule ZINC91881108 possessing the pyridine derivative 
group, which has anti-inflammatory activities. This finding has been reported by Sondhi et al. [34] 
and Sangshetti et al. [35]. 

CH3

OH

N

N

 
Figure 11. Promising molecule ZINC91881108 obtained after virtual screening. 

The primary amine present in the compound and the hydroxyl is an important group because it 
is capable of improving the solubility of the compound and modifying the chemical reactivity of the 
drug-receptor interaction [36]. 

1 2 3 

N
N

N

NH

O

NN

CH3

F
F

FCH3

 

NNH

N

S
OCH3

F  

N

N

N
N

CH3
CH3

CH3

Cl

NH2

 
Template (ponatinib) IC50: 0.014 μM IC50: 0.016 μM IC50: 0.019 μM 

4 5 6 

N

N N

N

N

NH

 
O

NH

O
N

N

CH3

O
CH3

 

N

NN
N

CH3

CH3
CH3

CH3

NH2

 
IC50: 0.025 μM IC50: 0.026 μM IC50: 0.026 μM 

7 8 9 

N

NH
O CH3

NH

F

O

NH

F

F

F

Cl

O

 

N

NH2

O

NN

N

CH3

 

N

N

NH

O

ON

O

CH3

F

Cl  

IC50: 0.041 μM IC50: 0.044 μM IC50: 0.049 μM 

  
Figure 12. Cont.



Molecules 2018, 23, 453 17 of 25

Molecules 2018, 23, x FOR PEER REVIEW  17 of 25 

 

10 11 12 

NN

N

N

N
H

NH

F

NCH3

 

N

NH

O

CH3O

NHO

NH

F

F

F

Cl

 

N

N

N

N

OH

N

NH

S

NH

O

Cl

CH3

CH3

 
IC50: 0.054 μM IC50: 0.075 μM IC50: 0.109 μM 

13 14 15 

N

N

NH
N

N

NH2

O

CH3

 

N

N

N

N

NH2

CH3

CH3 CH3

 

N

N

N
N

CH3
CH3

CH3

NH2

 
IC50: 0.111 μM IC50: 0.120 μM IC50: 0.130 μM 

16 17 18 

OH

OH

CH2

CH3

CH3

CH3

CH3

CH3 O

OH

 

N

O

O

N

O

Cl

ClCl

Cl

NO

CH3

Cl

N+
O-

O

 

IC50: 0.204 μM IC50: 0.613 μM IC50: 0.621 μM 
19 20 21 

O

O

NH
N

N

CH3

CH3
CH3

CH3  

SS

S

O
O

O

CH3
O

CH3

O S

S

O
O

O

CH3

O
CH3

NH

CH3

O

O

O

N+O-

O

S+

OH

O

H

H

H

 

IC50: 0.685 μM IC50: 0.726 μM IC50: 0.799 μM 
  

Figure 12. Cont.



Molecules 2018, 23, 453 18 of 25

Molecules 2018, 23, x FOR PEER REVIEW  18 of 25 

 

22 23 24 

N
N

CH3

N

N

N

CH3

N

S
S

CH3

N+
O-

O

 

O

N
N

N

CH3

CH3

CH3

N+
O-

O
N

N

CH3

N

N

O

Cl

Cl O

 
IC50: 0.801 μM IC50: 0.851 μM IC50: 0.882 μM 

25 26 27 

OO

CH3

O

N
Cl

N
Cl  

NO

Br

N

N

O

N+

O-

O

N
N

N

O
CH3

CH3
CH3

 

IC50: 0.888 μM IC50: 0.894 μM IC50: 0.896 μM 
28 29 30 

CH3
O

O

O
CH2

CH3 CH3

OH

CH3

O

O  S

O

OO

N+ O-O
N+ O-O

 

O
CH3

O
CH3

N

N
NH2 S F

F

FF

F

O

O

 
IC50: 0.917 μM IC50: 0.930 μM IC50: 0.951 μM 

31 

NHN
O

N

Cl

OH

N+

O- O

IC50: 0.969 μM 

Figure 12. Ponatinib (1) and 30 most potent RIPK2 inhibitors (2–31) obtained from the Protein Data 
Bank (PDB) and the BindingDB database. 

3. Materials and Methods 

3.1. Selection of Compounds 

Selection of the compound ponatinib [2] and other inhibitors reported in literature was done 
from the Protein Data Bank (PDB) and the BindingDB (http://www.bindingdb.org) [37] web server, 
respectively (2D structures are shown in Figure 12), according to the lower IC50 values there reported 
(between 0.016 and 0.969 μM), which were considered limiting for this selection, such as observed in 
studies developed by Pereira and Costa et al. [30,38]. Such inhibitors are related to the Protein Kinase 
Receptor type 2—RIPK2, for which the structure of the potent inhibitor ponatinib is deposited in the 
PDB [39] in a complex with human RIPK2 (PDB ID 4C8B, at 2.75 Å resolution). 

Figure 12. Ponatinib (1) and 30 most potent RIPK2 inhibitors (2–31) obtained from the Protein Data
Bank (PDB) and the BindingDB database.

3. Materials and Methods

3.1. Selection of Compounds

Selection of the compound ponatinib [2] and other inhibitors reported in literature was done
from the Protein Data Bank (PDB) and the BindingDB (http://www.bindingdb.org) [37] web server,
respectively (2D structures are shown in Figure 12), according to the lower IC50 values there reported
(between 0.016 and 0.969 µM), which were considered limiting for this selection, such as observed in
studies developed by Pereira and Costa et al. [30,38]. Such inhibitors are related to the Protein Kinase

http://www.bindingdb.org
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Receptor type 2—RIPK2, for which the structure of the potent inhibitor ponatinib is deposited in the
PDB [39] in a complex with human RIPK2 (PDB ID 4C8B, at 2.75 Å resolution).

After definition of the small database to be built (ponatinib + 30 reported and potent RIPK2
inhibitors), the most reliable tautomers (at pH = 7.5) were selected for all the compounds, using
the Marvin® Sketch 16.9.5 software (https://www.chemaxon.com/) [2,40]. Subsequently, structures
were converted to 3D format using CONCORD, with default parameters, thus implemmented on the
SYBYL®-X 2.0 package [17]. All the structures were energy-minimized using Conjugate Gradient (CG)
and a convergence criterion of 0.001 kcal/mol, using the Tripos [41] force field (with dielectric constant
ε = 80.4 and maximum number of iterations = 50,000). Partial atomich charges were calculated using
the Gasteiger-Hückel method [42], such as available on the SYBYL®-X 2.0 platform.

In order to select the best set (the training set) of inhibitors able to generate a reliable
pharmacophoric model, a chemical similarity study was carried out. Inhibitors were thus selected
according to the chemical diversity, estimated using the web server ChemGPS-NP [43], so that the
most potent compounds of each cluster were selected by hierarchical cluster analysis [44]. The first
three principal components (PC1, PC2 and PC3) were used to construct the dendogram related to the
chemical similarity study (Figure 13).
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A dendogram was thus generated considering the centroid method and the Euclidean distance
here used as a measurement parameters, and 85% (threshold) of similarity between the compounds [44].
In sequence, the representative one of each cluster that showed the highest biological activity was
chosen to compose the so called “training set”, which was constructed from a dataset of 14 RIPK2
inhibitors (group A). IC50 values are: 0.014 µM (1), 0.016 µM (2), 0.019 µM (3), 0.109 µM (12), 0.204 µM
(16), 0.613 µM (17), 0.621 µM (18), 0.726 µM (20), 0.799 µM (21), 0.801 µM (22), 0.888 µM (25), 0.917 µM
(28), 0.930 µM (29) and 0.969 µM (31).

A second dataset with 17 RIPK2 inhibitors (group B) was choosen, with IC50 values of: 0.025 µM
(4), 0.026 µM (5), 0.026 µM (6), 0.041 µM (7), 0.044 µM (8), 0.049 µM (9), 0.054 µM (10), 0.075 µM (11),
0.111 µM (13), 0.120 µM (14), 0.130 µM (15), 0.685 µM (19), 0.851 µM (23), 0.882 µM (24), 0.894 µM
(26), 0.896 µM (27) and 0.951 µM (30). Such compounds were here submitted to the same protocol of
energy minimization and they were used only for the evaluation of the pharmacophoric models, here
so called the “test set”.

3.2. Pharmacophore Modelling

The method here used to derive the pharmacophoric pattern is Genetic Algorithm with Linear
Algorithm for Hypermelecular Alignment of Data Sets (GALAHAD), a module implemented in
the SYBYL platform [45]. Inhibitors of the training set were flexibly superimposed in order to
create hypermolecular alignments that mapped common pharmacophore characteristics. The genetic

https://www.chemaxon.com/


Molecules 2018, 23, 453 20 of 25

algorithm employed in this step starts with 80 conformations (population size) of each RIPK2 inhibitor
that evolves through a maximum of 50 generations through standard genetic operators (mutation
rate—Angle: 0.6, Conf: 0.3; mutation drop-Angle: 1.0, Conf: 1.0 and crossover rate-Angle: 1.0, Conf:
1.0), such as implemmented in the GALAHAD module from the SYBYL-X® 2.0 package. Statistical
parameters (deformation energy, PARETO, hydrogen bonds and steric) and pharmacophore (Mol_qry
values) were used to evaluate the models. Models with deformation energy containing two orders of
magnitude higher than the others were discarded.

3.2.1. Evaluation of the Pharmacophoric Models

Pharmacophore models were first tested for their ability to differentiate true inhibitors from
false positives, and they were constructed using the DUD-E server [46]. After, the test set database
(17 false-positive RIPK2 inhibitors, with 850 compounds) was aligned to each pharmacophore model,
using GALAHAD default parameters, and they were classified according to their Mol_qry values.

Operational Characteristic Receiver Curves (ROC) were then used to evaluate the specificity and
sensitivity of each model. Next, the pharmacophoric models with AUC > 0.7 were probed by their
ability to classify the inhibitors according to their potency. In this step, 34 RIPK2 inhibitors, the test set
(17 inhibitors-Group B, see Figure 1) and 17 other inhibitors randomly selected (T1-T17), with IC50

values of 0.0063 µM (T1), 0.0079 µM (T2), 0.01 µM (T3), 0.012 µM (T4), 1.03 µM (T5), 1.1 µM (T6),
1.12 µM (T7), 1.15 µM (T8), 1.18 µM (T9), 1.19 µM (T10), 1.20 µM (T11), 1.23 µM (T12), 1.32 µM (T13),
1.35 µM (T14), 1.36 µM (T15), 1.36 µM (T16) and 1.4 µM (T17), which were not used in the model
generation, were individually aligned to a model, such as implemented in the GALAHAD module.
The Mol_qry values were then plotted versus the biological activity classes of the compounds (using
the pIC50 = −logIC50 equation) and classified as the following: weak = 5.0 to 5.9; moderate = 6.0
to 6.9 and strong = 7.0 to 9.0. ROC curves of pharmacophore models were build via the SigmaPlot®

software [47].

3.2.2. Selection of Novel and Potential RIPK2 Inhibitors from the ZINC Compounds Database

The ZINC compounds database is the largest one commercially available for virtual screening
purposes, and it contains more than 14 million compounds [21]. After building of the most reliable
pharmacophore model, thus validated using the GALAHAD approach, the ZINCPharmer (http:
//zincpharmer.csb.pitt.edu) [48] web server was used to search for compounds in the ZINC database,
using the pharmacophoric model obtained and here used as a “probe“. For this step, we used some
search filters, so that the maximum value of RMSD (Root Mean Square Deviation) employed was
0.3. In addition, interval values of 200 ≤ Molecular Weight ≤ 500 and 1 ≤ Rotational Connections
≤ 10, were here defined for predictions, as well as observed in studies of Birck et al. (2016) [49].
Therefore, in order to procedd with search for active compounds in the database, we considered the
3D coordinates described in Table 10, according to the respective pharmacophoric model generated.

Table 10. 3D Coordinates and pharmacophoric features of the best-ranked pharmacophoric model.

Pharmacophoric Feature X Y Z Radius (in Å)

Hydrogen Bond Donor 3.71 −0.53 1.86 1.10
Hydrogen Bond Acceptor 2.47 −1.65 -0.38 1.11
Hydrogen Bond Acceptor 3.51 −0.10 1.79 1.26

Hydrophobic −2.33 0.63 −0.57 0.55
Hydrophobic 0.68 1.00 1.43 1.42

3.3. Pharmacokinetic and Toxicological Predictions—ADME/Tox

Pharmacokinetic in silico analyses were performed for the selected molecules, using the QikProp
software [50], where criteria such HOA (human oral absorption), PHOA (percentage of human oral

http://zincpharmer.csb.pitt.edu
http://zincpharmer.csb.pitt.edu
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absorption) and “stars”, which indicates the number of violations of properties values intervals
reported for 95% known drugs, where considered such as described by Onguéné et al. (2014) [51].

Toxicity profile of the compounds was evaluated using the Deductive Estimation of Risk from
Existing Knowledge (DEREK) 10.0.2 software [22]. We have considered DEREK alerts of toxicity
involving the human species and also classified as plausible in mammals, but compounds containing
any toxicophoric groups were also discarded. The DEREK software [22] makes the prediction of toxicity
of the compounds in a qualitative way, is a specialist system that focuses attention on the toxic action
of chemical compounds. The system performs this analysis based on implemented rules and depicts
the relationship between a structural feature and a toxicophore group present in the compounds as
possible inducers of certain types of toxicity. It is considered that in addition to toxicity DEREK can
identify aspects related to carcinogenicity, mutagenicity, skin sensitization, irritation, teratogenicity
and neurotoxicity [52].

3.4. Prediction of Activity Spectra for Substances (PASS)

Prediction of potential biological activity was performed through the PASS (Prediction of
Activity Spectra for Substances) web server, at http://pharmaexpert.ru/passonline/predict) [24].
Inflammatory diseases and mechanisms associated were here considered, such as treatment of
rheumatoid arthritis, autoimmune activity, kinase inhibitors, etc., according to studies of Volpini;
Pedersoli-Mantoani et al. [25,53] Rodrigues and Silva [26].

3.5. Docking Procedures

For molecular docking here performed, the crystallographic structure of the RIPK2 derived form
RIPK2-ponatinib complex structure (PDB ID 4C8B, at 2.75Å resolution) [2] was used. The enzyme
structure was prepared by removing water and ligands, subsequently adding hydrogen atoms.

Compounds here selected using a virtual screening approach were submitted to the docking
single simulations, using the PyRx 0.8 software, with further energy minimization [54]. Ponatinib [2]
and WEHI-345, respectively a potent and a selective RIPK2 inhibitor [5], were used as template and
control inhibitors. Docking calculations were performed using the AutoDock 4.2/Vina 1.1.2 [55]
software, with default parameters of the genetic algorithm (with population size of 150), maximum
number of evaluations of 250,000, maximum number of generations of 27,000 and crossing rate of 0.8.
Interactions between the inhibitors and RIPK2 were visualized using the Discovery Studio 4.1 [56]
software, with default parameters. We have used a grid box of x = 56, y = 28 and z = 24 coordinates,
centered at x = 14.254, y = 2.632 and z = 23.776. Ten docking runs were considered and the ten poses
were analyzed.

3.6. Molecular Overlay—Molecular Overlay

Molecular Overlay is used to overlap two or more molecules using a variety of features that
includes, in addition to other aspects, alignment by a combination of steric (ste) and electrostatic (elt)
fields [56]. For this purpose, analyses of the steric and electronic overlaps were predicted using the
Discovery Studio 4.1 software [56], considering 100% ste, 100% elt, 60% ste/40% elt, 40% ste/60%
elt and 50% ste/elt, according to studies of Costa et al. (2017) [30] between the RIPK2 inhibitors and
Ponatinib. In sequence, similar protocol was employed using WEHI-345.

3.7. Alignment Overlap of Inhibitors with the Pharmacophoric Model

We have used the methodology implemented in the CHEMGPS-NP (http://chemgps.bmc.uu.se)
web server to evaluate the quality of the alignment of each inhibitor. The QFIT value associated to
the overlap means the degree of alignment ranging from 0 to 100, and it is calculated automatically to
select the most promising models [57].

http://pharmaexpert.ru/passonline/predict
http://chemgps.bmc.uu.se
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3.8. Sylvia—Estimation of the Synthetic Accessibility of Organic

In this step, the Sylvia 1.4 [58] server was used to estimate the synthetic viability of the compounds
here investigated. For such prediction, the promising compound was compared with the template one
(ponatinib) as well as to the control (WEHI-345). For analysis, it is considered that the estimation of
synthetic accessibility provides a number between 1—for easily synthesized compounds, and 10—for
compounds that are difficult to synthesize, according to studies developed by Ferreira et al. [59].

4. Conclusions

We indicate compound ZINC91881108, discovered using a virtual screening approach from
the ZINC compounds database as a promising RIPK2 inhibitor, with further interest in control of
inflammatory diseases. Pa » Pi is observed for such compound, besides a potential anti-inflammatory
activity. Analysis of molecular docking for this compound reveals a potential higher binding affinity,
in comparison to WEHI-345. In a 100% electronic analysis when overlapping of ZINC91881108
with ponatinib or WEHI-345, such compound stand out for having a highest value for similarity
of overlap. Thus, this compound has the best score of stereoelectronic overlap, when being sorted.
The importance of this present work is evident because, regarding to structure-activity relationships
(SAR), the steric arrangement is of fundamental relevance for the drug-enzyme interaction. In addition,
the electronic aspects are strictly related to the electronic density and physicochemical properties and
polar interactions associated. Compound ZINC91881108 shows suitable pharmacokinetic properties,
when compared to the template compounds—RIPK2. Also, such compound does not contain any
toxicophoric groups, such as analyzed using the DEREK software. Regarding synthetic accessibility,
the said compound ZINC91881108 is predicted in silico to be moderately difficult to prepare.
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