Probing the Influence of Linker Length and Flexibility in the Design and Synthesis of New Trehalase Inhibitors

Giampiero D'Adamio¹, Matilde Forcella², Paola Fusi², Paolo Parenti³, Camilla Matassini^{1,4}*, Xhenti Ferhati¹, Costanza Vanni¹ and Francesca Cardona ^{1,4,5}*

- 1) Department of Chemistry 'Ugo Schiff', University of Florence, via della Lastruccia 3-13, Sesto Fiorentino (FI), Italy.;
- 2) Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy;
- 3) Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy.
- 4) Associated with CNR-INO, Via N. Carrara 1, Sesto Fiorentino (FI), Italy
- 5) Associated with Consorzio Interuniversitario Nazionale di ricerca in Metodologie e Processi Innovativi di Sintesi (CINMPIS)

Supplementary Materials

Table of contents

¹ H-NMR and ¹³ C-NMR spectra of compound 19 $lpha$	S3
¹ H-NMR and ¹³ C-NMR spectra of compound 19 eta	S4
¹ H-NMR and ¹³ C-NMR spectra of compound 20	S5
¹ H-NMR and ¹³ C-NMR spectra of compound 8	S6
¹ H-NMR and ¹³ C-NMR spectra of compound 16	S7
¹ H-NMR and ¹³ C-NMR spectra of compound 17	S8
¹ H-NMR spectrum of the 21α,β mixture	S9
¹ H-NMR spectrum of the 22α,β mixture	S10
¹ H-NMR spectrum of the 23α,β mixture	S11
¹ H-NMR and ¹³ C-NMR spectra of compound 24 $lpha$	S12
¹ H-NMR and ¹³ C-NMR spectra of compound 24 eta	S13
¹ H-NMR and ¹³ C-NMR spectra of compound 25 $lpha$	S14
1 H-NMR and 13 C-NMR spectra of compound 25 eta	S15
¹ H-NMR and ¹³ C-NMR spectra of compound 26 α	S16
1 H-NMR and 13 C-NMR spectra of compound 26 eta	S17
¹ H-NMR and ¹³ C-NMR spectra of compound 30	S18
¹ H-NMR spectrum of the $9lpha,eta$ mixture	S20
¹ H-NMR spectrum of the 10 $lpha$, eta mixture	S21
¹ H-NMR spectrum of the 11$lpha,eta$ mixture	S22
¹ H-NMR and ¹³ C-NMR spectra of compound 9 $lpha$	S23
¹ H-NMR and ¹³ C-NMR spectra of compound 9 eta	S24
¹ H-NMR and ¹³ C-NMR spectra of compound 10 $lpha$	S25
¹ H-NMR and ¹³ C-NMR spectra of compound 11 $lpha$	S26
Figure S1. Dose-response curves of compounds 8 (A), 9α , β (B), 9α (C), 9β (D) for insect trehalase	S27
Figure S2. Dose-response curves of compounds 8 (A), 9α , β (B), 9α (C), 9β (D) for porcine trehalase	S28
Figure S3. Inhibition kinetics of insect trehalase in the presence of compound $9lpha$	S29
Figure S4. Inhibition kinetics of insect trehalase in the presence of compound $9eta$	S30

 $^1\text{H-NMR}$ spectrum of compound 19a (400 MHz, CDCl_3)

 $^{13}\text{C-NMR}$ spectrum of compound 19a (50 MHz, CDCl_3)

 $^{13}\text{C-NMR}$ spectrum of compound 19 β (100 MHz, CDCl_3)

¹³C-NMR spectrum of compound 20 (50 MHz, CDCl₃)

¹H-NMR spectrum of compound 8 (100 MHz, D₂O)

¹³C-NMR spectrum of compound 16 (50 MHz, CDCl₃)

¹H-NMR spectrum of compound 17 (400 MHz, CDCl₃)

 $^{13}\mbox{C-NMR}$ spectrum of compound 17 (50 MHz, $\mbox{CDCl}_3\mbox{)}$

 $^1\text{H-NMR}$ spectrum of the purified mixture of anomers 21 α and 21 β (400 MHz, CDCl_3)

 $^1\text{H-NMR}$ spectrum of the purified mixture of anomers 22 α and 22 β (400 MHz, CDCl_3)

 $^1\text{H-NMR}$ spectrum of the purified mixture of anomers 23a and 23β (400 MHz, CDCl₃).

 $^{13}\text{H-NMR}$ spectrum of compound 24 α (50 MHz, CDCl_3)

. S13

 $^{13}\text{C-NMR}$ spectrum of compound 25 α (100 MHz, CDCl_3)

 $^{13}\text{C-NMR}$ spectrum of compound 25 β (50 MHz, CDCl_3)

 $^{13}\text{C-NMR}$ spectrum of compound 26 α (50 MHz, CDCl_3)

¹³C-NMR spectrum of compound 30 (100 MHz, CDCl₃)

During an attempt of glucosylation of **29** (1 equiv) with **15** (1.5 equiv) performed in the presence of a high quantity of TMSOTf (2 equiv), we were able to isolate a fraction containing a glucosyl derivative deacetylated at C4'-OH (11% yield), identified by the ESI-MS signal at 736.55 $[M+H]^+$ and confirmed by ¹H and ¹³C spectra. The signals of this deacetylated compound are present as impurities in the glycosylation compound **30** reported above.

 $^{13}\text{C-NMR}$ spectrum of compounds 9 α (100 MHz, D_2O)

 $^{13}\text{C-NMR}$ spectrum of compounds 10 α (100 MHz, D_2O)

0

Figure S1. Dose-response curves of compounds 8 (A), 9α , β (B), 9α (C), 9β (D) for insect trehalase

Figure S2. Dose-response curves of compounds 8 (A), 9α , β (B), 9α (C), 9β (D) for porcine trehalase

В

Figure S3. Inhibition kinetics of insect trehalase in the presence of compound 9α . A) double reciprocal plot in the presence of two fixed inhibitor concentrations (5 and 10 μ M); B) replot of the slopes of each reciprocal plot versus the corresponding inhibitor concentration.

Figure S4. Inhibition kinetics of insect trehalase in the presence of compound 9β . A) double reciprocal plot in the presence of two fixed inhibitor concentrations (0.5 and 1 μ M); B) replot of the slopes of each reciprocal plot versus the corresponding inhibitor concentration.