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Abstract: Rice starch (RS-)based nano/mesoporous carbon (RSNMC) was prepared via a hard-
templating route using cheap rice starch as a carbon source. XRD and TEM characterization
indicated the formation of organized nanoporous RSNMC. Nitrogen absorption–desorption studies
revealed a high surface area of up to 488 m2·g−1, uniform pore size of 3.92 nm, and pore volume of
1.14 cm3·g−1. A RSNMC-modified glassy carbon (GC) electrode was employed for the determination
of ascorbic acid (AA) and exhibited a linear response in the concentration range of 0.005–6.0 mM with
a detection limit of 0.003 mM. These results demonstrate that RSNMC has potential as an advanced
and cheap electrode material for electrochemical sensing and other electrocatalytic applications.

Keywords: mesoporous carbon; carbon; rice starch; biomass; electroanalysis; ascorbic acid; electrode;
glass carbon electrode; nanomaterials

1. Introduction

Nano/mesoporous carbon materials (NMC) are of interest because of their high surface area,
uniform pore structure, mechanical strength, chemical stability, and relative lack of reactivity [1–7].
These characteristics are suited to various applications including as electrodes and support materials,
and for catalysis, adsorption, immobilization, energy storage, drug delivery, and electrochemistry [1–7].
The synthesis of NMC usually involves impregnation of a carbon precursor, commonly sucrose,
polypyrole, or furfuryl alcohol, into the pores of mesoporous SBA15 silica in the presence of a catalyst,
followed by carbonization at high temperature [1–7]. A catalytic chemical vapor deposition (CVD)
method has also been reported for mesoporous carbon but requires specialized apparatus and harsh
conditions [4].

In this context, sustainable nanoporous carbon materials from low-cost biomass have become
an important area of investigation [5,6]. Recently, hollow carbon spheres for use in Li–S batteries
have been produced using a sustainable approach involving the hydrothermal carbonization of
monosaccharides as the carbon precursors and silica nanoparticles as the hard-templates [7]. Similarly,
carbon materials with lower porosity have been prepared for the same application by the carbonization
of mixed colloidal silica and starch [8]. Liu et al. have reported the generation of micro/mesoporous
carbon from chemically modified banana peel for size-selective separation of proteins [9]. It should
be noted that carbon material from such biomass requires further chemical activation to create pores,
which undoubtedly complicates the process.
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In this study, we describe a sustainable and cost-effective one-pot synthesis of rice starch-derived
nano/mesoporous carbon material (RSNMC) and its application as an electrode material for the
detection of ascorbic acid (AA). Ascorbic acid (vitamin C) is an essential nutrient for living cells and
plays an important role in metabolic and cell development processes [10–13]. It helps develop cells and
heal injuries, ulcers, and burns, and is involved in the synthesis of collagen, blood vessels, cartilage,
bones, and tendons [10–13]. It is also an active component in a variety of pharmaceutical dosage
forms such as high potency multivitamin supplements for the prevention and treatment of vitamin
C deficiency, common colds, mental illnesses, infertility, cancer and AIDS [10–13]. It is consumed
as an antioxidant in a variety of pharmaceutical products, foods, fruits, vegetables, and soft drinks.
Different methods have been developed for determination of AA in different matrices, including by
titration, UV–vis spectrophotometry, capillary electrophoresis, fiber-optic reflectance spectroscopy,
HPLC, thermogravimetry, fluorometry, etc. [13–29]. Electrochemical techniques offer advantages
of simplicity, selectivity, stability, and applicability in different matrices. AA is electrooxidized on
conventional electrode surfaces; however, this process occurs with high overpotential, which can cause
fouling of the electrode surface by its oxidation intermediates or products [22,23]. Thus, these electrodes
will have poor reproducibility and reduced selectivity and sensitivity. To overcome these problems,
various materials have been immobilized on conventional electrode surfaces, including conducting
polymers, ionic liquids, metal nanoparticles, carbon nanotubes, metal complexes, and polymeric
films [24,25]. This study reports the use of cheap, nontoxic rice starch-derived nano/mesoporous
carbon (RSNMC) as an electrode coating material for the detection of AA using cyclic voltammetry
with a RSNMC-modified glassy carbon electrode.

2. Experimental

2.1. Synthesis of the Hard Mesoporous SBA15 Silica Nano-Template

Surfactant Pluronic P123 (2.0 g) (Sigma-Aldrich, St. Louis, MO, USA) was added to 60 mL of 2 M
HCl at 38 ◦C with vigorous stirring for 2 h. Tetraethylorthosilicate (TEOS) (4.2 g) (Sigma-Aldrich) was
added dropwise to the surfactant-containing solution with stirring for another 8 min and left to stand
for 24 h at 38 ◦C. This solution was then autoclaved at 100 ◦C for 24 h, filtered, and dried at room
temperature. Finally, calcination was performed at 550 ◦C for 6 h in air [30–35].

2.1.1. Synthesis of Nano/Mesoporous Carbon (RSNMC) from Rice Starch

Rice starch (2.0 g) (Sigma-Aldrich) in 20 mL of deionized water was stirred in a beaker at 85–90 ◦C.
SBA15 mesoporous silica template (2.3 g) (Figure 1a) was added slowly to the starch solution with
vigorous stirring to ensure a homogenous solution of template and rice starch (Figure 1b). Stirring
overnight yielded a viscous gel that was collected in a petri dish and dried in an oven at 60 ◦C for 12 h
to remove the solvent, then at 100 ◦C for 6 h, followed by 160 ◦C for 6 h. Carbonization was carried
out under an argon flow at 900 ◦C for 1 h The silica template was removed by washing with 5 wt %
HF solution at room temperature for 6 h [30–35]. The resulting nano/mesoporous carbon (Figure 1c)
was collected by filtration, washed with ethanol, and dried in an oven at 100 ◦C.

2.1.2. Electrode Preparation and Electrochemical Measurements

The RSNMC was predried at 60 ◦C for 1 h in a conventional oven. RSNMC (5 mg) was added
to 20 mL of ethanol and sonicated for 30 min to obtain a well-dispersed, homogeneous suspension.
The bare glassy carbon (GC) electrode was polished with 0.50 and 0.05 µm alumina slurry and rinsed
with water. It was then sonicated in deionized water for 5 min and dried under a high-purity nitrogen
stream. The RSNMC ethanol suspension (4 µL) was drop-cast onto the cleaned GC electrode and dried
under a nitrogen atmosphere at room temperature to obtain the RSNMC/GC electrode.

Electrochemical experiments were performed on a Bioanalytical Systems BAS 100B/W
electrochemical workstation with three electrodes including the RSNMC-modified GC working
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electrode, an Ag/AgCl reference electrode, and a platinum wire counter electrode. A 0.1 M PBS, pH 7.0
solution was used as the supporting electrolyte for the potential cycling of potassium ferricyanide,
K3Fe(CN)6, and AA. Electrochemical measurements were performed under a Nitrogen atmosphere
using solutions deoxygenated by purging with N2 for about 15 min. All measurements were carried
out at room temperature (25 ◦C).
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Figure 1. Preparation of nano/mesoporous carbon nanomaterials from rice starch.

2.1.3. Characterization

X-ray diffraction (XRD) patterns were recorded using a Bruker radiation D8 Advanced
Diffractometer with Cu Kα radiation for angles 1 to 10 2θ (degrees). A Rigaku Miniflex diffractometer
(Japan) with Cu Kα radiation was used for the 2θ range from 10 to 80◦ under identical conditions
at a scanning rate of 2 degrees. An automated adsorption analyzer (Quadrasorb SI, Quantachrome,
Boynton Beach, FL, USA) was used to study the Brunauer–Emmett–Teller (BET) surface areas, pore
sizes, and pore volumes. All samples were outgassed at 180 ◦C for 12 h under vacuum prior to analysis
using the degas port of the adsorption analyzer. Pore size distribution (PSD) was obtained using the
Barrett–Joyner–Halenda (BJH) model from the desorption branch of the isotherm [36,37]. The pore
morphologies were observed by ultrasonically dispersing the sample in ethanol for 10 to 15 min
and then casting onto carbon-coated Cu grids using a dropper. TEM (TEM, FEI Tecnai 20, 200 kV)
images were obtained on an F20 microscope with an accelerating voltage of 200 kV. Solid-state NMR
spectra were acquired on an Avance III spectrometer (Bruker), operating at 59.627 MHz for 29Si and
75.468 MHz for 13C. Powdered material was placed in the 4 mm zirconium rotor and rotated at the
magic angle at 7 kHz. Spectra were acquired using a 42 ms acquisition time, sweep width of 50 kHz,
2 K data points, and high-power 1H TPPM decoupling. Recycle times ranged from 30 s to 100 s
and were verified to be sufficient for relaxation without signal saturation. 29Si NMR spectra were
recorded after a single pulse to allow for quantification of the Si species. The 90◦ pulse was followed by
high-power 1H TPPM decoupling at 87 kHz. X-ray photoelectron spectroscopy (XPS) was performed
using a Kratos Axis ULTRA X-ray photoelectron spectrometer equipped with a 165 mm hemispherical
electron energy analyzer using a monochromatic Al Kα (1486.6 eV) X-ray source at 150 W (15 kV,
10 mA). A survey wide scan was collected at an analyzer pass energy of 160 eV and multiplex (narrow)
high-resolution scans of 20 eV. The base chamber pressure was 1.0 × 10–9 Torr, increasing to 1.0 × 10–8

Torr during sample analysis. The binding energies were referenced to the C 1 s peak of adventitious
carbon at 284.6 eV to account for charging effects.

3. Results and Discussion

RSNMC was prepared using a nanoporous SBA silica template (Figure 1). The high surface area,
large pore size, and pore volume of the hard template were impregnated with the rice starch precursor
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solution at 85–90 ◦C. The rice starch precursor was carbonized at a high temperature and the template
was removed by washing with aqueous HF solution. The XRD pattern of the SBA15 mesoporous
silica template (Figure 2a) showed three well-resolved XRD peaks at low angles that could be indexed
as (100), (110), and (200) reflections, indicating the formation of well-ordered hexagonal materials
(p6mm) [3,30–35]. The XRD pattern of the corresponding RSNMC material (Figure 2b) exhibited
a sharp peak at 2Θ = 1.035 with a secondary hump-like reflection consistent with the formation of
mesoporous carbon [3,30–42]. The (100) peak at 2Θ = 1.035 for the RSNMC exhibited a d-spacing
of 8.53 nm, which corresponds to a unit cell parameter of 9.85 nm, whereas the two broad peaks at
wide-angle XRD patterns (Figure 2 inset) suggest the formation of an amorphous, graphitic carbon
framework. The unit cell parameter of the RSNMC replica is smaller than that of the SBA-15 template,
presumably due to shrinkage during carbonization and dissolution of the host silica framework. Pore
formation in the RSNMC was investigated by TEM (Figure 3) and indicated organized nanopore
channels [3,30–42].
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Figure 2. (a) XRD patterns of calcined SBA-15 silica template and (b) the rice starch-based
nano/mesoporous carbon (RSNMC). The inset shows the higher angle XRD pattern of the RSNMC.

BET isotherms (Figure 4) from N2 adsorption–desorption measurements exhibited well-developed
type IV hysteresis curves in the range of 0.4 to 0.75, indicating the formation of mesoporous carbon
nanostructures [3,30–42]. The corresponding BJH pore size distribution (Figure 4 inset) displayed
a pore size centered at about 3.92 nm in size. A surface area of 488 m2·g−1, total pore volume of
1.14 cm3·g−1, and pore size of 3.92 nm were determined as shown in Table 1. Overall, results are
consistent with previously reported mesoporous structured materials [3,30–35,38–43].

XPS was used to obtain further information about the elemental composition of the RSNMC.
An XPS survey spectrum (Figure SI 1) clearly shows two peaks at ~284.08 and ~530.3 eV, which are
responsible for carbon and oxygen, respectively [3,39–42]. The C1s peak is much stronger than the O1s
peak, reflecting their relative abundance. The single intense C peak at 284.08 eV could be assigned to
a pure carbon environment whereas the little broad peaks at about 286.2 eV, and 290.2 eV, correspond
to C–O and C=O moieties, respectively [3,38–40]. Another very minor peak at 530.3 eV is due to the
oxygen content that remained in the mesoporous carbon framework [3,39–42]. Solid-state 29Si NMR
spectra (Figure SI 2) confirmed the efficient removal of the silica template by HF treatment [44]. The 13C
CP-MAS NMR spectrum of the resulting RSNMC sample indicates (Figure SI 3) a predominance of sp2

rather than sp3 carbons, consistent with a graphitic carbon framework [42–44].
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Table 1. Surface structural properties of pure SBA15 silica template and RSNMC.

Sample BET Surface (m2/g) Pore Size (nm) Pore Volume (cm3/g)

SBA15 silica template 915 9.15 1.12
RSNMC 488 3.92 1.14

4. Electrochemical Behavior of RSNMC

The electrochemical performance of RSNMC as a novel electrode material was evaluated using
potassium ferricyanide (1 mM K3[Fe(CN)6] prepared in PBS, pH 7.0). The cyclic voltammogram (CV)
curves obtained by using a RSNMC-modified GC electrode and a bare GC electrode at a potential
sweep rate of 20 mV/s are shown in Figure 5. The two CVs show similar redox peak behavior. Indeed,
the redox peak of potassium ferricyanide at the RSNMC/GC electrode is much higher than that
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obtained at the bare GC electrode, indicating that the former possesses a larger electrode area relative
to the bare GC electrode. The electroactive surface area of both electrodes was obtained from the
Randles–Sevcik equation [45]:

iP = (2.69 × 105) AD1/2n3/2v1/2c* (1)

where iP is the peak current (A), n is the number of electrons participating in the redox reaction, A is
the electroactive surface area (cm2) of the electrode, D is the diffusion coefficient of [Fe(CN)6]3− (taken
to be 7.60 × 10−6 cm2·s−1 in aqueous medium), c* corresponds to the bulk concentration of the redox
probe (mol·cm−3), and v is the scan rate (V/s). The calculation indicates an electroactive surface area
for RSNMC/GC electrode of 0.052 cm2, which is 1.7 times higher than that of a GC electrode (0.03 cm2).
In addition, the peak potential separation (∆Ep) between the anodic and cathodic peaks is 57 mV for
the RSNMC/GC electrode and 103 mV for the GC electrode. The decrease in ∆Ep indicates that the
RSNMC/GC electrode not only possesses a high surface area, but also accelerates the electron transfer
rate of ferricyanide [13,28]. This experiment suggests that the presence of RSNMC could increase the
relative electron transfer of the GC electrode [13,28,29].
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prepared in PBS, pH 7.0 at scan rate of 20 mV/s.

The CV response of an RSNMC-modified GC electrode towards the oxidation of ascorbic acid
was investigated and the result was compared to that of an unmodified GC electrode. This oxidation
process was irreversible as shown in Figure 6. A well-defined oxidation peak was observed with
significant current enhancement and peak potential shift of ~300 mV in the negative direction relative
to an unmodified GC electrode. The electron transfer ability of ascorbic acid was increased for the
RSNMC-modified GC electrode. It is clear for this experiment that the oxidation of ascorbic acid
was greatly enhanced by the use of RSNMC as the electrode material. This superiority in analytical
performance can be ascribed to the high surface area, uniform and larger pore volume, and surface
roughness of the interface [13,28,29].

Systematically changing the scan rate (Figure 7) to investigate the diffusion behavior revealed
that the anodic peak potential was shifted in the positive direction with a concomitant, linear increase
in the oxidative peak current (Figure 7B). The slope of this plot was ~0.5, indicating that the current is
primarily diffusion controlled [14]. Figure 8 illustrates the dependence of the CV response using the
RSNMC/GC electrode to the addition of different concentrations of ascorbic acid ranging from 0.005 to
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6.0 mM in PBS, pH 7.0. This plot exhibited good linearity described by the equation y = 1.679x + 8.594
with an R2 value of 0.997, and allowed calculation of a detection limit of 0.003 mM, which is lower than
those of a multi-walled titanium oxide composite-modified GC electrode and a single-walled carbon
nanotube zinc oxide-modified GC electrode, and similar to that of a reduced graphene oxide–cobalt
hexacyanoferrate nanocomposite electrode [13,28,29].Molecules 2018, 23, x FOR PEER REVIEW  7 of 10 
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Figure 6. CVs obtained for RSNMC/GC and bare GC in 3 mM ascorbic acid prepared in PBS, pH 7.0 at
scan rate of 20 mV/s.
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Figure 7. (A) CVs were obtained at a RSNMC/GC electrode in 3 mM Ascorbic acid prepared in PBS,
pH 7.0 at 10, 20, 50, 100, and 200 mV/s scan rates; and (B) relationship between peak current and
scan rate.
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The reproducibility of our RSNMC/GC electrode was evaluated by repetitive electrochemical
measurements in a solution containing 3 mM ascorbic acid. The modified electrode possessed a relative
standard deviation of around 3.0% after 10 consecutive measurements. In addition, five freshly
prepared RSNMC-coated GC electrodes were used to detect ascorbic acid in PBS. All electrodes
exhibited similar current responses with a relative standard deviation of 3.0%. Finally, an electrode
was stored in a desiccator for nearly four weeks after use and retained its electrochemical reactivity.Molecules 2018, 23, x FOR PEER REVIEW  8 of 10 
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5. Conclusions

In summary, we have successfully demonstrated that rice starch can be used as an inexpensive
biomass precursor source for nano/mesoporous carbon (RSNMC). Carbonaceous nanostructures were
prepared using a hard, mesoporous silica template and exhibited a high surface area (488 m2·g−1), large
pore volume (1.14 cm3·g−1), and narrow pore size distribution (3.92 nm) without requiring chemical
activation. A RSNMC-modified GC electrode displayed enhanced electrocatalytic activity towards the
electrochemical oxidation of ascorbic acid as indicated by current enhancement and an associated peak
shift compared with an unmodified GC electrode. The constructed porous carbon interface displayed
strong signal amplification. The RSNMC-modified GC electrode demonstrated a reproducible, linear
relationship for ascorbic acid detection over the range 0.005–6.0 mM and a detection limit of 0.003 mM.
The preparation of RSNMC is very straightforward and our results indicate that it has superior
performance as an electrode material.
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