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Abstract: A nitronyl nitroxide derivative, 2-phenylethynyl-4,4,5,5-tetramethyl-4,5-dihydro-1H-
imidazol-1-oxyl-3-oxide (1), and two verdazyl derivatives carrying a phenylacetylene unit,
1,5-diphenyl-3-phenylethynyl-6-oxo-1,2,4,5-tetrazin-2-yl (2) and 1,5-diisopropyl-3-phenylethynyl-
6-oxo-1,2,4,5-tetrazin-2-yl (3), were synthesized and their packing structures were studied by X-ray
crystallographic analysis and magnetically characterized in the solid state. While 1 and 3 had an
isolated doublet spin state, 2 formed an antiferromagnetically coupled pair (2J/kB = −118 K). Density
functional theory (DFT) calculations reveal that the spin density polarized in the phenyl group
decreases as the dihedral angle between the phenyl ring and radical plane increases.

Keywords: stable radical; phenylacetylene; nitronyl nitroxide; verdazyl; magnetic property;
computational analysis

1. Introduction

The study of stable organic radicals has attracted a great deal of attention because of their
wide applicability for spin probes, molecule-based magnets, and molecular conductors [1–8].
To assess the magnetic properties of organic radical solids, it is important to investigate the
correlation between molecular arrangement and magnetic properties based on crystal engineering
strategies [9–27]. For the purpose of inducing the formation of magnetic molecular self-assemblies,
van der Waals interactions [9,10,12–14,18], hydrogen bonds [16,17,19–23,25,26], and aromatic
stackings [11,15,24,27] have been introduced to various stable radical derivatives such as phenoxyl,
nitroxyl, etc. and their effects have been examined. As for verdazyl radical derivatives, strong
intermolecular magnetic interactions induced by aromatic stackings have been reported [28–35].
In addition to the control of intermolecular interactions, introduction of specific substituents is
also a useful tool for design of molecular packing. The ethynyl group has a rigid linker, and it
can also propagate magnetic interaction through the conjugate system and freely rotate around
the bond. In the field of crystal engineering, the free rotation of ethynyl group is widely used for
the construction of a supramolecular architecture [36,37]. Although the synthetic study [38–42]
and computational study [43–45] of ethynyl-substituted derivatives were reported, a limited
number of papers have discussed their magneto-structural correlation [33,34,42]. We synthesized
three derivatives, 2-phenylethynyl-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxyl-3-oxide (1),
1,5-diphenyl-3-phenylethynyl-6-oxo-1,2,4,5-tetrazin-2-yl (2), and 1,5-diisopropyl-3-phenylethynyl-
6-oxo-1,2,4,5-tetrazin-2-yl (3) (Chart 1). While the synthesis of 1 has already been reported [38],
structural analysis and solid-state magnetic characterization were not conducted. In this paper,
we described the crystal structures and magnetic properties of 1, 2 and 3. To elucidate the effect
of a directly substituted ethynyl group, the spin densities of 1, 2 and 3 were estimated using a
computational method.
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The syntheses of compounds 1–3 are summarized in Scheme 1. Typically, 2,3-bis(hydroxyamino)- 
2,3-dimethylbutane sulfate reacts with an aldehyde and the precursor of nitronyl nitroxide (NN) is 
obtained, but this method did not lead to 1 due to the reaction between ethynyl and the hydroxy 
group [40]. Therefore, the synthesis route of 1 was basically followed by Ullman’s route through 
alkene and dehydrobromide compounds [38]. To obtain the verdazyl (VZ) derivatives 2 and 3, the 
hydrazine derivatives protected by Boc, 8 and 10 [46–48] were synthesized from 6 [49] and 9 [50], 
respectively. They were combined with the aldehyde derivative [51,52] and 2 and 3 were synthesized 
by the oxidation of 11 and 12, respectively. 

 

 
Scheme 1. Synthesis of 1, 2, and 3. 

The solution electron paramagnetic resonance (EPR) spectra of these radicals exhibited typical 
patterns for NN and VZ derivatives (Figure S5). The hyperfine coupling constants (hfcc) and g value 
of compounds 1–3 are summarized in Table 1. 

Table 1. EPR parameters of 1, 2 and 3 in toluene. 

 αN(G) g
1 7.32, 7.35 2.0062 
2 4.62, 4.64, 6.39, 6.40 2.0033 
3 5.29, 5.61, 6.52, 6.56 2.0031

  

Chart 1. The chemical structures of 1, 2 and 3.

2. Results

2.1. Synthesis and Electron Paramagnetic Resonance Spectra

The syntheses of compounds 1–3 are summarized in Scheme 1. Typically, 2,3-bis(hydroxyamino)-
2,3-dimethylbutane sulfate reacts with an aldehyde and the precursor of nitronyl nitroxide (NN) is
obtained, but this method did not lead to 1 due to the reaction between ethynyl and the hydroxy
group [40]. Therefore, the synthesis route of 1 was basically followed by Ullman’s route through alkene
and dehydrobromide compounds [38]. To obtain the verdazyl (VZ) derivatives 2 and 3, the hydrazine
derivatives protected by Boc, 8 and 10 [46–48] were synthesized from 6 [49] and 9 [50], respectively.
They were combined with the aldehyde derivative [51,52] and 2 and 3 were synthesized by the
oxidation of 11 and 12, respectively.
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Scheme 1. Synthesis of 1, 2, and 3.

The solution electron paramagnetic resonance (EPR) spectra of these radicals exhibited typical
patterns for NN and VZ derivatives (Figure S5). The hyperfine coupling constants (hfcc) and g value
of compounds 1–3 are summarized in Table 1.

Table 1. EPR parameters of 1, 2 and 3 in toluene.

αN(G) g

1 7.32, 7.35 2.0062
2 4.62, 4.64, 6.39, 6.40 2.0033
3 5.29, 5.61, 6.52, 6.56 2.0031
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2.2. X-ray Structural Analysis

The single crystal of 1 was obtained by slow evaporation of the solvent (dichloromethane:n-hexane
= 5:3) and it was a blue plate-like crystal. The X-ray structure analysis of 1 revealed that the crystal
system was monoclinic and the space group was Cc (Table S1) [53]. Figure 1 shows an ORTEP drawing
of 1 and the dihedral angle of the phenyl ring to the NN group was determined to be 77.81(12)◦,
which is a very big torsion. Three types of intermolecular close arrangements were confirmed, labeled
Pair I, Pair II, and Pair III (Figure 2). In Pair I, the O atom of NN and two H atoms of the methyl group
were the closest sites. On the other hand, the O atom of NN and H atom of the phenyl group were the
closest to Pair II and Pair III, respectively.
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Figure 2. Crystal structure of 1.

The slow evaporation of a mixed solvent (ethyl acetate:n-hexane = 1:1) formed the single crystal of
2 as a dark red plate-like crystal. The crystal system and space group were triclinic and P-1, respectively
(Table S1) [53]. Figure 3 shows the ORTEP drawing of 2. The dihedral angle between the VZ ring
and phenyl group at positions 1 and 5 were 41.68(9)◦ and 50.08(6)◦, respectively, but for the phenyl
group at position 3, it was 8.26(11)◦. 2 had an antiparallel stacking and two intermolecular contacts
(Figure 4). The intermolecular distances of Pair IV and Pair V were 3.343(2) Å for dN1-N4’ and 3.710(3)
Å for dC15-C16’.
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Figure 4. Crystal structure of 2.

The single crystal of 3 was obtained by slow evaporation of a mixed solvent (dichloromethane:
n-hexane = 1:2) as orange needles. The crystal system and space group were monoclinic and P21/n,
respectively [53]. Details of the crystallographic data are listed in Table S1. The crystal packing
of 3 was composed of three different molecules labeled A, B, and C in Figure 5. Dihedral angles
between the phenyl group and VZ unit were 7.42(25)◦ (A), 3.88(25)◦ (B), and 46.02(13)◦ (C). There was
linear stacking between the same structural molecules; A, B, and C made Pair VI, Pair VII, and Pair
VIII (Figure 6), respectively. The intermolecular distances were 3.701(5) Å for dC2-C11’, 3.681(6) Å for
dC18-C27’, and 4.171(6) Å for dC34-C43’ in Pair VI, Pair VII, and Pair VIII, respectively.
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2.3. Magnetic Properties

The solid-state magnetic susceptibility measurements of 1, 2, and 3 were carried out by a SQUID
magnetometer in the temperature region of 1.8–300 K. The χmT-T and χm-T plots for 1 and 3
(Figure 7) exhibit a similar pattern. Cooling did not cause any remarkable changes in the χmT values,
which indicated that they were in an isolated doublet-state. The χm

−1-T plots of 1 and 3 showed that
their Weiss temperatures were −0.13 K and −1.0 K, respectively. However, the χm value of 2 had a
maximum at 80 K and the minimum at 15 K, and the χmT value decreased with cooling, meaning that the
antiferromagnetic interaction was dominant. Fitting with the antiferromagnetic dimer model revealed
that the magnetic interaction, 2J/kB, of 2 was −118 K, containing 0.5% of the isolated component.
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ρ


χm: magnetic susceptibility; NA: Avogadro constant; g: g factor; µB: Bohr magneton;
kB: Boltzmann constant; ρ: isolated component.

3. Discussion

The magnetic interactions of the abovementioned pairs were calculated by DFT at the
UB3LYP/6-31G* level, and the calculation results are substituted into Yamaguchi’s equation [54]
(Table 2). In 1 and 3, the value of J/kB for all the pairs was nearly zero; these results agreed with
the SQUID measurement. In these pairs, the C, N, and O atoms of the radical ring that have a large
spin density were not close to the C, N, and O atoms of the neighboring radical ring. However,
Pair V had a low value of J/kB, and Pair IV had a large negative value that was thought to cause the
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antiferromagnetic behavior of the SQUID measurement. It was suggested that the antiferromagnetic
interaction was caused by the intermolecular interaction between the N1 and N4 atoms (x, y, z)
that have large spin density and the N1’ and N4’ atoms of neighboring molecules (1−x, 1−y, 1−z).
The values of the spin density of the atoms that form the six-membered ring and phenylacetylene
group of 1–3 are shown in Tables S2–S6, respectively.

Table 2. Estimation of intermolecular magnetic interactions of 1, 2, and 3.

1 2 3

Pair I Pair II Pair III Pair IV Pair V Pair VI Pair VII Pair VIII

2J/kB (K) 0.190 0.190 −0.0632 −79.4 −1.58 −1.26 −2.91 −0.948

To estimate the influence of the rotation of the ethynyl group on the extent of the spin density,
the molecules that were based on the crystal structures and rotated between the phenyl group and
radical ring at 15-degree intervals (0–90◦) were calculated by DFT. The sum of the spin density that
was taken as an absolute value was used in the plots of Figure 8. The spin density of the radical group
and the ethynyl group remained almost constant; however, that of the phenyl group decreased with
rotation. This result indicated that the spin density was difficult to expand at the higher dihedral angle
of ethynyl like other conjugated systems.
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4. Experimental

Compounds 1, 4, and 5 [38], 6 [49], 9 and 10 [50], phenylpropargylaldehyde [48] were synthesized
with reference to the respective papers. The details of the methods for synthesizing the other
compounds are summarized in the Supplementary Materials.

The NMR spectra were measured by JEOL JNM-LA300 (Tokyo, Japan) (tetramethylsilane was used
as the reference). Mass spectroscopy was carried out using a Bruker Ultraflex II (MALDI-TOF, with sinapic
acid used as the matrix) (Billerica, MA, USA). The IR spectra were measured using a JASCO FT/IR-4100
(Tokyo, Japan). The crystal data were collected using a Bruker D8 Venture with Mo–Kα radiation (0.71073 Å).
The structures were solved by the direct method using SHELXT-2013 (Göttingen, Germany) [55] and refined
by F2 full matrix least squares using SHELXL-2014 (Göttingen, Germany) [56] in the Bruker APEX-II
program package. The magnetic susceptibility measurement was carried out using a Quantum Design
MPMS-XL SQUID (San Diego, CA, USA) magnetometer in the temperature range of 1.8–300 K under the
applied field of 10000 Oe (1 and 2) or 5000 Oe (3). The EPR spectra were recorded using a Bruker E500
spectrometer (Billerica, MA, USA) at room temperature. The EPR data were simulated by the Winsim
ver. 0.96 program (Bethesda, MD, USA) [57]. The DFT calculation was carried out using the Gaussian 09
program (Wallingford, CT, USA) [58].

5. Conclusions

As stable organic radicals carrying an ethynyl group, the nitronyl nitroxide derivative 1 and
verdazyl derivatives 2 and 3 were synthesized. X-ray crystal analysis revealed their packing structures,
and 1–3 had several types of close intermolecular contacts. The magnetic susceptibility measurement
revealed that 1 and 3 had an isolated doublet-state and 2 was an antiferromagnetic compound that
fitted with 2J/kB = −118 K containing 0.5% of the isolated component. DFT calculations of 1, 2, and 3
agreed with the results of the magnetic susceptibility measurements, and indicated that the spin
density of the phenyl group decreased due to the free rotation of the acetylene unit.

Supplementary Materials: The Supplementary Materials are available online: supplementary materials contain
synthetic procedure, EPR spectra, crystallographic parameter, and distributions of SOMO and spin density.
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