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Abstract: The pineal gland is a unique organ that synthesizes melatonin as the signaling molecule of
natural photoperiodic environment and as a potent neuronal protective antioxidant. An intact and
functional pineal gland is necessary for preserving optimal human health. Unfortunately, this gland
has the highest calcification rate among all organs and tissues of the human body. Pineal calcification
jeopardizes melatonin’s synthetic capacity and is associated with a variety of neuronal diseases.
In the current review, we summarized the potential mechanisms of how this process may occur under
pathological conditions or during aging. We hypothesized that pineal calcification is an active process
and resembles in some respects of bone formation. The mesenchymal stem cells and melatonin
participate in this process. Finally, we suggest that preservation of pineal health can be achieved by
retarding its premature calcification or even rejuvenating the calcified gland.
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1. Introduction

Pineal gland is a unique organ which is localized in the geometric center of the human brain.
Its size is individually variable and the average weight of pineal gland in human is around 150 mg [1],
the size of a soybean. Pineal glands are present in all vertebrates [2]. Pineal-like organs are also found in
non-vertebrate organisms such as insects [3–5]. It appears that the sizes of pineal glands in vertebrates
are somehow associated with survival in their particular environments and their geographical locations.
The more harsh (colder) their habitant, the larger their pineal glands are. A general rule is that the
pineal gland increases in size in vertebrates from south to north or from the equator to the poles [6].
It is unknown whether if the same species moved to a different environment this would cause a change
in the size of their pineal gland.

It was reported that several physiological or pathological conditions indeed alter the morphology
of the pineal glands. For example, the pineal gland of obese individuals is usually significantly smaller
than that in a lean subject [7]. The pineal volume is also significantly reduced in patients with primary
insomnia compared to healthy controls and further studies are needed to clarify whether low pineal
volume is the basis or a consequence of a functional sleep disorder [8]. These observations indicate
that the phenotype of the pineal gland may be changeable by health status or by environmental factors,
even in humans. The largest pineal gland was recorded in new born South Pole seals; it occupies one
third of their entire brain [9,10]. The pineal size decreases as they grow. Even in the adult seal, however,
the pineal gland is considerably large and its weight can reach up to approximately 4000 mg, 27 times
larger than that of a human. This huge pineal gland is attributed to the harsh survival environments
these animals experience [11].
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The human pineal gland has been recognized for more than 2000 years. The father of anatomy, the
Greek anatomist, Herophilus (325–280 BC), described the pineal gland as a valve of animal memory.
René Descartes (1596–1650), a French philosopher, mathematician, and scientist, regarded the pineal
gland as the principal seat of the soul and the place in which all thoughts are formed. A real biological
function of pineal gland was not uncovered until 1958 [12], that is, this gland is a secretory organ
which mainly produces and releases a chemical, called melatonin, into the blood circulation and
into the cerebrospinal fluid (CSF). In addition, it also produces some peptides [13,14] and other
methylated molecules, for example, N,N-dimethyltryptamine (DMT or N,N-DMT) [15,16], a potent
psychedelic. This chemical was suggested to be exclusively generated by the pineal gland at birth,
during dreaming, and/or near death to produce “out of body” experiences [17]. However, the exact
biological consequences (if any) of these substances remain to be clarified. Recently, it was reported that
pineal gland is an important organ to synthesize neurosteroids from cholesterol. These neurosteroids
include testosterone (T), 5α- and 5β-dihydrotestosterone (5α- and 5β-DHT), 7α-hydroxypregnenolone
(7α-OH PREG) and estradiol-17β (E2). The machinery for synthesis of these steroids has been identified
in the gland. 7α-OH PREG is the major neurosteroid synthesized by the pineal gland. Its synthesis
and release from gland exhibits a circadian rhythm and it is regulates the locomote activities of some
vertebrates, especially in birds [18]. These observations opened a new avenue for functional research
on pineal gland; the observations require further confirmation.

The most widely accepted concept is that melatonin is the recognized major product of the pineal
gland. Melatonin is the derivative of tryptophan. It was first isolated from the pineal gland of the
cow and it was initially classified as a neuroendocrine-hormone [19]. Subsequently, it was discovered
that retina [20,21] and Harderian gland [20,22–24] also produced melatonin. Recently, it has been
found that almost all organs, tissues and cells tested have the ability to synthesize melatonin using
the same pathway and enzymes the pineal uses [25,26]. These include, but not limited to, skin [27],
lens [28], ciliary body [29,30], gut [31,32], testis [33], ovary [34,35], uterus [36], bone marrow [37,38],
placenta [39,40], oocytes [41], red blood cells [42], plantlets [43], lymphocytes [44], astrocytes, glia
cells [45], mast cells [46] and neurons [47]. Not only melatonin but also the melatonin biosynthetic
machinery including mRNA and proteins of arylalkylamine N-acetyltransferase (AANAT) and/or
N-acetyl-serotonin methyltransferase (ASMT) [formerly hydroxyindoleO-methyltransferase (HIOMT)]
have been identified in these organs, tissues and cells. It was calculated that the amounts of extrapineal
derived melatonin is much greater than that produced by the pineal [48]. However, the extra
pineal-derived melatonin cannot replace/compensate for the role played by the pineal-derived
melatonin in terms of circadian rhythm regulation. As we know pineal melatonin exhibits a circadian
rhythm in circulation and in the CSF with a secretory peak at night and low level during the day [19];
thus, the primary function of the pineal-derived melatonin is as a chemical signal of darkness for
vertebrates [49]. This melatonin signal helps the animals to cope with the light/dark circadian changes
to synchronize their daily physiological activities (feeding, metabolism, reproduction, sleep, etc.).

For the photoperiod sensitive reproductive animals, the melatonin signal regulates their
reproductive activities to guide them to give birth during the right seasons [50]. Interestingly, even low
ranking species that lack a pineal gland, for example, marine zooplankton, also exhibit a melatonin
circadian rhythm which is responsible for their daily physiological activities [51]. While, the extrapineal
melatonin in vertebrates does not contribute to the melatonin circadian rhythm and it does not serve
as the chemical signal of darkness since pinealectomy in animals distinguishes this rhythm [52–54].
This was further confirmed by the recent discovery that the expressions of AANAT and ASMT are
present in mitochondria of both pinealocytes and neuron cells and their mitochondria synthesized
melatonin. However, the expressions of AANAT and ASMT exhibit a circadian rhythm that matched
the fluctuation in melatonin levels only in the mitochondria of pineal gland while this rhythm was
absent in the mitochondria of neuronal cells [55]. Thus, the primary function of extrapineal melatonin
(except for the retina; retinas not only possess an internal melatonin rhythm [56,57]; retinal melatonin
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might participate in melatonin circadian rhythm of the general circulation in some species [58–60]) is
to serve as an antioxidant, autocoid, paracoid and tissue factor locally [49,61].

In addition to synthesizing the “signaling-melatonin” which differs from extrapineal melatonin,
the pineal gland also participates in the CSF production and recycling. The blood filtration rate of
this gland is comparable to the kidney [62]; this is, far more than its metabolic requirement. It was
hypothesized that pineal gland may function like the kidney as a blood filter to generate CSF; this is
similar to the function of choroid plexus to recycle the CSF [63]. Pineal gland and choroid plexus share
a similar vasculature structure with the abundance of the vasculature spaces and fenestrated capillaries.
A direct morphological connection between pineal gland and choroid plexus has been reported in
birds [64]. The functional and vascular structural similarities may explain the high calcification rates
of both structures [65,66].

The calcium deposits in the pineal gland were recognized several decades ago in
vertebrates [67,68]. Some researchers believe that pineal calcification was associated with certain
endocrine diseases such as schizophrenia, and mammary carcinoma [69–75]. Others feel that it is a
natural process and has no consequences for human physiopathology since this process occurs early
in childhood [76] and it also may not impact the melatonin synthetic ability of the gland in some
animals [77,78]. Recently, additional studies have shown that pineal calcification indeed jeopardizes
the melatonin production in humans and it seems to have a direct influence on neurodegenerative
diseases and aging [79–81]. This review summarizes the current developments in the field and also
provides opinions and comments on pineal physiology and pineal gland calcification (PGC).

2. Pineal Gland and the Melatonin Circadian Rhythm

The pineal gland is situated in the geometric center of the human brain and it is directly connected
to the third ventricle; it is classified as a circumventricular organ (CVO) and participates in the biological
rhythm regulation in vertebrates. Herein, we refer to the structures which regulate biorhythms
as the suprachiasmatic nucleus (SCN)-melatonin loop. This loop includes melanopsin-containing
retinal ganglion cells (MRGC), retino-hypothalamic tract (RHT), SCN, paraventricular nucleus (PVN),
Intermediolateral cell column, sympathetic cervical ganglia (SCG), the pineal gland, melatonin rhythm
which feedback impacts the SCN (Figure 1).
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Any defect of the loop results in a diminished melatonin circadian rhythm and the disturbance 
of chronobiology. For example, SCN or PVN lesions [82–84], blockade of the cervical ganglia [85,86] 

Figure 1. Illustration of the SCN-melatonin loop. Solid arrows indicate the neuronal connections
and the direction of neuronal projections. Dash arrows indicate the input signals. SCN is the master
clock which determines the biological rhythms as well as the melatonin circadian rhythm. Its intrinsic
circadian interval is longer than 24 h. The natural photoperiod (photos) serves as an input signal to
entrain melatonin circadian rhythm to 24 h; in turn, melatonin functions as a signal of photoperiod to
re-entrain the biological rhythm of SCN to 24 h. MRGC: melanopsin-containing retinal ganglion cells;
RHT: retino-hypothalamic tract; SCN: suprachasmatic nucleus; PVN: paraventricular nucleus; IMCC:
Intermediolateral cell column; SCG: sympathetic cervical ganglion; PG: pineal gland. Mel: melatonin.
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Any defect of the loop results in a diminished melatonin circadian rhythm and the disturbance
of chronobiology. For example, SCN or PVN lesions [82–84], blockade of the cervical ganglia [85,86]
or pinealectomy [52,53] is always accompanied by the loss of the melatonin rhythm in vertebrates.
This loop is important to regulate the biological rhythms of vertebrates. SCN is believed to be the
master clock or the pacemaker [87]. This pacemaker has its internal circadian timer which is longer than
24 h. It is synchronized to 24 h circadian rhythm by the environmental photoperiod clues. However,
melatonin is a major chemical message to synchronize its activity of SCN [88].

Melatonin membrane receptors have been identified in the SCN of vertebrates [56,89] and the
signal transduction pathways seemed to be involved in both MT1 and MT2 to induce an increase in
the expression of two clock genes, Period 1 (Per1) and Period 2 (Per2) [89–91]. Without the feedback
information of melatonin, SCN would not properly interpret the natural photoperiodic changes [92]
and would exhibit a free running internal rhythm in which the cycle is longer than 24 h. In this
situation the SCN would also instruct the pineal gland to exhibit an unusual melatonin circadian
rhythm which is also longer than 24 h. This phenomenon is apparent in completely blind animals and
humans whose eyes, specifically the MRGC, do not appropriately receive environmental photoperiodic
information [93–95]. Importantly, melatonin administration to blind subjects partially re-entrains their
biological rhythms close to normal [94,96,97].

Pineal gland is mainly comprised of pinealocytes, microglia and astrocytes. The lineage of
pinealocytes is elusive. Current information suggests that pinealocytes are differentiated from
Pax6-expresssing neuroepithelial cells [98]. They are specialized to synthesize and release melatonin
(and possible some other substances). This explains why pinealocytes with two special characteristics
regarding their mitochondria. First, the pinealocytes contain many more mitochondria than those of
neuronal cells. Second, the morphologies of these mitochondria exhibit obvious dynamic alterations
related to their fission, fusion and mitophagy activities during a 24 h period [99]. Because of the
high density of mitochondria, we speculated the mitochondria are the major sites for melatonin
synthesis [100]. Subsequent studies have proven this speculation. Melatonin synthesis was identified
in the mitochondria of both animal and plant cells [101,102]. Recently, this was further confirmed by
Suofa et al. [55]. They observed that the mitochondria are the exclusive sites of melatonin production
in pinelocytes and in neuronal cells. The exact subsite of melatonin synthesis occurred in the matrix of
mitochondria. Thus, the numerous mitochondria in pinealocytes relate to their melatonin synthetic
function. This does not naturally exclude the extra-mitochondrial melatonin production. In cytosol,
melatonin can also be synthesized. For example, red blood cells and platelets which are without
mitochondria still produced melatonin [42,43]. Due to the substrate, particularly acetyl coenzyme A
availability, melatonin synthesis in the extra-mitochondrial sites would not be as efficient as in the
mitochondria since acetyl coenzyme A is concentrated in the mitochondria [99].

As to the mitochondrial dynamic alterations, generally, at darkness when melatonin is at its
synthetic peak, more mitochondrial fusion was observed and, during the day, more fission was
obvious. It was speculated that the mitochondrial dynamic changes were associated with their
function, i.e., to produce melatonin [103]. However, current studies have reported that melatonin per se
can regulate mitochondrial morphology [104,105]. Melatonin upregulates the levels of mitochondrial
fusion proteins mitofusin 1 (Mfn1) and Opa1 to promote mitochondrial fusion [106,107] and inhibits
the nuclear translocation of dynamin-related protein 1 (DrP1). The nuclear translocation of DrP1
increases mitochondrial fission and the inhibition of DrP1 nuclear translocation by melatonin results
in suppression of mitochondrial fission [108–112]. Thus, the net result of melatonin is to promote the
mitochondrial fusion and to reduce mitochondrial fission.

The effects of melatonin on mitophagy are still elusive. Some reports document that melatonin
inhibits mitophagy and others show that melatonin promotes this process depending on the
experimental conditions and cell type [109,113–121]. Currently it is not possible to determine whether
the mitochondrial dynamic changes in pinealocytes relate to their functional activity which may be
controlled by the clock genes, such as perd1, 2 or a result of their melatonin production rhythm.
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Thus, do the changes in melatonin levels generated by pinealocytes result in the mitochondrial
dynamic changes.

In addition to the pinealocytes, the astrocytes and the microglia in the pineal gland also have the
capacity to synthesize melatonin with great efficiency. The melatonin synthetic machinery including
AANAT/SNAT and HIOMT/ASMT has been identified and melatonin production has been detected
in these cells [45,122]. Markus et al. [123] hypothesized that melatonin synthesis was coordinated by
both pinealocytes and macrophages/glia and astrocytes for the immunoresponse. For example, an
acute inflammatory response drives the transcription factor, NFκB, to switch melatonin synthesis from
pinealocytes to macrophages/microglia and, upon acute inflammatory resolution, back to pinealocytes.
A participation of melatonin production by these cells would significantly improve the capacity of
pineal gland to generate melatonin as a whole. This is particularly important in the situations in which
melatonin is required, for example under the oxidative stress or inflammation. It was reported that
CSF melatonin and its oxidative metabolites, AFMK, are elevated by several orders of magnitude in
patients with meningitis [124]. This is probably the outcome of a coordinated physiology of all of
the cells mentioned above. However, the major function of astrocytes and the microglia in the pineal
gland is to regulate the pinealocyte melatonin synthesis under normal conditions. The regulatory
mechanisms are well documented, i.e., astrocytes/glia are excited under different conditions which
include elevated intracellular calcium concentration, which results in the NF-κB activation. The excited
astrocytes/microglia, then, release soluble TNFα which is the signaling molecule to the pinealocytes
for inhibition of melatonin synthesis by targeting AANAT [98,125,126]. Other regulatory mechanisms
may also be involved. For example, purinergic signaling on melatonin synthesis in pineal gland was
reported [127]. ATP binding to its receptor in pinealocytes inhibits melatonin synthesis via suppression
of the gene expression as well as the activity of the ASMT rather than the AANAT.

Once melatonin is synthesized in the pineal gland, it is rapidly released. The outlets for melatonin
release are several. The classic concept is that pineal melatonin is released into the precapillary spaces,
enters the capillaries, and then, via surrounding veins and sinuses reaches the general circulation.
However, a more important route for melatonin release from pineal gland was uncovered, i.e.,
melatonin is directly release to the CSF of the third ventricle of the mammals. Compelling evidence
supports this secretory route. Anatomically, a portion of pineal gland is nakedly-exposed into the CSF
of the third ventricle (bathed by the CSF) [128] and many canaliculi of the pineal gland directly open
into the CSF of third ventricle [129–132]. Pineal melatonin via these canaliculi is directly discharge into
the CSF. This results in extremely high melatonin level in the CSF of pineal recess of third ventricle.
In the sheep, the melatonin levels in the CSF of pineal recess of third ventricle are several orders of
magnitude higher than those in the blood [133,134]. A melatonin concentration gradient in the CSF
around the pineal recess of third ventricle was observed [135]. This indicated that the main source of
CSF melatonin originated from the pineal recess of the third ventricle. The high melatonin levels in CSF
have been reported in different species [136]. It is obvious that there are, at least, two parallel melatonin
secretory routes, i.e., the general circulation and the CSF (Figure 3). The key question is which one
probably transduces the photoperiodic information of retinas to the SCN-pineal loop, particularly to
the SCN. If, as previously predicted, the CSF melatonin was from the blood, there was no doubt that
general circulatory melatonin was the signal. However, it is known that the CSF melatonin is not from
the blood but it is directly derived from the pineal gland; thus, the blood melatonin circadian rhythm as
the signal of natural photoperiodic information is open to question, at least in terms of the major signal.
Based on the evidence, it was hypothesized that the CSF melatonin released by pineal gland rather
than the blood melatonin served as the signal of the natural photoperiodic information [135,137,138].
SCN is close to the third ventricle and the high levels of CSF melatonin can easily be transported into
the SCN via simple diffusion or via tanycytes; these cells possess basal processes for the transport
of small molecules including melatonin and this melatonin directly targets the SCN as the signaling
molecule [130].
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It is now a common knowledge that many foods contain melatonin. These include herbs,
vegetables, fruits, cereals, beans, eggs, meets, fish, milk, wine, beer and coffee [139–144].
Consumption of these foodstuffs increases the circulating melatonin levels [145]. In some cases,
the food-derived melatonin could elevate serum melatonin levels as high as the night time peak levels
of melatonin [146–149]. Whether this food-derived melatonin alters the signaling information and
produces chronobiological consequences remains unknown. If the melatonin in general circulatory
system serves as the photoperiodic signaling; food-derived melatonin may have the chronobiological
effects. If the CSF melatonin serves as the exclusive signaling to the SCN, the serum melatonin derived
from food would not impact the chronobiology since the food-derived melatonin unlikely reaches
night time CSF melatonin levels. The SCN is likely regulated by the high levels and square shape
of melatonin rhythm that is completely different from the serum melatonin as to their shapes and it
would not response to the low level and other shapes of melatonin rhythm input [63] (Figure 2). Thus,
the photoperiod induced melatonin message is a precise trait that would not be influenced by non-CSF
melatonin level alterations.
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Figure 2. The different levels and shapes of melatonin circadian rhythms in the CSF of the third
ventricle and in the peripheral blood. The nightly melatonin levels in CSF of the third ventricle are
more robust than those in the peripheral plasma and also exhibit sharp rises and falls (square wave).
The pattern of the melatonin circadian rhythm in CSF of the third ventricle is similar to that of the
pineal gland rather than in the plasma (see the insert part which illustrates the melatonin synthetic
pattern in pineal gland of rat). The data was obtained from the long term (5 days) pineal gland dialysis
in a free running rat. Extrapineal-generated melatonin and the diet-derived melatonin may increase
peripheral plasma melatonin levels; however, they do not mimic the pattern and reach the high level of
the melatonin circadian rhythm in the CSF of the third ventricle to impact the function of bio-clock.
From Tan et al. [63].

The high levels of CNS melatonin also exhibit protective effects on the brain tissue [130].
Pinealectomy results in the accelerated neurodegenerative changes and evidence of premature aging
in animals [150–153]. Pineal grafts in brain protected the brain from oxidative damage induced
by the ischemia/reperfusion in mice [154]. These effects are mainly attributed to the antioxidative,
anti-inflammatory and anti-apoptotic effects of CSF melatonin directly released by pineal gland.
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3. Pineal Gland Calcification (PGC), Melatonin Production, Neurodegenerative Diseases
and Aging

Pineal calcification (synonyms include corpora arenacea, acervuli, brain sand, psammoma bodies
and pineal concretions) was observed as early as in 1653 in humans [155]. Its presence was identified
in a wide range of species including human, ox, sheep, horse, donkey, monkey, cow, gerbil, rat, guinea
pig, chicken and turkey [156]. Even through the concretions were not found in the pineal organs of
fish, amphibians, reptiles the high calcium content was detected in their pineal by ultrastructural
calcium histochemistry [157]. Thus, pineal calcium metabolism and pineal calcification are wide
spread phenomenon across species. Its rate increases with aging and in some species the pineal
calcification rates are as high as 100% with age [158,159]. Ironically, calcification also occurs in neonatal
humans [160,161]. It was reported that the pineal calcification in humans failed to impact the melatonin
production and its circadian rhythm [77,78]. As a result, some believed that the pineal calcification
might be a physiological process and not associated with pathological or aging changes. Rather,
it might be related to the metabolic activity of pineal gland per se. In gerbils, the accumulation of
pineal calcium deposits is blocked by superior cervical ganglionectomy which is believed to shut down
completely the function of the pineal gland [162,163]. Gerbils exposed to short photoperiod (LD 10:14)
exhibited significantly higher numbers of pineal concretions than those that were exposed to long
photoperiod (LD 14:10) [164]. In addition, pineal calcification was enhanced in the gerbils with bilateral
optic enucleation in which the animals are completely devoid a photoperiodic influence [165] with the
generation of more melatonin. This evidence supported the metabolic theory of pineal calcification.

Large amounts of evidence, however, also suggest that the pineal calcification was indeed
associated with human pathological disorders and aging. Decades ago several studies pointed out
the relationship between the pineal calcification and schizophrenia [73,166–168]. The highest pineal
calcium content was detected in the pineal gland of patients who died of renal disease associated
with hypertension among other diseases [169]. Currently, additional studies have reported the
strong association of PGC and neurodegenerative diseases, particularly Alzheimer’s disease [170].
This association is connected with the melatonin levels synthesized by this gland. It is well established
that melatonin is a neuroprotector with its potent antioxidant function and anti-inflammatory
activity [171–176]. The brain is rich in lipid, lacks the antioxidative enzyme, catalase, and consumes
large quantity of oxygen (roughly 20% of the total oxygen consumed by the brain with 1% of the total
body weight). This makes the brain more vulnerable to the oxidative stress than other organs. Decrease
of endogenous melatonin will result in the neurons being less resistance to the oxidative stress or
brain inflammation. Several studies have reported the negative association between the Alzheimer’s
disease and serum or CSF melatonin levels [177,178]. The mechanistic investigations uncovered
that in addition to its antioxidant and anti-inflammatory activities, melatonin directly inhibits the
secretion and deposition of the β amyloid protein (AD plague) [179,180] which is the hallmark of
this disease; it also suppresses tau protein hyperphosphorylation thereby reducing intracellular
neurotangles [181–183], another biomarker of AD. The majority of the small scale clinical trials support
that melatonin application improved the symptoms of sundowning syndrome and retarded the
progress of AD [184–190].

The most suggestive results come from the animal studies. In single, double or triple gene
mutated AD animal models large doses of melatonin (100 mg/L drinking water or 10 mg/kg body
weight/day) prolonged their life span, positively modulated the biochemical and morphological
alterations and improved their cognitive performance [191–196]. To date, the large doses of melatonin
used in animal studies have not been applied in clinical trials of Alzheimer’s disease. Considering
the unique safety margin of melatonin, larges dose of melatonin can be used in AD patients and it
may achieve its maximum treatment effects on this devastating disease. Recently, it was found that
melatonin treatment for the sporadic AD animal model (OXYS rats) also produced impressive results.
Very interestingly, OXYS rats exhibit significantly lower endogenous melatonin levels during night
compared to their controls (Wistar rats). Melatonin treatment was especially effective in preserving
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the microstructures of hippocampal neurons and their mitochondrial distribution and integrity in this
pathological animal model [197–200]. The sporadic AD includes roughly 95% of the clinical AD cases.
These observations provide solid evidence suggesting the use of relatively large doses of melatonin
to treat AD clinically. In a few cases, melatonin treatment did not result in expected results in AD
patients [201] or in animals [202]; however, there were, at least, no serious adverse effects of the
treatment. For other neurodegenerative diseases including Parkinson’s disease, amyotrophic lateral
sclerosis (ALS), multiple Sclerosis (MS) and Huntington’s disease, melatonin applications also achieved
positive results in patients and animal models [203–208]. For example, in MS patients their biochemical
markers and some of the symptoms were improved after melatonin supplementation [209–214].

As to the association between the aging and melatonin production, in most vertebrates, melatonin
production wanes with aging. The reasons for this may be two-fold. Melatonin synthetic capacity
is dampened during aging due to the reduced density of β-adrenergic receptors in the pineal
gland [215,216] and the downregulation of gene expression or phosphorylation of AANAT/SNAT [217].
A second reason is the increased consumption of melatonin. This is due to the metabolic alterations.
For example, more ROS are generated by the aged cells than in the young cells and melatonin as the
endogenous antioxidant is used to neutralize the overproduced ROS in aging organisms. Both of
these effects may cause its low levels in the aged vertebrates. Low melatonin level is considered
as a biomarker of aging [218–220]. When melatonin production was depressed by pinealectomy in
rats, accumulation of oxidatively-damaged products accelerated their aging process [221]. In contrast,
when young pineal glands were grafted to the old animals or exogenous melatonin was supplemented,
both significantly increased the life span of experimental animals [222].

A great deal of attention has recently been given to the relationship of decreased melatonin
levels in neurodegenerative diseases and aging associated pineal calcification. With the increased
use of the PET scan, susceptibility-weighted magnetic resonance imaging (SWMR) or other advanced
technologies, even very small pineal concretions can be identified in patients or animals, which could
not be seen previously. It was found that the rates of pineal calcification have been significantly
underestimated previously. For example, in non-specifically targeted patients with the average age
of 58.7 ± 17.4 years, 214 out of 346 showed PGC on CT scans (62%) [223]; the data of 12,000 healthy
subjects from Turkey indicated that the highest intracranial calcifications occurred in the pineal gland
with an incidence of 71.6% [65]. PGC appears to occur without significant differences among countries,
regions and races. For example, in Iran the PGC incidence is around 71% [224] and in African (Ethiopia),
it is roughly 72% [225] and in black people in the US it is 70% [226]. With such a high incidence of PGC
in humans and considering the functions of pineal gland, the PGC should not be considered a normal
physiological process.

PGC is often related to the decreased melatonin levels and several pathological alterations
including neurodegenerative diseases (Alzheimer’s, MS), migraine, symptomatic intracerebral
hemorrhage, symptomatic cerebral infarction, sleep disorders, defective sense of direction and pediatric
primary brain tumor [73,170,227–231]. Interestingly, PGC is mainly associated with brain-related
disorders but not few with other organ pathophysiologies while the decreased melatonin levels were
detected in the blood which supplies all the tissues. This observation further supports our hypothesis
that high levels of melatonin released directly into CSF from pineal gland serve as the biological
circadian rhythm regulator and the neuronal antioxidant while the blood melatonin is the residue of
the pineal melatonin [63,130]. This residual melatonin only resembles the CSF melatonin rhythm and
may be without significant biological functions.

PGC reduces CSF melatonin levels and dampens its rhythm resulting in chronological disturbance
including insomnia and migraine. The low levels of CSF melatonin also elevate neuronal damage from
ROS, thus, accelerating the neurodegenerative disorders.

It also has been reported that the serum and salivary melatonin and its urine metabolite are
negatively related to the size of the pineal calcification and positively related to the uncalcified portion
of the gland [232–235]. In Alzheimer’s disease, the patients had a higher portion of calcified pineal
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glands and lower portion of uncalcified glands than patients with other dementias [170]. As mentioned,
that the serum melatonin rhythm resembles the CSF melatonin; thus, it can be deduced that the CSF
melatonin levels in Alzheimer’s patients would also be significantly reduced. It is difficult to obtain
CSF from the Alzheimer’s patients to test melatonin levels. However, the postmortem CSF from
these patients indeed proved the low levels of melatonin. Their CSF melatonin level was only 20% of
that in their non-Alzheimer’s controls. The authors suggested that the reduction in CSF melatonin
levels might be an early event in the development of AD possibly occurring even before the clinical
symptoms [177,178]. If these patients had PGC, their CFS melatonin level may further decrease and
it would accelerate the process of the disease. The PGC is also associated with aging [236,237] even
through the PGC has been detected in the neonatal or in children. It was reported that the incidence of
the visible PGC increases with age, i.e., 2% at 0–9, 32% at 10–19, 53% at 20–29 and 83% in over-30 age
groups, respectively [238]; clearly the degree of PGC increased with aging [239]. In turkeys and rats
the incidence of PGC reaches 100% in advanced age animals. It seems that PGC is an inevitable
process of aging in vertebrates. If so, slowdown of this process may retard the aging process. This is
discussed later.

4. Potential Mechanisms for PGC Formation

Even through PGC is a widespread phenomenon in vertebrates, its importance has been ignored
and little attention has been given to this important issue for decades. To date, little is known
about its exact formation processes and mechanisms. Here, we summarize several opinions and
speculations on the potential mechanisms of PGC formation and also discuss our hypothesis regarding
these enigmatic structures. It seems that there are two origins of PGC, that is, in association with
pinealocytes or with non-pinealocytes. Some studies found that PGC was restricted to the connective
tissue. The mechanisms involved the formation of calcareous deposits within the connective tissue
stroma of the gland [240]. These deposits represent the aging-related calcium accumulation within
the connective tissue. This type of calcification is similar to that found in the habenular commissure
and choroid plexus [238]. The connective tissue derived PGC is predominant in the rat and Pirbright
white guinea pig [241,242]. In analysis of the specimens of human pineal gland, Maslinska et al. [160]
reported that the initiation of PGC was associated with the tryptase-containing mast cells. During the
systemic or local pathological conditions, the tryptase-containing mast cells infiltrate into the pineal
gland where they release biologically active substances including tryptase which participates in
calcification. This process is pathological but not age related since it also occurs in the children.

As to the PGC of pinealocyte-origin, two speculations should be mentioned. One is proposed
by Lukaszyk and Reiter [13,243]. They reported that the pinealocytes extruded polypeptides into the
extracellular space in conjunction with their hypothetic carrier protein, neuroepiphysin. The pineal
polypeptides of exocytotic microvesicles were actively exchanged for the calcium. The calcium-carrier
complex then is formed and deposited on the surface of adjacent mutilayed concretions. Thus,
the concretion formation is related to the secretory function of pineal gland. For example, in the gerbil
following the superior cervical ganglionectomy, the PGC are completely inhibited; this was attributed
to a decrease in the functional activity of the gland [163]. However, this cannot explain the observation
of intracellular calcification of the pinealocytes [244,245]. Krstić [246,247] proposed another mechanism
to explain the origin of PGC from pinealocytes. He speculated that the cytoplasmic matrix, vacuoles,
mitochondria and the endoplasmic reticulum of large clear pinealocytes were the initial intracellular
calcification sites. These loci, and particularly those within the cytoplasmic matrix, transformed into
acervuli by a further addition of hydroxyapatite crystals. The cells gradually degenerated, died, broke
down, and the acervuli reached the extracellular space. High intracellular calcium levels could be a
situation that is responsible for eliminating calcium from the cell, with the hypercalcemic intracellular
milieu promoting the initial crystallization. The failure of Ca2+-ATPase could be a natural process of
aging or pathological conditions [248]. Hence, PGC does not occur under normal conditions and it is a
result of altered molecular processes in vertebrates. These speculations; however, cannot completely
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explain the mechanisms of the PGC formation. Here, we provide an additional speculation which is a
complementary of the previous suggestions. It seems that the PGC in some cases is an active rather
than a passive process. We previously hypothesized that the pineal gland may have a blood filtration
function like the kidney since its vascular structures as well as its blood flow rate are similar to the
kidney [63]. The question is whether they share a similarity to the calcification this is observed in both
organs. It is well documented that the compositions of PGC is totally different from the kidney stone.
Kidney stones are primarily composed of calcium oxalate and its formation is simply a sedimentary
process caused by high concentrations of both calcium and oxalate [249]. A main component of a PGC
is hydroxyapatite [Ca10(PO4)6(OH)2] [248,250,251] which is the chief structural element of vertebrate
bone. The Ca/P molar ratio in pineal concretions is similar to the enamel and dentine [252] and these
authors pointed out that the nature and crystallinity of the inorganic tissue of the pineal concretions
lead one to think of a physiological rather than pathological ossification type with characteristics
between enamel and dentine. It is not very clear how the hydroxyapatite is formed in the bone but
there is little doubt that its formation involves the collaboration of bone cells and it is a programmed
process. In addition, the concentric laminated pineal concretions are frequent observed [157,239] to be
structurally similar the osteons (Figure 3), the major unit of compact bone.
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The laminated pineal stone indicates its formation is not random but organized and programmed.
For example, in humans, laminated pineal stones are associated with aging. The older the individual,
the larger number of lamellae (Figure 3) [239]. Our hypothesis is that the pineal calcification, at least
partially, may be similar to the bone formation that is, the pineal calcium deposit may be formed by
differentiated bone cells under certain conditions. Recently, numerous studies have reported that
melatonin facilitates the capacity of mesenchymal stem cells (MSCs) to differentiate into osteoblast-like
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cells under in vivo or in vitro conditions [253–257]. Mesenchymal cells are found in the early stage of
pineal development in birds and in rats [258,259]. Mesenchymal cells have an important role in pineal
follicular formation later during development of the gland. It was also documented that the striated
muscle fibers are present in the pig and rat pineal gland [260,261]. These striated muscle fibers are
of mesenchymal rather than ectodermal origin [261]. These observations indicate that the MSCs are
present in the pineal gland and they have the capacity to differentiate into different cell types including
muscle as well as probably the osteoblasts and even the osteocytes. The MSCs in the pineal gland may
be retained from its early embryonic stage of mesenchymal tissue and/or they may be of vasculature
origin. The differentiation from MSCs into osteoblasts/osteocytes seems to be melatonin dependent.
The signal transduction pathway of this transition is probably mediated by melatonin membrane
receptor 2 (MT2) [261]. The detailed mechanism was proposed by Maria and Witt-Enderby [262].
Simply, melatonin binds to the MT2 of MSCs to promote them to differentiate into pre-osteoblasts.
At the same time melatonin increases the levels of parathyroid hormone (PTH); type I collagen and
alkaline phosphatase (ALP) and these factors further promote pre-osteoblasts to form osteoblasts.
Finally, melatonin upregulates the gene expression of the osteopontin (OSP), bone morphogenetic
protein 2 (BMP-2), osteocalcin (OCN) and ALP and facilitates the osteoblast proliferation, osteocyte
formation, mineralization and bone formation (Figure 4.)
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Figure 4. The proposed mechanisms underlying melatonin’s actions on bone formation.
(A) melatonin induces MSCs differentiation into osteoblasts via MT2; (B) it promotes osteoprotegerin
(OPG) expression in preosteoblasts which would inactive RANKL, leading to a suppression of
osteoclastogenesis; and (C) through melatonin’s free-radical scavenging and antioxidant properties,
protecting against radical induced loss of osteoblasts and osteoclasts. PTH (parathyroid hormone);
Type I col (type I collagen); OSP (osteopontin); BMP-2 (bone morphogenetic protein 2); ALP (alkaline
phosphatase); OCN (osteocalcin); TRAP (tartrate-resistant acid phosphatase); RANKL (receptor
activator of NFkB ligand); OPG (osteoprotegerin). From Maria and Witt-Enderby [262].

MT2 has been identified in MSCs using molecular techniques and classical
pharmacology [263,264]. Transgenic knockout of the MT2 in mice inhibited the osteoblast proliferation
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and bone formation [265]. This indicates that the pineal gland has the capacity to form the bone like
structure (calcification) by the pathway including MSCs. The promotor is the high levels of melatonin
generated by this gland. The process of PGC in bird (turkey) resembles the bone formation which
strongly supports our hypothesis. It requires a microenvironment which includes collagen fibrils,
phosphate and calcium. The osteocyte-like cells are found in the center of the pineal concretion and the
peripheral part contains the osteoblast-like cells and densely packed collagen fibrils [159] (Figure 5).
The intermediate portion is the place of mineralization as bone.Molecules 2018, 23, x FOR PEER REVIEW  12 of 29 
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Figure 5. Histology and ultrastructure of cells located in a concretion of the turkey pineal gland.
(A) mature concretions identified with Mallory’s stain. Two types of cells are present in the concretion
(semi-thin section stained with toluidine blue); (B) polygonal cells; (C) elongated cells; (D) The presence
of calcium in the concretions was demonstrated with Alizarin red S; note the characteristic appearance
of cells located in the concretion; (E) ultrastructure of cells located in the calcified area (fixation with the
PPA method). 1: the osteocyte-like cell surrounded by mineralized collagen fibrils in the central part of
the calcification area. Note the “halo” around the cell and large pyroantimonate precipitate located
mainly outside the cell membrane, 2: the junction of processes of osteocyte-like cells, 3: a cell showing
a fibrocyte-like appearance in the peripheral part of the calcification area. Note the extra-cellular matrix
containing collagen and calcium deposits, 4: numerous calcium precipitates in the intercellular spaces
in the peripheral part of the calcification area, 5: The cell process with scattered deposits in the middle
part of the concretion. Note the adjacent extra-cellular matrix rich in collagen and pyroantimonate
precipitates. Modified from Przybylska-Gornowicz et al. [159].

Based on the current knowledge, we speculated that the “osteocyte-like cells” and the
“osteoblast-like cells” were osteocytes and osteoblasts which differentiated from the MSCs in the
pineal gland under the influence of melatonin. If the pineal microenvironment facilitates the PGC
formation, why are the PGC often associated with aging and some pathological conditions?
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Currently, we cannot definitely answer this question, but several clues might indicate the
relationship of PGC with aging/pathology:

(1) Chronic vascular inflammation: The pineal gland has a complicated vascular system with abundance
of arteries, fenestrated capillaries and veins. Especially the filtration rate of blood in pineal gland
is in excess of most organs and it is only second to the kidney in terms of blood flow. These
make the gland venerable to the chronic vascular inflammation during aging or certain disorders.
The vascular inflammation mobilizes the MSCs migration and adhesion in the gland or promotes
the de novo MSCs proliferation due to the increased levels of pro-inflammatory cytokines,
TGF-β or TNF-α. The crosstalk between vascular MSCs and inflammatory mediators, especially,
interleukin-22, lead to MSCs proliferation, migration and osteogenic differentiation [266,267]
under the influence of high levels of pineal melatonin and finally PGC formation.

(2) Brain tissue hypoxia: Many pathological conditions cause brain tissue hypoxia including
hypertension, sleep apnea, stroke, and even respiratory disorders. Hypoxia-inducible factor
(HIF)-1α is an important regulator of MSCs and it promotes the proliferation, migration
and adhesion of MSCs in the hypoxic areas [268–270] including to the pineal gland.
Generally, hypoxia increases bone resorption and suppresses osteoblastic differentiation and
bone-formation [271,272]. However, this may not be applied to the pineal gland. During the dark
phase, the pineal produces high levels of melatonin. Under the hypoxic condition, melatonin
would promote the osteoblast differentiation and mineralization of MSCs via the p38 MAPK and
PRKD1 signaling pathways [273]. In addition, melatonin also inhibits the activity of the osteoclast
and osteoclatogenesis [274,275], especially under inflammatory conditions [276]. These processes
favor PGC formation under hypoxic conditions.

(3) Intracranial pressure: Some cells of the pineal gland are “swimming” in the third ventricle and, as a
result, they are influenced by the intracranial pressure. Intracranial pressure usually increases
with cerebral disorders such as idiopathic intracranial hypertension, brain trauma and stroke [277],
and even Alzheimer’s disease [278]. The high pressure may impede the pineal filtration rate and
induce endoepithelial cell damage by chrono-inflammation. The pressure also promotes the bone
remodeling and mineralization, thus, PGC formation.

5. Rejuvenation of Pineal Gland?

As mentioned, the pineal gland may be an important organ for maintaining the optimal health
of vertebrates. Its malfunctions including its calcification may have associations with the premature
aging and aging-related diseases. To answer this question, researchers had tried to rejuvenate the
gland by ectopically pineal transplantation. Initially, it was found that the pineal glands which were
transplanted into the anterior chamber of the eye in rats were innervated by surrounding sympathetic
nerve endings and their normal rhythm in AANAT activity was established similar to the in situ
pineal gland [279,280]. To support this observation, more complicated studies have been performed
in which pineal glands were transplanted into a variety of sites in pinealectomized rats. These sites
included anterior chamber of the eye, third cerebral ventricle, the pineal region (in situ transplantation),
intrastriatal, renal capsule and thymus [280–285]. The results indicated that in some cases the pineal
gland transplantation did increase the melatonin levels in pinealectomized animals; however, except
in the site of anterior chamber of the eye, no melatonin circadian rhythm was detected with the pineal
gland transplantation and also the melatonin levels could not match those of the in situ pineal gland
produced. The lack of melatonin rhythm after pineal transplantation may relate to lack of sympathetic
innervation of the grafted gland at other sites as compared to the anterior chamber of the eye in which
the sympathetic innervation was obvious [286].

In addition to the anatomic and morphological studies, the functional studies of ectopic pineal
gland grafts provided promising results. When the pineals of young mice (3–4 months) were grafted
into thymus of the old mice (17–18 months), they partially prevented thymic involution in the old
animals due to an anti-apoptotic activity [287]. The similar result was observed in the rats. When the
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pineal glands of young animals were transplanted into the thymus of old rats, they preserved the
age-related alterations in erythrocyte membranes by increasing their hemolysis time and decreasing
their peroxidation [288]. The young pineal transplants into the thymus of old mice could even prolong
the recipients’ life span up to 27% compared to the controls [222]. The authors attributed the life
prolongation effects to that the grafted pineal gland might release high level of nocturnal melatonin
which acted on the thymus to rejuvenate the gland and preserved the immune responsiveness
of these old animals to the levels of young animals. Similarly, the intrastriatal transplantation of
pineal tissue significantly reduced the brain infarct size in middle cerebral artery occlusion (MCA)
ischemia/reperfusion animal model [154].

In general, ectopic pineal gland transplantation appears to be beneficial for health in many aspects.
However, it is obvious that it cannot replace the function of the in situ pineal gland. As mentioned
previously, the in situ pineal gland produces high level of melatonin, which protects the brain from
the oxidative damage after its release into the CSF; secondly, pineal melatonin secretion exhibits a
circadian rhythm, especially in the CSF of the third ventricle in which the night time melatonin peak
have a sharp rise and fall compared to its serum circadian pattern (Figure 2). This CSF melatonin
alteration is believed to serve as the signal of biorhythm of organisms [289]. The ectopic pineal gland
transplants lack these two most important aspects. Thus, an improved means to mimic activities of the
in situ pineal gland would probably be the pineal transplantation into the pineal region (in situ graft)
or into the third ventricle. Some studies have been performed in this regard. The results indicate that
the pineal glands which were transplanted into third ventricle or pineal region (in situ transplantation)
survived due to re-vascularization and partial re-innervation [7]. They did produce melatonin, but the
levels were low and completely without the night time rise [7,283].

Based on these results, we speculated that a more suitable way to preserve a healthy and functional
pineal gland is either to retard its calcification or to recover the functions of the calcified gland.
As mentioned, several pathological conditions might promote the premature pineal calcification.
However, the environmental biohazards may also contribute to its development. One of them is
fluoride. It was reported that the pineal gland in goosander concentrates fluoride which is a water
pollutant [290]. The level of fluoride in the pineal gland of goosander was 5-fold higher than that it in
the brain of the animal. The similar results were observed in the aged human pineal gland. In addition,
the high level of fluoride in the human pineal gland is positively related to its calcium accumulation
of the gland [291]. Thus, decrease in environmental fluoride pollution may be helpful in delaying or
avoiding premature pineal calcification. It was hypothesized that the lack of calcium salt crystallization
inhibitors, such as pyrophosphate and phytate, would favor calcification [292]. Studies indicated that
the phytate content in brains of healthy animals was 10-fold higher than that in other tissues [293,294].
Increases in the availability of calcium salt crystallization inhibitors would tend to protect against
pathological pineal calcification.

Finally, the pineal gland decalcification may not impossible. Currently, pineal microdialysis is
frequently used to measure the melatonin production of the pineal gland [295–298]. This method could
also be used to decalcify the gland by use of EDTA or/and acidic solution as the eluent. This solution
would have the ability to dissolve the calcium deposits and removed them by dialysis. Also, cells
isolated from young pineal gland or engineering-modified stem pinealocytes could be directly injected
into the decalcified in situ pineal gland. Such transplanted cells have the high chance of survival in the
gland due to the melatonin level generated by the gland. It was frequently reported that elevated levels
of melatonin effectively promotes the transplanted stem cell survival and differentiation in different
organs and tissues [299–303]. In a preliminary study, we mixed 2 × 105 cells (in 20 µL) collected from
pineal gland of one day old chicks were injected into the in situ pineal gland of 4.5–5 year old hens.
The results indicated that this procedure improved egg laying rate and the general wellbeing of the
old recipients (unpublished observations). This is the first step to rejuvenate the calcified pineal gland
to maintain optimal healthy status of humans.
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6. Conclusions

Accumulating evidence indicates that pineal health is important to preserve the optimal
physiological status of animals, including humans. The pineal gland is a unique organ which
synthesizes melatonin as the signaling molecule of natural environmental changes and as a potent
neuronal protective antioxidant. This gland undergoes calcification due to its anatomic structure (rich in
vasculature and blood flow) and functions (melatonin production and CSF generation). The pineal has
the highest calcification rate among all organs and tissues. Pineal calcification jeopardizes the melatonin
synthetic capacity of this gland and is associated with a variety of neuronal diseases. Although PGC
is found in neonates, its occurrence is primarily associated with pathological conditions and aging.
The exact mechanisms of how it occurs are currently unknown; however, several theories have been
proposed to explain calcium deposit in the gland. We hypothesize that PGC is an active process
which is similar to bone formation, that is, the osteocytes (or osteocyte-like cells) and osteoblasts
(or osteoblast-like cells) are involved. These cells probably differentiate from MCSc which are the
de nova MCSc of the gland; alternatively, they migrated from the vasculature under pathological
conditions such as chronic inflammation. High levels of melatonin generated by the gland promote
PGC since this molecule enhances the differentiations of MCSc into osteoblasts and osteocytes.
To compensate for the functional loss of the pineal gland, pineal grafts have been performed in
different organs and tissues. The grafted pineal, however, cannot mimic the functions of the in situ
pineal gland, especially since they do not establish the normal melatonin circadian rhythm. Thus,
perhaps the best way to preserve a healthy pineal gland is to rejuvenate the in situ pineal gland
by decalcification and then stem cell injection into the gland. It is speculated that a healthy pineal
gland would be response to high level of melatonin production which benefits to immunomodulation,
metabolic balance and anticancer effect generally [304–306]. Thus, this process and its outcomes should
be investigated with enthusiasm in the future.
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247. Krstić, R. A combined scanning and transmission electron microscopic study and electron probe

microanalysis of human pineal acervuli. Cell Tissue Res. 1976, 174, 129–137. [CrossRef] [PubMed]
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