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Abstract: Chromatographic separation of a marine algal-derived endophytic fungus Penicillium
chrysogenum AD-1540, which was isolated from the inner tissue of the marine red alga Grateloupia
turuturu, yielded two new benzophenone derivatives, chryxanthones A and B (compounds 1 and
2, respectively). Their structures were undoubtedly determined by comprehensive analysis of
spectroscopic data (1D/2D NMR and HRESIMS). The relative and absolute configurations were
assigned by analysis of the coupling constants and time-dependent density functional theory (TDDFT)
calculations of their electronic circular dichroism (ECD) spectra, respectively. Both compounds
possessed an unusual dihydropyran ring (ring D) fused to an aromatic ring, rather than the commonly
occurring prenyl moiety, and a plausible biosynthetic pathway was postulated. The cytotoxicities
of compounds 1 and 2 were evaluated against six human cell lines, and both of the compounds
demonstrated weak to moderate cytotoxicities with IC50 values ranging from 20.4 to 46.4 µM. These
new compounds further demonstrate the potential of marine-derived fungi as an untapped source of
pharmaceutical components with unique properties that could be developed as drug candidates.

Keywords: marine algal-derived fungi; Penicillium chrysogenum; secondary metabolites; polyketides;
benzophenone derivatives; cytotoxicity

1. Introduction

Marine-derived fungi, which are recognized as frontier resources for drug candidate discovery,
are prolific sources of bioactive secondary metabolites with unique structures [1]. The unique features
of the marine environment (e.g., hypersaline, high-pressure, anoxic, and disphotic conditions) result in
distinct structures of the secondary metabolites secreted by marine-derived fungi from those produced
by terrestrial microorganisms [2]. Chemical investigations of them have resulted in the isolation
and identification of numerous polyketides, terpenes, peptides, steroids, and alkaloids, many of
which exhibited pharmaceutically relevant bioactivities. Thus, secondary metabolites isolated from
marine-derived fungi are considered as an untapped resource in the search for novel lead compounds
and/or new drugs [3].

The fungal strain Penicillium chrysogenum is a rich source of several structurally diverse polyketides
(anthraquinones, phenols, xanthones, macrolides, etc.), including penicichrysogenins with nitric oxide
inhibitory activity [4], penicitols with cytotoxic activity [5], chrysines with α-glucosidase inhibitory
activity [6], and sorbicillinoids with antiviral activity [7] (Figure 1). During our unremitting search for
novel natural products from marine-derived fungi [8,9], an endophytic strain P. chrysogenum isolated
from the marine red alga Grateloupia turuturu was chemically investigated. Consequently, two new
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benzophenone derivatives, namely, chryxanthone A (1) and B (2), were obtained. Both compounds
have an unusual dihydropyran ring incorporated in the structure (ring D), which is fused to an aromatic
ring and an open ring (ring C) (Figure 1), proving to be unusual members of benzophenone derivatives
in structurally related xanthones. To the best of our knowledge, only a few related prenylxanthones,
belonging to the families of shamixanthones, tajixanthones, ruguloxanthones, and aspergixanthones,
have been previously reported (Figure 1) [10–14]. In this study, we report the details of the isolation,
structure elucidation, and cytotoxic activities of these new polyketides, providing a foundation for
further exploration of their pharmaceutical properties as novel drug candidates.
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Figure 1. The structures of chryxanthone A (1) and B (2) and previously reported compounds, 
shamixanthone (3a), epishamixanthone (3b), aspergixanthone (4), ruguloxanthone (5), tajixanthone 
(6), penicichrysogenins (7), penicitols (8), chrysines (9), and sorbicillinoids (10). 

2. Results and Discussion 

2.1. Structural Elucidation 

Compound 1 was obtained as yellowish oil. Its molecular formula, C25H26O6, was determined 
based on a prominent pseudo-molecular ion peak at m/z 421.1653 [M − H]− in the high-resolution 
electrospray ionization mass spectroscopy (HRESIMS) spectrum (Figure S1). The 1H NMR spectrum 
(Table 1; Figure S2) revealed signals attributable to five aromatic/olefinic protons (δH 7.12 (d, J = 8.4 
Hz, H-3), 6.39 (d, J = 8.4 Hz, H-4), 6.58 (s, H-5), 6.26 (d, J = 9.8 Hz, H-14), and 5.44 (d, J = 9.8 Hz, H-
15)), two methine protons (δH 2.34 (H-20) and one oxygenated at δH 4.53 (H-25)), two methylene 

Figure 1. The structures of chryxanthone A (1) and B (2) and previously reported compounds,
shamixanthone (3a), epishamixanthone (3b), aspergixanthone (4), ruguloxanthone (5), tajixanthone (6),
penicichrysogenins (7), penicitols (8), chrysines (9), and sorbicillinoids (10).

2. Results and Discussion

2.1. Structural Elucidation

Compound 1 was obtained as yellowish oil. Its molecular formula, C25H26O6, was determined
based on a prominent pseudo-molecular ion peak at m/z 421.1653 [M − H]− in the high-resolution
electrospray ionization mass spectroscopy (HRESIMS) spectrum (Figure S1). The 1H-NMR spectrum
(Table 1; Figure S2) revealed signals attributable to five aromatic/olefinic protons (δH 7.12 (d, J = 8.4 Hz,
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H-3), 6.39 (d, J = 8.4 Hz, H-4), 6.58 (s, H-5), 6.26 (d, J = 9.8 Hz, H-14), and 5.44 (d, J = 9.8 Hz, H-15)),
two methine protons (δH 2.34 (H-20) and one oxygenated at δH 4.53 (H-25)), two methylene protons
with one terminal olefinic signal (δH 4.83 (m, H-22a) and δH 4.61 (m, H-22b)) and one oxygenated
signal (δH 4.18 (m, H-19a) and δH 4.13 (m, H-19b)), four singlet methyl groups (δH 0.98 (s, H-17), 0.92
(s, H-18), 1.70 (s, H-23), and 2.10 (s, H-24)), and two exchangeable protons resonating at δH 12.20 (s,
OH-10) and 8.88 (s, OH-11). In the 13C-NMR spectrum (Table 1; Figure S3), 25 resonances were clearly
observed, which were classified as one ketone carbonyl (δC 200.6, C-13), 16 aromatic/olefinic carbons
(including two benzene rings, one cis double bond, and one terminal double bond), two sp3 methines
(one of which was oxygenated), one oxygenated methylene, and four methyls. The 1H–1H COSY
spectrum (Figure S4) showed clear correlations between H-19/H-20, H-20/H-25, and H-25/OH-25,
which can be deduced to a −OCH2CHCHOH spin system. The dihydropyran ring D was constructed
by HMBC correlations (Figure 2) from H-19 to C-7, from H-20 to C-8, and from H-25 to C-7 and C-8.
Further HMBCs from H-23 and H-22 to C-20/C-21 indicated an isopropenyl moiety located at C-20.
Ring E (2,2-dimethyl-2H-chromone moiety) and the benzene ring A were also deduced by some key
HMBC correlations, as shown in Figure 2A. The above substructures (rings A and B) must connect via
a ketone carbonyl group (C-13), as evidence from the observation of long-range HMBC correlations
from H-4 and H-5 to C-13, which can also be detected by Wu et al. [15]. Compound 1 was considered
to be a benzophenone derivative, and it was given the trivial name of chryxanthone A.

Table 1. 1H (500 MHz) and 13C-NMR (125 MHz) data of compounds 1 and 2 in DMSO-d6

Compound 1 Compound 2

Number δH (mult, J in Hz) δC, type δH (mult, J in Hz) δC, type

1 154.1, C 150.9, C
2 112.3, C 115.0, C
3 7.12, d (8.4) 132.4, CH 7.04, d (8.4) 128.1, CH
4 6.39, d (8.4) 108.6, CH 6.55, d (8.4) 104.3, CH
5 6.58, s 117.6, CH 6.52, s 118.7, CH
6 128.3, C 130.3, C
7 144.1, C 144.5, C
8 113.8, C 124.3, C
9 121.5, C 121.2, C
10 161.7, C 158.1, C

OH-10/
OCH3-10 12.20, s 3.69, s 56.3, CH3

11 146.9, C 150.0, C
OH-11 8.88, s 9.07, s

12 126.4, C 127.0, C
13 200.6, C 198.1, C
14 6.26, d (9.8) 121.3, CH 6.31, d (9.8) 121.8, CH
15 5.44, d (9.8) 126.7, CH 5.51, d (9.8) 129.0, CH
16 76.7, C 76.6, C
17 0.98, s 27.2, CH3 1.13, s 28.2, CH3
18 0.92, s 26.6, CH3 0.79, s 26.6, CH3

19a
19b

4.18, m
4.13, m 62.8, CH2

4.26, dd (10.1, 3.0)
4.20, dd (11.0, 10.1) 63.1, CH2

20 2.34, br d (11.0) 44.4, CH 2.37, br d (11.0) 43.7, CH
21 142.1, C 142.6, C

22a
22b

4.83, s
4.61, s 111.6, CH2

4.87, s
4.65, s 111.9, CH2

23 1.70, s 22.1, CH3 1.76, s 22.5, CH3
24 2.10, s 16.0, CH3 2.07, s 16.9, CH3
25 4.53, br s 61.5, CH 4.59, br s 62.4, CH

OH-25 − 4.14, br s
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The relative configuration of compound 1 was assigned by comparison of the pattern of the
coupling constants with data from the literature. Previous reports on relative stereochemistry of D ring
indicated both syn- and anti-configurations, and they were distinguished based on different forms
of coupling constants. When the coupling constant of H-19b and H-20 is small, it is suggested that
isopropenyl group is pseudo-axial oriented and the OH-25 group and the isopropenyl group therefore
possesses anti stereochemistry. Examples of this kind of situation included shamixanthone (JH19b–H20
= 2.8 Hz) [10], tajixanthone derivatives (JH19b–H20 = 2.8 Hz) [12], and aspergixanthones J–K (JH19b–H20
= 3.0 Hz) [14]. Conversely, if the coupling constant of H-19b and H-20 is a large value, the isopropenyl
group on C-20 is oriented equatorial and it means that OH-25 and the isopropenyl group has a syn
relationship, such as epitajixanthone hydrate (JH19b–H20 = 11.8 Hz) [12], aspergixanthone I (JH19b–H20
= 12.0 Hz) [14], and epishamixanthone (JH19b–H20 = 11.0 Hz) [16]. In this study, the pattern of the
coupling constants of compound 1 was in accordance with the relevant characteristics of previously
reported related compounds, and the large coupling constant of H-19b and H-20 (J = 11.0 Hz) indicated
a syn relationship.

The absolute configuration of compound 1 was determined by comparison of its electronic
circular dichroism (ECD spectrum) with that of related compounds. Zhu et al. reported that the
Cotton effects (CE) at 250–300 nm and 300–350 nm are diagnostic features of a dihydropyran ring
system, and the negative CE at approximately 280 nm and positive CE at 310 nm are responsible for
the 25R configuration [13,14]. The ECD spectrum of compound 1 showed positive CE at 282 nm and
negative CE at 328 nm, which was contrary to that of aspergixanthones [13,14]; thus, the absolute
configuration of compound 1 was proposed as 25S. The absolute configuration of compound 1 was
further determined by the time-dependent density functional theory (TDDFT)-ECD calculation in
Gaussian 09 (revision D.01, Gaussian, Inc., Wallingford, CT, USA) [17] at the PBE0/TZVP level to
generate the calculated ECD spectrum of compound 1. The gas-phase B3LYP/6-31G(d) re-optimization
of the initial Merck molecular force field (MMFF) conformers of (20S,25S)-1 afforded 4 conformers
above 2% population (Figure S15). The experimental ECD spectrum of compound 1 showed good
agreement with that calculated for (20S, 25S)-1 (Figure 3), confirming the absolute structure of
compound 1.

Compound 2 was also isolated as yellowish syrup, with the molecular formula C26H28O6

determined by the HRESIMS spectrum (m/z 435.1814 [M − H]−, calcd for C26H27O6, 435.1813)
(Figure S8). Compound 2 was elucidated as the C-10 O-methyl derivative of compound 1, as evident
from the appearance of an additional methoxy group (δH/δC 3.69/56.3) in compound 2, as well as
the key HMBC correlation from OCH3-10 to C-10 (δC 158.1) (Figure S13). The similarities of the
coupling constants and plausible biosynthetic pathways between compounds 1 and 2 suggested
the same configurations for the two compounds. Moreover, the experimental ECD spectrum for
compound 2 showed good agreement with that calculated for (20S, 25S)-2 (Figure 4). A trivial name,
chryxanthone B, was designated for this compound.
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Although naturally occurring benzophenone derivatives are common in nature, these compounds
incorporating a dihydropyran ring (ring D) in the structures are particularly unusual. To date,
only about 30 related compounds belonging to the families of shamixanthones, tajixanthones,
ruguloxanthones, and aspergixanthones have been reported. In this study, two new benzophenone
derivatives with an unusual dihydropyran ring were obtained. The new compounds may be
biosynthesized from the same pathways through multiple modifications, such as hydroxylation,
prenylation, cyclodehydration, cyclization, and methylation (Scheme S1) [18–20].

2.2. Cytotoxic Activity of the New Compounds

Compounds 1 and 2 isolated in this study were submitted to a Cell Counting Kit-8 (CCK-8)
(Dojindo, Kumamoto, Japan) colorimetric assay with six human tumor cell lines (A549, BT-549, HeLa,
HepG2, MCF-7, and THP-1) to assess their cytotoxicities. Compound 1 showed moderate cytotoxicity
against the BT-549 and HeLa cell lines, with IC50 values of 20.4 and 23.5 µM, respectively, while
compound 2 displayed a selective growth-inhibitory effect on the A549 cell line with an IC50 value of
20.4 µM (Table 2).



Molecules 2018, 23, 3378 6 of 8

Table 2. Cytotoxicities (IC50, µM) of compounds 1 and 2.

A549 a BT-549 a HeLa a HepG2 a MCF-7 a THP-1 a

1 41.7 ± 1.9 20.4 ± 1.2 23.5 ± 0.2 33.6 ± 1.4 46.4 ± 1.2 >50
2 20.4 ± 0.9 >50 >50 >50 >50 41.1 ± 0.5

Epirubicin b 7.2 ± 0.11 5.3 ± 0.02 2.9 ± 0.04 4.6 ± 0.11 5.2 ± 0.02 5.5 ± 0.04
a A549, human lung adenocarcinoma epithelial cell line; BT-549, human breast cancer cell line; HeLa, human
cervix carcinoma cell line; HepG2, human liver carcinoma cell line; MCF-7, human breast adenocarcinoma cell line;
NCI-H460, human monocytic cell line. b Positive control.

3. Materials and Methods

3.1. General Experimental Procedures

Optical rotations were recorded on a Jasco P-1020 digital polarimeter (Jasco, Tokyo, Japan) at 25 ◦C.
The UV spectra were obtained on a Shimadzu UV-2700 spectrophotometer (Shimadzu, Kyoto, Japan).
ECD spectra were obtained with a Jasco J-815-150S circular dichroism spectrometer (Jasco, Tokyo,
Japan). The 1H, 13C, and 2D NMR experiments were performed on an Agilent DD2 spectrometer
(500 and 125 MHz, respectively) (Agilent, Santa Clara, CA, USA). The HRESIMS data were obtained on
a Thermo Scientific LTQ Orbitrap XL spectrometer (Thermo Scientific, Waltham, MA, USA). Column
chromatography (CC) was performed using silica gel (Qingdao Haiyang Chemical Factory, Qingdao,
China) and Lobar LiChroprep RP-18 (Merck, Darmstadt, Germany).

3.2. Fungal Material and Fermentation

The fungus AD-1540 used in this study was initially isolated from the fresh inner tissue of the red
marine alga Grateloupia turuturu, collected in August 2016 from Qingdao, China. The fungal strain was
isolated and purified according to previously reported methods [21]. It was identified as Penicillium
chrysogenum (GenBank accession number MH997569) following standard procedures [21].

The fungal strain was statically fermented on a sterilized solid medium in a 1 L Erlenmeyer flask
at 28 ◦C, with 70 g of rice (COFCO Group, Beijing, China), 0.1 g of corn flour (Macklin, Shanghai,
China), 0.3 g of peptone (Solarbio, Beijing, China), 0.1 g of monosodium glutamate (Shandong Minghui
Food Co., Ltd, Shandong, China), and 100 mL of filtered seawater.

3.3. Crude Extraction and Isolation

After fermentation for 30 days, the whole rice broth (from a total of 60 flasks) was extracted
repeatedly with equivoluminal ethyl acetate (EtOAc) to yield 36 g of crude extract. The extract
was then applied to silica gel vacuum liquid chromatography (VLC), and eluted with a petroleum
ether (PE)–EtOAc and dichloromethane (DCM)–methanol (MeOH) gradient system to yield eight
fractions (fractions 1–8). Fraction 4 (2.0 g), eluted with PE–EtOAc (2:1, v/v), was then subjected to
reverse-phase column chromatography with a MeOH–H2O gradient system (from 1:9 to 10:0, v/v) to
afford nine subfractions (fractions 4.1–4.9). Fraction 4.5 (26 mg) was further purified by CC on silica gel
(DCM–MeOH gradient, from 20:1 to 10:1, v/v) to yield compound 1 (3.6 mg), and fraction 4.6 (0.3 g)
was subjected to preparative thin layer chromatography (pTLC, DCM–MeOH, 20:1, v/v) to afford
compound 2 (8.5 mg).

Chryxanthone A (compound 1): yellowish oil; [α]25
D −34.8 (c 0.10, MeOH); UV (MeOH) λmax (log ε) 201

(3.88), 219 (3.96), 277 (3.46), 347 (3.12) nm; ECD (MeOH) 275 (+5.31), 305 (−2.59); 1H and 13C-NMR data
(in DMSO-d6, 500 and 125 MHz), see Table 1; HRESIMS m/z 421.1653 [M − H]− (calcd for C25H25O6,
421.1657).

Chryxanthone B (compound 2): yellowish syrup; [α]25
D −17.8 (c 0.11, MeOH); UV (MeOH) λmax (log ε)

202 (3.61), 219 (3.62), 276 (3.34), 348 (2.96) nm; ECD (MeOH) 282 (+12.12), 328 (−8.31); 1H and
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13C-NMR data (in DMSO-d6, 500 and 125 MHz), see Table 1; HRESIMS m/z 435.1814 [M − H]− (calcd
for C26H27O6, 435.1813).

3.4. Cytotoxicity Assay

The cytotoxicities against the A549, BT-549, HeLa, HepG2, MCF-7, and THP-1 cell lines were
assayed by the Cell Counting Kit-8 (CCK-8) colorimetric method as described previously [22]. The
percent inhibition of cell growth was calculated and expressed as the IC50 value. Epirubicin was used
as a positive control.

4. Conclusions

In conclusion, two new benzophenone derivatives in structurally related xanthones, chryxanthone
A (compound 1) and B (compound 2), were isolated and identified from the algal-derived endophytic
fungus P. chrysogenum AD-1540. Both compounds represent a dihydropyran ring, which is unusual in
naturally occurring benzophenone derivatives. Compounds 1 and 2 demonstrated weak to moderate
cytotoxicities against some of human tumor cell lines.

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/23/12/
3378/s1. Scheme S1: Proposed biosynthetic pathways to compounds 1,2; Figure S1: HRESIMS spectrum of 1;
Figure S2: 1H-NMR spectrum of 1; Figure S3: 13C-NMR spectrum of 1; Figure S4: COSY spectrum of 1; Figure S5:
HSQC spectrum of 1; Figure S6: HMBC spectrum of 1; Figure S7: NOESY spectrum of 1; Figure S8: HRESIMS
spectrum of 2; Figure S9: 1H-NMR spectrum of 2; Figure S10: 13C-NMR and DEPT spectra of 2; Figure S11: COSY
spectrum of 2; Figure S12: HSQC spectrum of 2; Figure S13: HMBC spectrum of 2; Figure S14: NOESY spectrum
of 2; Figure S15: Structure and population of the low-energy B3LYP/6-31G(d) conformers (>2%) of (20S,25S)-1;
Figure S16: Structure and population of the low-energy B3LYP/6-31G(d) conformers (>2%) of (20S,25S)-2; Table S1:
Cartesian coordinates of the low-energy conformers (≥2%) of 1; Table S2: Cartesian coordinates of the low-energy
conformers (≥2%) of 2.
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