
molecules

Article

Synthesis, DNA Binding, and Anticancer Properties
of Bis-Naphthalimide Derivatives with
Lysine-Modified Polyamine Linkers

Yu Huang 1,*, Chun-Xia Wu 1, Yu Song 1, Min Huang 2, Da-Nian Tian 2, Xin-Bin Yang 3

and Yan-Ru Fan 1,*
1 Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education,

Ningxia Engineering and Technology Research Centre of Hui Medicine Modernization,
College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China;
wuchunxiapharmacy@163.com (C.-X.W.); songyuouc@163.com (Y.S.)

2 College of Public Health, Ningxia Medical University, Yinchuan 750004, China;
huangmin@163.com (M.H.); tiandanian@163.com (D.-N.T.)

3 Rongchang Campus, Southwest University, Chongqing 402460, China; yangxbqq@126.com
* Correspondence: huangyu@nxmu.edu.cn (Y.H.); risefyr@163.com (Y.-R.F.);

Tel.: +86-951-688-0693 (Y.H. & Y.-R.F.)

Received: 28 December 2017; Accepted: 16 January 2018; Published: 29 January 2018

Abstract: A series of bis-naphthalimide derivatives with different diamine linkers were designed and
synthesized. All of the synthesized bis-naphthalimide derivatives were characterized by NMR and
HRMS spectra. The binding ability between the compounds and CT DNA was evaluated by using
UV–Vis titration experiments. The bis-naphthalimide compound with an ethylenediamine linker
showed the largest binding constant with CT DNA. Hence, it was used as the model compound to
study the DNA binding selectivity by UV–Vis titration aiming at different DNA duplexes. As a result,
this compound showed binding preference to AT-rich duplexes. The DNA binding modes of the
compounds were also measured by viscosity titration. The cytotoxicity of the compounds was
evaluated by MTT assay. Compounds with 1,6-diaminohexane or 1,4-phenylenedimethanamine
linkers showed higher cytotoxicity compared with other bis-naphthalimide derivatives.
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1. Introduction

Naphthalimide (1H-benzo[de]isoquinoline-1,3-(2H)-diones), a kind of flat heteroaromatic
polycyclic amide, has been studied for decades due to its potential for the development of antitumor
drugs [1]. Though some of its derivatives were approved for clinical trials, all of the trials were
terminated due to the toxic side effects [2–7]. Therefore, to improve the antitumor activity and reduce
the side effects, modifications on the naphthalimide structure have been carried out in recent decades;
some naphthalimide derivatives with different side chains, aromatic ring systems, and substituents on
the ring have been designed and synthesized [8–11].

Dimerization of naphthalimide is one of the generally used methods to improve its antitumor
efficiency. The dimeric naphthalimide derivatives usually exhibit higher activity than the monomeric
ones. The bis-naphthalimide Elinafide, which exhibits high activity against a series of human xenograft
models, is a well-known bis-intercalator in all the naphthalimide derivatives [12]. Dimerization has also
been employed to link the two pharmacophores [13]. Among all types of spacers, besides Tröger’s base
moieties [14,15], polyamine spacers have been widely developed in the construction of bis-intercalators
which exhibited high DNA binding ability and excellent anticancer activity [16–20]. Some other
studies in the literature also reported the influence of bis-naphthalimide derivatives with polyamine
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spacers on DNA [21–23]. Lin et al. reported a bis-naphthalimide derivative linked by spermidine,
which showed an IC50 value of 0.15 and 1.64 µM towards Caco-2 and HT-29 colon adenocarcinoma
cells and induced significant DNA damage [24]. Other results from Li and co-workers showed
that an N-(2-hydroxyethyl)piperazine-modified bis-naphthalimide derivative showed better cytotoxic
activity than the control drug, amonafide [25]. This compound also exhibited fluorescence enhancement
upon binding with DNA.

To improve the anticancer ability, amino acids with chiral side chains were combined into the
structure of naphthalimide derivatives. Qian et al. reported some naphthalimide derivatives with
flexible leucine side chains which exhibited the IC50 values of 10−6–10−5 M against HeLa, A549, P388,
HL-60, MCF-7, HCT-8, and A375 cancer cell lines in vitro [26]. In addition, the chirality of the amino
side chains is important for the naphthalimide derivatives. Yang et al. reported that the S-enantiomers
showed better DNA binding activity and DNA photocleavage ability than did the R-enantiomers [27].

Herein, we report the synthesis of novel bis-naphthalimide derivatives modified by lysine and
different diamine linkers. The DNA binding ability and cytotoxicity of these compounds were
systematically studied. All of the compounds exhibited high DNA binding ability and showed binding
preference to AT-rich (adenine and thymine) duplexes. However, the cytotoxicity of these compounds
was not so good.

2. Results and Discussion

2.1. Chemistry

All of the bis-naphthalimide derivatives were synthesized from 1,8-naphthalic anhydride as shown
in Scheme 1. Firstly, 1,8-naphthalic anhydride was refluxed with L-lysine in ethanol to obtain compound 1.
Then, compound 1 was reacted with di-tert-butyl dicarbonate to protect the amino group. After that,
the carboxyl group was condensed with different diamines by a DCC (Dicyclohexylcarbodiimide)
coupling reaction. Finally, the bis-naphthalimide derivatives were obtained by deprotection of the
Boc group.
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Scheme 1. The synthesis route of bis-naphthalimide derivatives. Reagents and conditions: (i) ethanol,
reflux 30 h; (ii) Na2CO3, THF/Water (2:1), room temperature; (iii) triethylamine (Et3N),
4-dimethylaminopyridine (DMAP), 1-hydroxybenzotriazole (HOBt), dicyclohexylcarbodiimide (DCC),
dichloromethane; (iv) ethanol.

2.2. UV–Vis Titration

According to our laser scanning confocal microscopy experiments of other bis-naphthalimide
derivatives, some of these active compounds reached the nucleus of the cell (unpublished results).
Hence, it was necessary to evaluate the DNA binding ability of the synthesized bis-naphthalimide
derivatives 4a–e. The DNA binding abilities of the bis-naphthalimide derivatives and mononaphthalimide
derivative 10 were evaluated by UV–Vis titration experiments, which was a useful method to calculate the
DNA binding constants in vitro. After Calf Thymus DNA (CT DNA) was added to the phosphate buffer
solution containing different compounds, all of the solutions exhibited a slight hypochromism without
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any significant spectral shift. The binding constants of the compounds were calculated by using a plot of
D/∆εapp versus D, as shown in Figure 1 and Table 1. Bis-naphthalimide derivative 4a with the shortest
linker showed the largest binding constant (3.40 × 104 L/mol). The binding constants decreased with the
linker length from ethylenediamine, to 1,4-butanediamine, to 1,6-hexanediamine. Compounds 4d and 4e
with rigid bis(aminomethyl)benzene linkers were the weakest DNA binding reagents. The rigidity and
length of the linkers influenced the binding ability of the bis-naphthalimide derivatives.

Molecules 2018, 23, x  3 of 11 

 

with the shortest linker showed the largest binding constant (3.40 × 104 L/mol). The binding constants 
decreased with the linker length from ethylenediamine, to 1,4-butanediamine, to 1,6-hexanediamine. 
Compounds 4d and 4e with rigid bis(aminomethyl)benzene linkers were the weakest DNA binding 
reagents. The rigidity and length of the linkers influenced the binding ability of the bis-naphthalimide 
derivatives. 

 
Figure 1. D/Δεapp vs. D plot of bis-naphthalimide derivative 4 (50 μM) with CT DNA in PBS buffer 
(50.0 mM, pH = 7.4). 

Table 1. The Kb values of compounds 4a–e with CT DNA. 

Compound Kb (M−1)
4a 3.40 × 104 
4b 2.78 × 104 
4c 1.54 × 104 
4d 7.29 × 103 
4e 1.00 × 104 

2.3. DNA Binding Selectivity 

As compound 4a exhibited the largest DNA binding ability among all of the bis-naphthalimide 
derivatives, it was used as the model compound to study the DNA binding selectivity. The phosphate 
buffer solution of compound 4a was titrated using four different DNA duplexes: [Poly(dA)-
Poly(dT)], [Poly(dG)-Poly(dC)], AT Box [Poly(dTATAAT)-Poly(dATATTA)], and GC Box 
[Poly(dGGGCGG)-Poly(dCCCGCC)], respectively. The D/Δεapp vs. D plot of the model compound 
was recorded, as shown in Figure 2. The binding constant of compound 4a with different DNA 
duplexes was calculated. As shown in Table 2, the bis-naphthalimide derivative 4a showed a tendency 
to bind with AT-rich duplexes. The binding constants of 4a with AT-rich duplexes [Poly(dA)-
Poly(dT)] and AT Box were higher than those with the reference duplexes [Poly(dG)-Poly(dC)] and 
GC Box. The binding constant of the hybrid AT box was similar to that of [Poly(dA)-Poly(dT)], which 
meant that the compound 4a preferred to bind with AT-rich duplexes, no matter how hybridized the  
AT-rich duplexes were. The binding selectivity of the bis-naphthalimide derivatives was in accordance 
with similar compounds [28]. 

Table 2. Kb values for compound 4a with various DNA sequences. 

DNA Duplex Kb (M−1)
[Poly(dA)-Poly(dT)] 9.08 × 103 
[Poly(dG)-Poly(dC)] 1.15 × 103 

AT Box 9.71 × 103 
GC Box 1.91 × 103  

Figure 1. D/∆εapp vs. D plot of bis-naphthalimide derivative 4 (50 µM) with CT DNA in PBS buffer
(50.0 mM, pH = 7.4).

Table 1. The Kb values of compounds 4a–e with CT DNA.

Compound Kb (M−1)

4a 3.40 × 104

4b 2.78 × 104

4c 1.54 × 104

4d 7.29 × 103

4e 1.00 × 104

2.3. DNA Binding Selectivity

As compound 4a exhibited the largest DNA binding ability among all of the bis-naphthalimide
derivatives, it was used as the model compound to study the DNA binding selectivity.
The phosphate buffer solution of compound 4a was titrated using four different DNA duplexes:
[Poly(dA)-Poly(dT)], [Poly(dG)-Poly(dC)], AT Box [Poly(dTATAAT)-Poly(dATATTA)], and GC Box
[Poly(dGGGCGG)-Poly(dCCCGCC)], respectively. The D/∆εapp vs. D plot of the model compound
was recorded, as shown in Figure 2. The binding constant of compound 4a with different DNA
duplexes was calculated. As shown in Table 2, the bis-naphthalimide derivative 4a showed a tendency
to bind with AT-rich duplexes. The binding constants of 4a with AT-rich duplexes [Poly(dA)-Poly(dT)]
and AT Box were higher than those with the reference duplexes [Poly(dG)-Poly(dC)] and GC Box.
The binding constant of the hybrid AT box was similar to that of [Poly(dA)-Poly(dT)], which meant
that the compound 4a preferred to bind with AT-rich duplexes, no matter how hybridized the AT-rich
duplexes were. The binding selectivity of the bis-naphthalimide derivatives was in accordance with
similar compounds [28].

Table 2. Kb values for compound 4a with various DNA sequences.

DNA Duplex Kb (M−1)

[Poly(dA)-Poly(dT)] 9.08 × 103

[Poly(dG)-Poly(dC)] 1.15 × 103

AT Box 9.71 × 103

GC Box 1.91 × 103
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in PBS buffer (50.0 mM, pH = 7.4).

2.4. Viscosity Studies

Although the UV–Vis titration data provided necessary information on the binding ability
of bis-naphthalimide derivative, the detailed binding mode cannot be given by generally used
optical photophysical methods. A viscosity experiment is a useful method and can provide critical
information on different binding modes. Generally speaking, in classical intercalation binding mode,
the intercalators insert into the base pairs of the DNA duplexes and extend the length of DNA,
which significantly increases the viscosity of the DNA solution [29]. In partial and/or nonclassical
intercalation binding mode, the length of DNA duplexes is reduced, which induces a decrease in
the viscosity of the DNA solution [30]. As shown in Figure 3, the viscosity of the DNA solution
increased after the addition of bis-naphthalimide derivatives 4a and 4b but decreased after the addition
of compounds 4c–e and 1. These results showed that compounds 4a and 4b were classical DNA
intercalators. Compounds 4c–e and 1 bind with DNA through the partial intercalation binding mode.
The rigidity of the linker significantly influenced the binding modes of the different bis-naphthalimide
derivatives. To our surprise, the mononaphthalimide compound 1 exhibited a partial intercalation
binding mode, which might be due to the electrostatic binding of the amino group interrupting
the intercalation of the naphthalimide group. The weak binding of compound 4c might have the
same cause.
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Figure 3. DNA viscosity titration of different bis-naphthalimide compounds 4a–e at 35 ◦C in 25 mL
phosphate buffer (50.0 mM, pH = 7.4). The concentration of DNA was 0.56 mM and the ratios between
bis-naphthalimide compounds and DNA were 0.2, 0.4, 0.6, 0.8, and 1.0, respectively.

2.5. Cytotoxicity Assay

The cytotoxicity of bis-naphthalimide derivatives against human cancer cell lines EC109 and BGC823
were evaluated by MTT assay (Table 3). 5-Fluorouracil was tested as the reference compound. After the



Molecules 2018, 23, 266 5 of 11

EC109 cell line and bis-naphthalimide derivatives were incubated for 24 h, compounds 4c and 4d
(with longer linkers) showed higher cytotoxicity compared with other bis-naphthalimide derivatives.
Hence, compounds 4c and 4e were used to test the cytotoxicity against the BGC823 cell line. According to
the results, the bis-naphthalimide derivative 4e showed moderate antitumor ability with an IC50 value of
77.99 µmol/L toward the BGC823 cell line, which was lower than that of 5-Fluorouracil.

Table 3. The cytotoxicity of compounds 4a–e.

Cell Lines
IC50 Value (µmol·L−1)

Fluorouracil 4a 4b 4c 4d 4e

EC109 45.82 694.59 456.35 330.38 142.45 354.48
BGC823 49.88 N.T. 1 N.T. 193.65 77.99 N.T.

1 N.T.: not tested.

2.6. Morphology Observation

According to the results of the MTT assay, compound 13d was used to study the morphological
alterations of the BGC823 cell line in the absence and presence of bis-naphthalimide derivatives. In the
absence of compound 4d, the cancer cell line showed adherent growth with normal size and shape
(Figure 4A). When cancer cells were incubated with compound 4d, the cell counts dropped with the
increasing concentration of compound 4d (Figure 4B–F). The cancer cells became small and round at
higher drug concentrations.
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3. Materials and Methods

3.1. Chemistry

All of the chemical reagents and solvents were of analytic grade and obtained from commercial
sources. CT DNA were from Sigma-Aldrich (St. Louis, MO, USA) and other DNA duplexes were
from Sangon Biotech (Shanghai, China). UV–Vis spectra were measured on a Shimadzu UV-2501
spectrophotometer (Kyoto, Japan) at room temperature. 1H-NMR and 13C-NMR spectra were
recorded on a Bruker AVIII 400 spectrometer (Fällanden, Switzerland), with tetramethylsilane (TMS)
as an internal standard. Mass spectra were recorded on a Shimadzu LCMS-IT-TOF (Kyoto, Japan).

3.1.1. Synthesis of N-Epsilon-1,8-naphthalimido-lysine (1)

1,8-Naphthalic anhydride (5.00 g, 25.23 mmol) was dissolved in 500 mL of ethanol. After the
addition of L-Lysine (6.92 g, 37.88 mmol), the mixture was refluxed for 30 h. Then, the insoluble
solid was removed by filtration while the solvent was hot. Another 500 mL of ethanol was added
into the filtrate and the mixture was stored overnight. After filtering the insoluble solid, the ethanol
was removed under reduced pressure to obtain the crude product. Hot water was added to the
crude product, and the mixture solution was then stirred for 5 min. After the insoluble solid was
filtered, the filtrate was cooled to room temperature. A yellow crystal crystallized from the water
solution. The yield of N-epsilon-1,8-naphthalimido-lysine (1) was 60.0%. 1H-NMR (400 MHz, D2O)
δ: 8.14 (d, J = 7.2 Hz, 2H, naphthalene-H), 7.88 (d, J = 8.0 Hz, 2H, naphthalene-H), 7.45 (t, J = 7.8 Hz,
2H, naphthalene-H), 5.40 (q, J = 5.32 Hz, 1H, NH2CH), 3.06 (t, J = 7.6 Hz, 2H, NCH2), 1.91–2.31 (m, 2H,
CHCH2), 1.68–1.77 (m, 2H, NCH2CH2), 1.31–1.45 (m, 2H, CHCH2CH2). 13C-NMR (100 MHz, D2O)
δ: 175.66, 165.25, 135.05, 131.48, 130.60, 126.81, 120.57, 62, 46, 54.70, 39.21, 28.63, 26.50, 23.19.

3.1.2. Synthesis of N-Alpha-(tert-Butoxycarbonyl)-N-epsilon-1,8-naphthalimido-lysine (2)

To 300 mL of a THF/water (2:1) mixture solution of N-epsilon-1,8-naphthalimido-lysine (1) (6.60 g,
20.26 mmol), sodium carbonate (38.50 g) was added. The mixture solution was stirred in an ice-water
bath until the temperature was cooled to 0 ◦C. Then, 30 mL THF solution of di-tert-butyl dicarbonate
(4.85 g, 22.27 mmol) was added dropwise into the flask. After the mixture was stirred overnight at
room temperature, the mixture was filtered and the filtrate was condensed under reduced pressure
to obtain a water solution. The water solution was extracted by ethyl acetate (60 mL) three times.
Then, the water solution was adjusted to pH 3 and extracted by methylene chloride (90 mL) three
times. The organic layer was combined and washed with brine (30 mL), then dried with sodium
sulfate. After filtration, the solvent was evaporated in vacuo to obtain the oil crude product. The pure
oil product was obtained by silica gel column chromatography using petrol ether/ethyl acetate (1:2,
v/v). The yield of N-alpha-(tert-Butoxycarbonyl)-N-epsilon-1,8-naphthalimido-lysine (2) was 83.5%.
1H-NMR (400 MHz, CDCl3) δ: 8.61 (d, J = 7.2 Hz, 2H, naphthalene-H), 8.24 (d, J = 8.0 Hz,
2H, naphthalene-H), 7.77 (t, J = 7.8 Hz, 2H, naphthalene-H), 5.76 (q, J = 5.12 Hz, 1H, BocNHCH),
4.51 (s, 1H, BocNH), 3.06 (d, J = 7.6 Hz, 2H, NCH2), 2.17–2.37 (m, 2H, CHCH2), m, 1.35 (s, 9H, Boc),
1.30 (t, J = 5.2 Hz, 2H, CHCH2CH2). 13C-NMR (100 MHz, CDCl3) δ: 164.00, 134.51, 131.99, 131.77,
128.52, 127.17, 122.34, 53.11, 40.42, 29.77, 28.61, 28.48, 23.74.

3.1.3. Synthesis of 3

In a 100 mL flask, N-alpha-(tert-Butoxycarbonyl)-N-epsilon-1,8-naphthalimido-lysine (2) (1.50 g,
3.50 mmol), trimethylamine (0.95 g, 9.60 mmol), 4-dimethylaminopyridine (DMAP, 0.39 g, 3.20 mmol),
and different diamines (1.60 mmol) were dissolved in 50 mL methylene chloride. After stirring for
5 min, 1-hydroxybenzotriazole (HOBt, 0.52 g, 3.85 mmol) was added into the mixture. The mixture
was stirred in an ice-water bath for 0.5 h. Then dicyclohexylcarbodiimide (DCC, 0.67 g, 3.50 mmol)
was added into the mixture in batches. The mixture was warmed to room temperature and stirred
overnight. Then, the mixture was washed with 5% citric acid solution (50 mL) and saturated sodium
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bicarbonate solution (50 mL). After drying with sodium sulfate, the solvent was evaporated in vacuo
to obtain the crude product. After purification by silica gel column chromatography using petrol
ether/ethyl acetate (1:3, v/v), the pure oil product was obtained.

Bis-(N-alpha-(tert-Butoxycarbonyl)-N-epsilon-1,8-naphthalimido-lysyl) ethylenediamine (3a). Yield 70.2%.
1H-NMR (400 MHz, CDCl3) δ: 8.41 (d, J = 7.2 Hz, 4H, naphthalene-H), 8.18 (d, J = 8.0 Hz, 4H,
naphthalene-H), 7.68 (t, J = 7.8 Hz, 4H, naphthalene-H), 7.02 (s, 2H, CONH), 5.66 (t, J = 7.4 Hz,
2H, BocNHCH), 4.59 (s, 2H, BocNH), 3.32–3.49 (m, 4H, CONHCH2), 3.01–3.06 (m, 4H, NCH2),
2.27–2.28 (m, 4H, CHCH2), 1.46–1.57 (m, 4H, NCH2CH2), 1.36 (s, 18H, Boc), 1.25 (s, 4H, CHCH2CH2).
13C-NMR (100 MHz, CDCl3) δ: 170.70, 164.38, 156.09, 134.30, 131.74, 131.68, 128.50, 127.10, 122.56, 77.48,
77.16, 76.85, 54.86, 40.26, 39.22, 29.91, 28.48, 28.16, 23.87. HR-MS m/z (ESI), Calcd for C48H56N6O10

[M + H]+ 877.4141, found 877.4095.

Bis-(N-alpha-(tert-Butoxycarbonyl)-N-epsilon-1,8-naphthalimido-lysyl)-1,4-butanediamin (3b). Yield 73.5%.
1H-NMR (400 MHz, CDCl3) δ: 8.29 (d, J = 7.2 Hz, 4H, naphthalene-H), 8.19 (d, J = 8.0 Hz, 4H,
naphthalene-H), 7.71 (t, J = 7.8 Hz, 4H, naphthalene-H), 6.32 (s, 2H, CONH), 5.53 (s, 2H, BocNHCH),
4.55 (s, 2H, BocNH), 3.26–3.30 (m, 4H, CONHCH2), 2.99–3.03 (m, 4H, NCH2), 2.15 (t, J = 7.6 Hz, 4H,
CHCH2), 1.42–1.52 (m, 8H, CONHCH2CH2, NCH2CH2), 1.36 (s, 18H, Boc), 1.25 (t, J = 7.2 Hz, 4H,
CHCH2CH2). 13C-NMR (100 MHz, CDCl3) δ: 169.76, 164.34, 156.11, 134.37, 134.30, 131.87, 131.77,
131.69, 128.48, 127.17, 127.12, 122.55, 77.48, 77.16, 76.84, 54.81, 40.27, 39.58, 29.79, 28.49, 28.13, 26.65,
23.85. HR-MS m/z (ESI), Calcd for C50H60N6O10 [M + H]+ 905.444, found 905.4350.

Bis-(N-alpha-(tert-Butoxycarbonyl)-N-epsilon-1,8-naphthalimido-lysyl)-1,6-hexylenediamine (3c). Yield 71%.
1H-NMR (400 MHz, CDCl3) δ: 8.55 (d, J = 7.2 Hz, 4H, naphthalene-H), 8.22 (d, J = 8.0 Hz, 4H,
naphthalene-H), 7.75 (t, J = 7.8 Hz, 4H, naphthalene-H), 6.14 (s, 2H, CONH), 5.25 (t, J = 6.88 Hz, 2H,
BocNHCH), 4.53 (s, 2H, BocNH), 2.59–3.02 (m, 8H, NCH2, CONHCH2), 2.11–2.15 (m, 4H, CHCH2),
1.39–1.45 (m, 8H, CONHCH2CH2, NCH2CH2), 1.36 (s, 18H, Boc), 1.20–1.33 (m, 4H, CHCH2CH2),
1.16–1.18 (m, 4H, CONHCH2CH2CH2). 13C-NMR (100 MHz, CDCl3) δ: 169.41, 164.33, 156.11, 134.38,
134.17, 131.81, 131.64, 131.60, 128.51, 127.15, 127.08, 122.73, 79.07, 54.42, 40.15, 37.89, 29.62, 28.50, 28.18,
24.45, 23.75. HR-MS m/z (ESI), Calcd for C52H64N6O10 [M + H]+ 933.4757, found 933.4642.

Bis-(N-alpha-(tert-Butoxycarbonyl)-N-epsilon-1,8-naphthalimido-lysyl)-1,4-phenylenedimethan-amine (3d).
Yield 50.8%. 1H-NMR (400 MHz, CDCl3) δ: 8.57 (d, J = 7.2 Hz, 4H, naphthalene-H), 8.21 (d, J = 8.0 Hz,
4H, naphthalene-H), 7.74 (t, J = 7.8 Hz, 4H, naphthalene-H), 7.26 (s, 2H, benzene-H), 7.19 (s, 2H,
benzene-H), 6.24 (s, 2H, CONH), 5.65 (q, J = 5.52 Hz, 2H, BocNHCH), 4.51 (s, 2H, BocNH), 4.37–4.48 (m,
4H, xylyl-H), 2.97–2.31 (m, 4H, NCH2), 2.23–2.31 (m, 4H, CHCH2), 1.48 (t, J = 5.2 Hz, 4H, NCH2CH2),
1.35 (s, 18H, Boc), 1.25 (s, 4H, CHCH2CH2). 13C-NMR (100 MHz, CDCl3) δ: 169.52, 164.38, 156.07,
137.52, 134.49, 131.97, 131.71, 128.49, 128.17, 127.19, 122.41, 54.82, 43.57, 40.22, 29.82, 28.56, 28.47, 28.20,
23.80. HR-MS m/z (ESI), Calcd for C54H60N6O10 [M + Na]+ 975.4263, found 975.4187.

Bis-(N-alpha-(tert-Butoxycarbonyl)-N-epsilon-1,8-naphthalimido-lysyl)-1,3-phenylenedimethan-amine (3e).
Yield 74.1%. 1H-NMR (400 MHz, CDCl3) δ: 8.46 (d, J = 7.2 Hz, 4H, naphthalene-H),
8.08 (d, J = 8.0 Hz, 4H, naphthalene-H), 7.61 (t, J = 7.8 Hz, 4H, naphthalene-H), 7.29 (s, 1H,
benzene-H), 7.26 (s, 1H, benzene-H), 7.13 (d, J = 7.88 Hz, 2H, benzene-H), 6.54 (s, 2H, CONH),
5.66 (t, J = 7.4, 2H, BocNHCH), 4.62 (s, 2H, BocNH), 4.37–4.55 (m, 4H, xylyl-H), 3.00–3.06 (m, 4H,
NCH2), 2.25–2.31 (m, 4H, CHCH2), 1.51 (t, J = 5.8 Hz, 4H, NCH2CH2), 1.48 (s, 4H, CHCH2CH2), 1.37 (s,
18H, Boc). 13C-NMR (100 MHz, CDCl3) δ: 169.64, 164.30, 156.12, 138.93, 134.22, 131.70, 131.52, 128.79,
128.29, 127.03, 126.96, 126.65, 122.33, 79.04, 77.48, 77.16, 76.84, 54.88, 43.57, 40.27, 29.82, 28.47, 28.30,
23.92. HR-MS m/z (ESI), Calcd for C54H60N6O10 [M + Na]+ 975.4263, found 975.4223.

3.1.4. Synthesis of 4

In a 100 mL flask, compound 3 (0.25 mmol) was dissolved in 15 mL ethanol. A quantity of 30 mL
HCl ethanol solution was added under stirring. The mixture was stirred at room temperature overnight.
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The solvent was evaporated in vacuo to obtain the crude product. After washing with methyl tert-butyl
ether, a white powder was obtained.

Bis-(N-epsilon-1,8-naphthalimido-lysyl) ethylenediamine (4a). Yield 85.5%. 1H-NMR (400 MHz, D2O)
δ: 8.21 (d, J = 7.2 Hz, 4H, naphthalene-H), 8.07 (d, J = 8.0 Hz, 4H, naphthalene-H), 7.58 (t, J = 7.8 Hz,
4H, naphthalene-H), 5.53 (q, J = 5.04 Hz, 2H, BocNHCH), 3.23–3.36 (m, 4H, NCH2), 2.93 (t, J = 7.8 Hz,
4H, CHCH2), 1.97–2.23 (m, 4H, NCH2CH2), 1.49–1.71 (m, 4H, CHCH2CH2), 1.32–1.34 (m, 4H,
CONHCH2CH2). 13C-NMR (100 MHz, D2O) δ: 175.20, 165.27, 135.51, 131.67, 131.08, 127.41, 126.97,
120.76, 54.02, 39.37, 39.16, 29.58, 27.21, 26.43, 22.66, 16.77. HR-MS m/z (ESI), Calcd for C38H40N6O6

[M + H]+ 677.3082, found 677.3036.

Bis-(N-epsilon-1,8-naphthalimido-lysyl)-1,4-butanediamin (4b). Yield 79.2%. 1H-NMR (400 MHz, D2O)
δ: 8.34 (d, J = 7.2 Hz, 4H, naphthalene-H), 8.08 (d, J = 8.0 Hz, 4H, naphthalene-H), 7.62 (t, J = 7.8 Hz, 4H,
naphthalene-H), 5.56 (q, J = 5.04 Hz, 2H, BocNHCH), 3.19 (s, 4H, NCH2), 2.93 (t, J = 7.8 Hz, 4H, CHCH2),
2.07–2.22 (m, 4H, NCH2CH2), 1.68–1.72 (m, 4H, CHCH2CH2), 1.53–1.55 (m, 4H, CONHCH2CH2),
1.21–1.54 (m, 4H, CH2CH2). 13C-NMR (100 MHz, D2O) δ: 172.39, 171.06, 165.59, 135.68, 131.94, 130.93,
127.24, 127.04, 120.61, 54.07, 42.79, 39.12, 38.91, 27.27, 26.39, 25.89, 25.68, 22.59. HR-MS m/z (ESI),
Calcd for C40H44N6O6 [M + H]+ 705.3395, found found 705.3382.

Bis-(N-epsilon-1,8-naphthalimido-lysyl)-1,6-hexylenediamine (4c). Yield 83.6%. 1H-NMR (400 MHz, D2O)
δ: 8.17 (d, J = 7.2 Hz, 4H, naphthalene-H), 8.05 (d, J = 8.0 Hz, 4H, naphthalene-H), 7.49 (t, J = 7.8 Hz, 4H,
naphthalene-H), 5.20 (q, J = 5.6 Hz, 2H, BocNHCH), 2.78–2.92 (m, 4H, NCH2, CHCH2), 1.89–2.13 (m,
4H, NCH2CH2), 1.61–1.70 (m, 4H, CHCH2CH2), 1.23–1.35 (m, 4H, NHCH2CH2), 1.05 (d, J = 5.2 Hz, 4H,
CONHCH2CH2), 0.80 (t, J = 6.2 Hz, 4H, CONHCH2CH2CH2). 13C-NMR (100 MHz, D2O) δ: 170.96,
165.32, 135.37, 131.41, 130.97, 127.26, 126.94, 120.86, 54.16, 39.17, 38.41, 28.09, 27.52, 26.46, 24.89, 22.85.
HR-MS m/z (ESI), Calcd for C42H48N6O6 [M + H]+ 733.3708, found 733.3665.

Bis-(N-epsilon-1,8-naphthalimido-lysyl)-1,4-phenylenedimethan-amine (4d). Yield 78.9%. 1H-NMR (400 MHz,
D2O) δ: 7.77–7.88 (m, 4H, naphthalene-H), 7.50–7.77 (m, 4H, naphthalene-H), 7.25–7.49 (m, 4H,
naphthalene-H), 6.98–7.04 (m, 4H, benzene-H), 7.02 (m, 4H, benzene-H), 5.37 (t, J = 7.0 Hz, 2H, BocNHCH),
3.85–4.45 (m, 4H, xylyl-H), 2.92–2.98 (m, 4H, NCH2), 1.92–2.24 (m, 4H, CHCH2), 1.67–1.77 (m, 4H,
NCH2CH2), 1.26–1.39 (m, 4H, CHCH2CH2). 13C-NMR (100 MHz, CDCl3) δ: 171.33, 165.03, 137.90, 135.17,
131.10, 130.50, 128.43, 126.73, 126.65, 120.23, 57.41, 54.21, 43.02, 39.22, 27.63, 26.54, 25.89, 23.03. HR-MS
m/z (ESI), Calcd for C44H44N6O6 [M + H]+ 753.3395, found 753.3312.

Bis-(N-epsilon-1,8-naphthalimido-lysyl)-1,3-phenylenedimethan-amine (4e). Yield 88.9. 1H-NMR (400 MHz,
D2O) δ: 7.88 (d, J = 7.2 Hz, 4H, naphthalene-H), 7.77 (d, J = 8.0 Hz, 4H, naphthalene-H),
7.24 (t, J = 7.8 Hz, 4H, naphthalene-H), 6.98–7.04 (m, 4H, benzene-H), 5.35 (q, J = 6.04 Hz, 2H,
BocNHCH), 4.05–4.23 (q, J = 15.04 Hz, 4H, xylyl-H), 2.97 (t, J = 7.6 Hz, 4H, NCH2), 1.94–2.22 (m, 4H,
CHCH2), 1.69–1.76 (m, 4H, NCH2CH2), 1.32–1.39 (m, 4H, CHCH2CH2). 13C-NMR (100 MHz, CDCl3)
δ: 171.33, 165.03, 137.90, 135.17, 131.10, 130.50, 128.43, 126.73, 126.65, 120.23, 57.41, 54.21, 43.02, 39.22,
27.63, 26.54, 25.89, 23.03. HR-MS m/z (ESI), Calcd for C44H44N6O6 [M + H]+ 753.3395, found 753.3358.

3.2. UV–Vis Titration

A quantity of 20 µL stock solution of each bis-naphthalimide compound 4a–e (5 mM) was
diluted with 3 mL phosphate buffer (100 mM, pH = 7.4). An increasing volume of CT-DNA solution
was added into the solution. Then, the solution was stirred and incubated at 25 ◦C for 10 min.
The UV–Vis spectra in the absence and presence of DNA were recorded using a Shimadzu UV-2501
spectrophotometer. The binding constant Kb was calculated from a D/∆εapp vs. D plot according to the
following equation [31]:
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D/∆εapp = D/∆ε + 1/[(∆ε)Kb]

where D is the concentration of DNA, ∆εapp = [εA − εF], εA = Aobs/[compound], ∆ε = [εB − εF],
and εB and εF correspond to the extinction coefficients of the DNA–compound adduct and unbound
compound, respectively.

3.3. Viscosity Study

Viscometric titration was performed at 25 ◦C using an Ubblehode viscometer. A quantity of 5 mL
CT DNA (2.8 mM) was diluted with 20 mL phosphate buffer (50.0 mM, pH 7.4). The different flow
time was measured using a stopwatch while varying the concentrations of compounds. The plot
of (η/η0)1/3 vs. r was obtained according to the flow time, where η and η0 are the flow time of the
presence and absence of compounds, respectively, and r is equal to [compound]/[DNA].

3.4. Cytotoxicity Assay

Human gastric carcinoma cell line (BGC823) and human esophageal carcinoma cell line (EC109)
were cultured in RPMI 1640 medium supplemented with 10% fetal bovine serum, 100 units/mL
penicillin, and 100 units/mL penicillin streptomycin. The cell culture was kept in 5% CO2 under
humidified conditions at 37 ◦C. The culture solution was changed every other day, and the subcultures
were performed with 0.25% trypsin. The compounds were solubilized in RPMI 1640 medium and
diluted to different concentrations immediately prior to use.

The cytotoxicity of bis-naphthalimide compounds was assessed using the thiazolyl blue
tetrazolium bromide (MTT) assay in vitro. Tumor cells were planted into 96-well microtiter plates at
a density of 5.0 × 104 cells/well. After being cultured in 5% CO2 under humidified conditions at 37 ◦C
for 24 h, various compound medium solutions were added to obtain the final drug concentrations
of 0, 12.5, 25, 50, 100, and 200 µmol/L, respectively. After incubation for 24 h, 10 µL MTT (5 mg/L)
was added to each cell and the mixture was incubated for 4 h. Then, the medium was removed and
replaced by 150 µL DMSO to solubilize the converted purple dye in the culture plates. The absorbance
of each cell was measured using a Bio-rad 680 microplate reader (Hercules, CA, USA) at 490 nm.
The IC50, which inhibits the growth of 50% of cells relative to nontreated control cells, was calculated
as the concentration of the tested compound by linear fitting.

3.5. Morphology Observation

Tumor cells were planted into 24-well microtiter plates at a density of 5.0 × 106 cells/well.
After incubation for 24 h, compound solution was added and incubated for 48 h. Morphological changes
of the cells were observed using light microscopy.

4. Conclusions

In this paper, a series of bis-naphthalimide derivatives with different diamine linkers were
designed and synthesized. The DNA binding constants and binding modes of the compounds were
measured by UV–Vis titration and viscosity experiments. The results showed that the length of
diamine linkers significantly influenced the binding ability of the bis-naphthalimide derivatives.
The compounds with shorter linkers showed larger binding constants and the classical binding mode.
However, in cytotoxicity assay experiments, the compound 4d with the rigid p-xylylenediamine
linker showed better cytotoxicity than did the other bis-naphthalimide derivatives. The morphology
observation of BGC823 cell line incubated with 4d also exhibited the inhibition of cancer cell growth.
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