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Abstract: Precise structure-property relation of a biodegradable polymer (e.g., aliphatic polyester) 
is anticipated only if monomer units and chiral centers are arranged in a defined primary sequence 
as a biomacromolecule. An emerging synthetic methodology, namely segmer assembly 
polymerization (SAP), is introduced in this paper to reveal the latest progress in polyester synthesis. 
Almost any periodic polyester envisioned can be synthesized via SAP using a programed linear or 
cyclic monomer. In this context, the macroscopic properties of a biodegradable polymer are 
fundamentally determined by microstructural information through a bottom-up approach. It can 
be highlighted that SAP ideally combines the precision of organic synthesis and the high efficiency 
of a polymerization reaction. Previously reported strategies including nucleophilic displacement, 
polyesterification, cross-metathesis polymerization (CMP), ring-opening polymerization (ROP), 
ring-opening metathesis polymerization (ROMP) and entropy-driven ring-opening metathesis 
polymerization (ED-ROMP) are critically reviewed in this paper to shed light on precision synthesis 
of aliphatic polyesters via SAP. Emerging yet challenging, SAP is a paradigm which reflects the 
convergence of organic and polymer chemistries and is also an efficient pathway to microstructural 
control. The current status, future challenges and promising trends in this realm are analyzed and 
discussed in this overview of the state-of-the-art. 
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1. Introduction 

With the increasingly urgent demand for biocompatible and bioassimilable materials, synthetic 
biodegradable polymers elicit extensive attention from both academic and industrial communities 
[1]. In particular, as typical healthcare materials, aliphatic polyesters are widely used in the 
biomedical field [2]. Besides, aliphatic polyesters are among the most promising candidates for the 
replacement of petroleum-based polymers due to the wide availability of biorelevant monomers, ease 
of synthesis and biocompatibility of polymers and degradation products. Polycondensation and ring-
opening polymerization (ROP) are the most widely used techniques for the synthesis of aliphatic 
polyesters (see Scheme 1). The easily operative polycondensation is widely used in industrial 
production with a broad range of starting materials [3]. Nevertheless, the generation of high 
molecular weight polymers is still an enormous challenge, and removal of small molecule byproducts 
such as water and alcohol is energy-intensive. Furthermore, due to side reactions including 
transesterification and degradation at high temperature and moderate functional group tolerance, 
construction of hierarchical topology and fabrication of functional materials are relatively difficult. 
On the other hand, ROP can be readily performed using organocatalysts, metal alkoxides or metal 
complexes as initiators [4–14]. Some ROP systems show living character [15,16], allowing for easy 
control of molecular weights and terminus structures of polymers. Nevertheless, ROP monomers for 
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polyester synthesis are generally limited to lactones, lactides and recently emerging O-
carboxyanhydrides [17]. Application areas of aliphatic polyesters range from clothing and packaging 
to agriculture and biomedicine [18–28]. For instance, aliphatic polyester-derived drug delivery 
vehicles, surgical sutures, implantable materials and tissue scaffolds have occupied more and more 
of the market share. 

 
Scheme 1. Polycondensation of diacids and diols (top) and ω-hydroxy acid (middle) as well as ROP 
of lactide and ε-caprolactone (bottom), respectively. 

As remarkable bioengineering materials, poly(glycolic acid) (PGA), poly(lactic acid) (PLA) and 
poly(lactic-co-glycolic acid) (PLGA) attract tremendous research enthusiasm. These biomaterials are 
available from renewable resources, degradable requiring no specific enzymes and nontoxic both as 
polymers and as hydrolyzed monomers [29–34]. Typically, PGA, PLA and PLGA are synthesized via 
ROP of glycolide and lactide [35–41]. Applications of these materials in drug release, gene therapy, 
regenerative medicine and implants have been extensively investigated. Indeed, PLGA has become 
the preferred option for the manufacture of absorbable medical devices, drug-eluting stents and drug 
carriers [42–45]. Due to the excellent compatibility with the human body [46–49] and nontoxicity of 
degradation products [50], PGA, PLA and PLGA were tested for clinical use about four decades ago 
[51–53]. Finally, these polymers have been approved for clinical use by the FDA [54–56]. At present, 
biomedical and pharmaceutical applications of PLGA have expanded from drug delivery vehicles 
[57,58] and surgical sutures [59,60] to stem cell scaffolds [61] and tissue engineering matrices [62]. On 
the other hand, poly(ε-caprolactone) (PCL) represents another type of biocompatible and 
environmentally benign biomaterial. This polymer is widely utilized as a flexible molding material, 
which exhibits lower glass transition temperature (Tg) and melting temperature (Tm) yet higher tensile 
strength and elasticity than PLGA [63,64]. 

Despite great success, these polymers still face big challenges. For example, PLA exhibits good 
mechanical strength yet poor elasticity, and it shows a very low degradation rate in vivo (a few years) 
and low drug permeability [65,66]. On the contrary, PCL displays not only high elasticity and 
crystallinity but also remarkable drug permeability and slow degradation rates in vivo (several years) 
[27,67]. Thus, the material performances of PLA and PCL are partially complementary. On the other 
hand, decreased availability of drugs, diminished drug effect and burst release are reported if PLA- 
and PLGA-based drug carriers are applied in clinical use [68,69]. Indeed, these drug carriers display 
rapid degradation at the initial stage but slow degradation in the late period, which generally results 
in undesirable burst release of drugs along with incomplete clearance of remaining materials [70,71]. 
Fine tuning the degradation behaviors of aliphatic polyesters is definitely of great significance in this 
realm. However, these key profiles of aliphatic polyesters have been discovered to be influenced by 
various factors including, but not limited to, composition, topology, functionality, molar mass, 
microstructure (sequence and tacticity), morphology and water uptake [72–75]. Hence, it is not 
surprising to find that a precise structure–property relationship is still out of reach. Fortunately, 
previous strategies such as changing the feed ratio of monomer pairs, incorporation of new 
monomers and adjusting the ratio of racemic to stereopure lactic units are indeed significant to 
inspire upcoming work aimed at control of crystallinity and hydrophilicity of aliphatic polyesters 
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[76–81]. Nevertheless, simultaneous control over sequence and tacticity has been the preferred option 
to establish a precise structure–property relationship, which in turn offers a great impetus to the 
development of precision aliphatic polyesters. For example, stereoselective aliphatic polyesters can 
be synthesized via ROP of epoxides and cyclic anhydrides by using discrete metal complexes [82,83]. 
At the same time, alternating polyesters were generated via ROP of enantiopure cyclic monomers by 
using syndioselective catalysts [84–86]. 

As for polymer chemistry, precise structure-property relation of polymer materials is anticipated 
only if monomer units and chiral centers are strictly arranged in a defined order on a polymer chain, 
and new synthetic methods are the prerequisites to achieve this goal. In order to fulfill sophisticated 
functions, polymers with complicated microstructures are urgently needed. It is worth noting that 
concepts borrowed from organic chemistry including chemo-, regio- and stereo-selectivity more and 
more frequently appear in polymer research publications. Indeed, the convergence of synthetic 
organic and polymer chemistries is a great impetus for the advancement of polymer synthesis [87]. 
Precision polymerization has become the mainstream of polymer science, and the ultimate goal is to 
realize control over sequence and tacticity using carefully designed physical and/or chemical means 
[88–95]. In this context, the macroscopic properties of polymeric materials are fundamentally 
determined by the microstructural information through a bottom-up approach. 

The main objective of this review is to shed light on precision synthesis of aliphatic polyesters. 
Examples of sequence-controlled aliphatic polyesters via segmer assembly polymerization (SAP) are 
critically reviewed. The current status, future challenges and promising trends in this realm are 
analyzed and discussed in this overview of the state-of-the-art. The authors do not claim to give 
exhaustive coverage of the topic. 

2. Segmer Assembly Polymerization (SAP) 

As stated above, macroscopic properties of polymer materials such as melting, crystallinity and 
degradation largely depend on sequence. Thanks to the rapid development of sequence-controlled 
polymerization during the last five years, sequence regulation and tacticity control come to reality by 
using conceptually new strategies. In particular, SAP paves the way towards easy and efficient 
synthesis of copolymers with periodic sequences [96]. As shown in Scheme 2, almost any periodic 
copolymers envisioned can be obtained starting from pre-organized linear or cyclic monomers with 
tailor-made microstructures. Encoded information such as sequence and tacticity within monomers 
is fully transferred to each repeating unit of periodic copolymer. Reactive terminuses are covalently 
bonded during SAP without affecting the encoded information, which is just the prerequisite of the 
aforementioned intact transference. New monomer units are generated via polymerization in some 
cases. Compared with chain-growth polymerization, SAP fundamentally overcomes the restriction 
of monomer structures, and polymerization is routinely conducted regardless of the reactivity of 
different monomers. On the other hand, in contrast to traditional step-growth polymerization, this 
universal strategy enables the synthesis of sophisticated sequence-controlled polymers. At present, it 
seems difficult to imagine sequence-regulated and stereo-specific polymers being obtained via direct 
copolymerization of relevant monomers in a batch mode, but organic chemistry offers an alternative 
to address the problem. The design, synthesis and purification of segmer bearing encoded sequences 
and tacticity can be conducted as organic chemists do, and applying the correct polymerization 
reaction is the only requirement to implement the strategy. SAP provides numerous possibilities for 
periodic copolymer synthesis, and serves as a paradigm to demonstrate the convergence of synthetic 
organic and polymer chemistries. 
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Scheme 2. Schematic illustration of segmer assembly polymerization (SAP). 

The arrangement of well-known monomer units such as glycolic, lactic and caprolactic acid on 
a polymer chain has become an increasingly appealing research field given that sequence regulation 
opens a new avenue to precise structure-property relationships and has become the preferred option 
for fine tuning material performance. As depicted in Scheme 3, the evolution of aliphatic polyesters 
goes from homopolymers to random, block, gradient, alternating and periodic copolymers. Most of 
the precision aliphatic polyesters have already been reported in the literature, and the ones with even 
more complex microstructures are anticipated to be obtainable in the near future. It is notable that 
the synthesis of alternating and periodic polyesters largely relies on SAP methodology. In this 
approach, starting from limited types of monomers, aliphatic polyesters will diversify into a sequence 
of products with different properties to meet the requirements of various circumstances. 

 
Scheme 3. Evolution of aliphatic polyesters. 

Selected examples of precision synthesis of aliphatic polyesters via SAP are listed below, which 
can be categorized as step-growth polymerization (nucleophilic displacement, polyesterification and 
cross-metathesis polymerization (CMP)) together with chain-growth polymerization (ring-opening 
polymerization (ROP), ring-opening metathesis polymerization (ROMP) and entropy-driven ring-
opening metathesis polymerization (ED-ROMP)). 

3. Nucleophilic Displacement 

Rebert [97] prepared poly(lactic-alt-glycolic acid) with Mn up to 66 kDa via polycondensation of 
O-(2′-bromopropionyl)glycolic acid as shown in Scheme 4. The preformed triethylammonium salt of 
the monomer was a nucleophile to displace bromine moieties to furnish polyester. This is an unusual 
polycondensation since hydrobromic acid is the byproduct instead of water. This method is readily 
applicable to the synthesis of diverse precision aliphatic polyesters. 
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Scheme 4. Synthesis of poly(lactic-alt-glycolic acid) via nucleophilic displacement. 

4. Polyesterification 

Meyer and colleagues have recently developed a new method to furnish PLGAs of any targeted 
repeating sequence [98–100] and reported the sequence effects on NMR spectroscopy, solution-phase 
conformations and thermal properties of polymers [101]. As shown in Scheme 5, an AB-type 
monomer with designed sequence and tacticity is polymerized in the presence of a condensation 
reagent such as dicyclohexylcarbodiimide (DCC) and N,N′-Diisopropylcarbodiimide (DIC) in a 
stepwise manner to afford precision aliphatic polyester. This method is robust as evidenced by the 
high Mn values which are over 12 kDa in all cases. Likewise, this group proceeded to explore sequence 
effects by using polyesters comprised of glycolic, lactic and caprolactic acid units [102]. Meanwhile, 
they synthesized PLGA-type copolymers containing evenly distributed pendent groups [103]. It was 
found that sequenced PLGA showed a steady hydrolysis profile without abrupt changes in 
properties. In other words, sequenced PLGA degrades at a slower and more constant rate than its 
random counterpart [104]. This important observation is definitely helpful to establish a precise 
structure-property relationship and ultimately to decipher sequence-dependent degradation 
behavior. They have also systematically investigated the effects of sequences on degradation 
behaviors of PLGA microparticles and the encapsulation and release of rhodamine-B thereof [105]. 
The result reveals that a more gradual burst release is achieved by employing microparticles 
composed of sequenced PLGAs. Pioneered by this group, biomedical applications of microparticles 
and matrices composed of sequence-engineered PLGAs are currently under exploration [106,107]. 
Nevertheless, it is noteworthy that transesterification was occasionally observed during 
polymerization, thus disrupting microstructural periodicity. Furthermore, selective protection and 
deprotection are indispensable for monomer synthesis. On the other hand, crystalline alternating 
polyesters having lactic acid units were synthesized in a similar manner to that reported by Abe [108], 
and the copolymer melting temperature was closely related to the stereospecificity of the lactic acid 
unit. 

 
Scheme 5. Precision synthesis of poly(lactic-co-glycolic acids) (PLGAs) via polyesterification. 

5. Cross-Metathesis Polymerization (CMP) 

The incorporation of a polymerizable group, the key moiety for monomer design, is basically 
required for an SAP strategy where compatibility between the polymerization method employed and 
functional groups is a significant concern. In this regard, metathesis polymerization emerges as a 
promising candidate due to the ease of operation, high structural integrity and excellent tolerance to 
functional groups [109,110]. The authors [111] synthesized the first precision aliphatic polyesters with 
alternating microstructures by means of CMP. This polymerization technique is based on the high 
cross-metathesis tendency between acrylate and α-olefin motifs [112]. Due to its inherently 
alternating nature, CMP is particularly suitable for the synthesis of polyesters bearing β-substituted 
acrylate entities. Inspired by the traditional CMP of AB-type monomer bearing acrylate and α-olefin 
terminuses, as shown in Scheme 6, poly(glycolic-alt-caprolactic acid) and poly(lactic-alt-caprolactic 
acid) were generated simply by polymerizing pre-organized monomers that were synthesized in an 
efficient and straightforward fashion. It is noteworthy that the caprolactic acid unit was generated in 
situ via CMP followed by hydrogenation rather than incorporated into monomers. This carbon-
carbon bond formation polymerization strategy fundamentally circumvents side reaction of 
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transesterification and provides infinite possibility for rational design of periodic polyesters. Despite 
microstructural defects, this work opens a new avenue for sequence regulation and holds a promising 
future for the synthesis of precision aliphatic polyesters comprising well-known monomer units. 

 
Scheme 6. Precision aliphatic polyesters with alternating microstructures via cross-metathesis 
polymerization (CMP). 

To achieve simultaneous control over sequence and tacticity for this system, we [113] recently 
demonstrated the first example of optically active poly(lactic-alt-caprolactic acid) by means of CMP. 
As shown in Scheme 7, CMP of enantiopure monomers followed by hydrogenation readily afforded 
saturated polyesters composed of L- or D-lactic and caprolactic acid units. These two enantiomeric 
polyesters displayed opposite rotation values and mirror-imaged Cotton effects, corresponding to 
opposite helical conformations. Notably, stereocomplexity was generated simply by equimolar 
mixing of the two polyesters, which exhibited a sharp melting peak on a differential scanning 
calorimetry (DSC) curve at 45.7 °C. These results collectively indicate that the amorphous yet 
enantiomerically pure polyester becomes crystalline via stereocomplexation with its complementary 
enantiomer. 

 
Scheme 7. Optically active precision aliphatic polyesters via CMP. 

6. Ring-Opening Polymerization (ROP) 

As shown in Scheme 8, D,L-3-methylglycolide (MG) is a six-member lactone consisting of lactyl 
and glycolyl units. Early works on homopolymerization of MG using stannum-based catalysts failed 
to report detailed data of polymerization kinetics or verify the alternating microstructure of polymer 
[114,115]. Dong et al. [116] systematically investigated the preparation of poly(lactic-alt-glycolic acid) 
by using ROP of MG in the presence of stannous octoate. The ROP was conducted in bulk with a high 
reaction rate and high monomer conversion. The coordination-insertion mechanism and alternating 
sequence of polyesters were evidenced by NMR. Subsequently, they [117] reported living ROP of MG 
by using bimetallic (Al/Zn) μ-oxo alkoxide as an initiator. Notably, the cleavage of the acyl-oxygen 
bond of the monomer selectively takes place at the less hindered site, so that the obtained PLGA was 
primarily composed of alternating lactyl and glycolyl units. Moreover, this team [118] synthesized 
block and star-shaped copolymers using copolymerization of MG with ε-caprolactone and L-lactide, 
respectively. Afterwards, they [119] proceeded to investigate the in vitro degradation and controlled 
release behavior of precision PLGAs-derived microspheres. Although the alternating microstructure 
of the copolymer turned out to display no apparent effect on protein loading efficiency of 
microspheres, their original idea of sequence-controlled chain-growth polymerization by using a 
programmed cyclic monomer is indeed illuminating for future studies. 
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Scheme 8. Synthesis of poly(lactic-alt-glycolic acid) via site-specific ring-opening polymerization 
(ROP). 

7. Ring-Opening Metathesis Polymerization (ROMP) 

A general approach to sequence-controlled polymers via macrocyclic ring-opening metathesis 
polymerization (ROMP) was reported by Hawker [120]. As depicted in Scheme 9, this new method 
employs relay metathesis to promote ROMP of unstrained macrocycles. The success of this controlled 
and directional synthetic approach relies on the convergence of a small molecule “polymerization 
trigger” [121] and a diverse range of sequence-defined units. In particular, multiple α-hydroxy acid 
units are incorporated through ROMP of programmed macrocycles with a preformed sequence. This 
remarkable strategy combines the sequence precision of step-growth polymerization with the high 
tolerance to functionalities and livingness of ROMP. Nevertheless, the presence of “polymerization 
trigger” residue on polymer chains hinders direct biomedical use of this material. 

 
Scheme 9. Ring-opening metathesis polymerization (ROMP) of sequenced macrocycle. 

8. Entropy-Driven Ring-Opening Metathesis Polymerization (ED-ROMP) 

Meyer et al. [122] employed ED-ROMP as a general approach to synthesize sequence-controlled 
copolymers bearing glycolic, lactic and caprolactic acid units. ED-ROMP is differentiated from ROMP 
in that it involves the ring-opening of low-strain or unstrained cyclic olefins to produce entropically 
favored polymers [123]. As depicted in Scheme 10, ED-ROMP of macrocycles containing an 
embedded sequence followed by hydrogenation readily generated saturated periodic polyesters. 
Notably, this strategy is categorized as chain-growth but not as living polymerization, and molecular 
weight can be easily adjusted by varying the monomer-to-catalyst ratio. High molecular weight 
polymers (Mn up to 60 kDa) were obtained with relatively low dispersities (Ð no more than 1.3). This 
approach should be applicable to periodic copolymer synthesis starting from any macrocycle bearing 
internal alkene moiety. Nevertheless, synthesis of macrocycles is still a big challenge where high 
dilution is basically required. Moreover, structurally asymmetric monomers are generally unsuitable 
for ED-ROMP due to the loss of sequence regularity. 

 
Scheme 10. Sequence-controlled polyesters prepared via entropy-driven ring-opening metathesis 
polymerization (ED-ROMP). 
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9. Conclusions and Outlook 

Synthetic methodologies for precision aliphatic polyesters are critically reviewed with an 
emphasis on SAP. This efficient and straightforward strategy makes it easy to synthesize almost any 
periodic polyester by using a sequence-defined and stereo-specific segmer. Nevertheless, one 
primary goal of this review is to call for further work from polymer scientists to push forward this 
emerging yet challenging research area. For example, precise structure-property relationships and 
sequence-dependent materials performance is still in its embryonic stage. Meanwhile, 
preorganization of segmers is a big challenge if selective protection/deprotection and tedious 
purification are inevitable. Therefore, the authors encourage our readers to read between the lines to 
foresee the future development of this field. 

Considering the vast production and huge consumption of relevant commodities, it is inaccurate 
to say that aliphatic polyesters are still in their infancy. Actually, polyester synthesis has greatly 
evolved as a convenient, efficient and cost-effective protocol. Specifically, green chemistry plays an 
increasingly crucial role in polyester synthesis by virtue of the abundance of the relevant renewable 
resources [124] and wide application of green solvents. Meanwhile, synthesis of tailor-made 
polyesters can be conducted in a mild, selective and even atom-economic manner using new synthetic 
routes [125]. Furthermore, new chemical findings featuring high tolerance to polar groups renders 
straightforward the synthesis of functional polyesters [126]. Ultimately, synthesis of processable 
aliphatic polyesters with excellent thermal and mechanical properties represents a new challenge 
while preserving its biocompatible and eco-friendly nature. Great success has been achieved 
alongside the progress in synthesis. For example, more strategies for the synthesis of precision 
aliphatic polyesters are anticipated in the foreseeable future through SAP. On the other hand, 
chemical diversity is by no means the only option toward materials innovation. For instance, the 
approval of a new polymer for clinical use is rather laborious, so optimizing existing systems is 
seemingly wiser and more straightforward than developing new ones [127]. In this regard, Meyer’s 
contributions are good examples in that sequence regulation serves as an economic and pragmatic 
pathway towards conceptually new materials. 

Synthetic polymers are still miles away from mimicking the complicated microstructures as well 
as the sophisticated functions of biopolymers. In contrast to organic synthesis of small molecules, the 
simultaneous control of chain length, sequence and tacticity is indeed a great challenge for polymer 
synthesis. For example, step-growth polymerization generally lacks control over molecular weight, 
and the generation of a more complex pattern is still out of reach for traditional ROP due to the at 
most dimeric form of relevant monomers. Notably, the emerging iterative approach for the synthesis 
of monodisperse and sequence-defined aliphatic polyester has become a vivid field of research [128]. 
These sequence-coded polyesters are highly designable. However, long chain products are generally 
unattainable within reasonable time frame and cost, and the overall yield becomes very low. 
Therefore, the synthesis of precision aliphatic polyesters with truly complicated microstructures still 
calls for conceptually new strategies. Hopefully, biological functions such as catalysis, substrate 
recognition and conformation transition will be expressed by precision aliphatic polyesters in the 
near future. 
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