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Abstract: The binding properties of quercetin toward chloride anions were investigated by means of
1H-NMR, 13C-NMR, and electrospray ionization mass spectrometry (ESI-MS) measurements, as well
as computational calculations. The results indicate that quercetin behaves primarily as a ditopic
receptor with the binding site of the B ring that exhibits stronger chloride affinity compared to the
A ring. However, these sites are stronger receptors than those of catechol and resorcinol because of
their conjugation with the carbonyl group located on the C ring. The 1:1 and 1:2 complexation of this
flavonoid with Cl− was also supported by ESI mass spectrometry.

Keywords: quercetin; chloride binding; NMR titrations; quantum mechanics density functional
theory (QM-DFT) calculations; molecular dynamics (MD) calculations

1. Introduction

The search for anion receptors is an important area of supramolecular chemistry due to its
importance and potential applications in a wide range of chemical and biological processes [1–5].
Most of these receptors have N–H or N–H+ groups contributing to bind anions through H-bonding
and/or electrostatic interactions. In other cases, metals or Lewis acids can also act as binding sites [6].
In this framework, small natural products capable of binding and transporting anions, specifically
chloride, across hydrophobic membranes are relatively few [7]. The growing interest in molecules
that bind and “chaperone” the chloride anion is inspired, in large part, by the knowledge that a
number of diseases are caused by the misregulation of this anion across cell membranes [8]. With an
eye toward the identification of naturally occurring molecules [9] that could potentially carry out
the abovementioned functions, we considered quercetin as a candidate. In fact, this compound
possesses hydroxyphenyl moieties for the anion recognition [10,11] and shows affinity to hydrophobic
phases such as lipid membranes [12,13]. These considerations prompted us to investigate the binding
properties of quercetin toward halides in non-competitive solvents. Moreover, despite many studies on
this molecule as ligands for metal cations [14–20], to our knowledge, there are no reports concerning
interactions of quercetin with anions.

Quercetin is a naturally occurring polyphenol aglycone, belonging to a group of phytochemicals
called polyphenol flavonoids, present in a variety of vegetables and fruits, such as onions, apples,
berries, broccoli, tea, and red wine, and is considered a health protective phytonutrient [21].
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This molecule is, in fact, a potent antioxidant and oxygen radical scavenger, and it is also
recognized for having antibacterial, antiviral, antitumoral, and anti-inflammatory properties [22–24].

Quercetin is a 3,5,7,3′,4′-pentahydroxy phenol, having a resorcinol-type arrangement of hydroxyl
groups in the A ring and a catechol-type structure in the B ring (Figure 1). In the C ring, quercetin
also contains a 2,3-double bond and 4-oxo function which can give conjugation with the adjacent
aromatic rings.
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Figure 1. Quercetin (1).

2. Results and Discussion

When solid methyltrioctylammonium chloride was added to a solution of quercetin 1 in
deuterated acetone, the chemical shifts of the corresponding 1H-NMR spectrum showed dramatic
changes. The possibility of aggregation of quercetin was negligible since the 1H-NMR spectra were
substantially identical at concentrations within the range of 1–5 mM [25]. Consequently, the results
clearly indicated an interaction between the chloride anion and this flavonoid.

2.1. 1H-NMR Binding Studies

In order to gather information on the sites and the strength of binding we carried out an 1H-NMR
titration of quercetin with chloride (Figure 2).
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Figure 2. Variations of a portion of 1H-NMR spectrum (400 MHz) of quercetin (1)
(concentration = 2.05 mM) during its titration with chloride. The molar fractions of the guest were 0,
1.16, 2.3, 3.4, 4.5, 6.6, 10.7, 16.2, and 27.1 from top to bottom. * indicates OH groups.

The binding isotherms of the C–H protons showed an upfield shift (with hyperbolic trend) for
the B-ring protons and a simultaneously more pronounced downfield shift (with sigmoidal shape)
for those of the A ring (Figure 3). The behavior of the latter suggests the presence of supplementary
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C–H—chloride hydrogen-bonding interactions in the A ring [26]. The NMR signals of the OH protons,
with the exception of 5-OH, were indistinguishable at the beginning of titration [27]. On the other hand,
they became visible during titration by moving downfield (see Figure 2). This fact suggests that the
interaction between the chloride anion and these phenolic OH groups occurs without deprotonation.
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The simultaneous fitting (HypNMR 2008 program [28]) of the saturation curves of Figure 3
achieved by applying both 1:1 and 1:2 binding model gave binding constants with very large
uncertainties (>200%), suggesting that these results are meaningless. More satisfactory results were
obtained considering quercetin as a ditopic receptor and fitting the isotherms of the A and B ring
separately using a 1:1 binding model [29]; the corresponding binding constants (as Log K values) are
reported in Table 1.

Table 1. Binding constants β (as Log K) for chloride (as methyltrioctylammonium salt) by hosts 1–2,
resorcinol and catechol in acetone-d6 at 298 K a.

Host β (M−1) a from CH Protons β (M−1) a from OH Protons

Quercetin (1) β1 = 4.59 b (error = 36%)
β2 = 2.95 b n.d. c

1a β1 = 3.01 b

β2 n.d.
β1 = 3.02 b

β2 n.d.
2 β = 3.09 β = 3.10

Catechol β = 3.36 β = 3.29
Resorcinol β = 2.39 β = 2.12

a Estimated errors ≤10% unless otherwise stated. b Binding events on the host were fitted separately as a 1:1 single
episode. c Not determined due to signals overlapping.

The binding constant obtained for the B ring (catechol moiety) was found to be surprisingly
higher than the analog of the catechol (4.59 vs. 3.36; see Table 1). This is probably due to the fact that
the B ring of quercetin is conjugated to the C ring via an α,β-unsaturated carbonyl moiety, and this
leads to an increase in the acidity of the 4’-OH group which is responsible, together with the 3’-OH
group, for the coordination of the chloride anion in a chelate mode [10].

Anion binding aptitude of the resorcinol moiety (A ring) of quercetin toward the chloride anion is
particularly interesting; in this case, in fact, the 5-OH group is “deactivated”, due to intramolecular
H-bonding with carbonyl group (C=O) [30], and only the 7-OH group remains available to bind the
chloride anion. This feature is clearly verifiable in Figure 2 showing the signal of 5-OH practically
unaffected throughout the whole titration. To corroborate this behavior, we performed NMR titrations
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of quercetin diphenylmethylketal 1a and of 2′,4′-dihydroxyacetophenone 2—the first compound
containing only the binding site related to the resorcinol moiety and the second one having structural
similarities with the A ring of quercetin (Figures 4 and 5). The corresponding binding isotherms,
depicted in Figure 6, have a very similar appearance; both the hydroxyl protons ortho to carbonyl group
(5-OH of 1a and 2’-OH of 2) remained unaffected during titration, while the signals of the second
OH (7-OH of 1a and 4’-OH of 2) moved decidedly downfield (this behavior is particularly evident in
Figure 5). The signals of the aromatic protons vicinal of the OH groups (6-H and 8-H of 1a and 3’-H,
5’-H of 2) moved downfield by nearly the same magnitude for both receptors; these very significant
shifts (between 0.27 and 0.38 ppm, respectively) are indicative of the co-presence of Ar–H—-chloride
hydrogen-bonding interactions. Moreover, the 3-OH group of the receptor 1a was not significantly
perturbed in the 1H-NMR titration, probably due to an intramolecular hydrogen bond with the
carbonyl group, stable enough to withstand the chloride action (Figure 5a).
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Figure 5. (a) Variations of a portion of 1H-NMR spectrum (400 MHz) of 1a (2 mM) during its titration
with chloride. The molar fractions of the guest were 0, 0.99, 1.96, 2.91, 3.85, 5.66, 9.09, 23.08, 28.86, and
34.31 from top to bottom. (b) Variations of a portion of 1H-NMR spectrum (400 MHz) of 2 (2 mM)
during its titration with chloride. The molar fractions of the guest were 0, 1.02, 2.02, 2.99, 3.95, 5.83,
9.36, 14.19, and 23.75 from top to bottom.
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Data analysis fitted the 1:1 binding profile and gave a Log K of 3.02 for receptor 1a and of 3.1 for
receptor 2.

In order to have a point of reference, binding constants of catechol and resorcinol (2 mM)
in deuterated acetone and methyltrioctylammonium chloride as titrants were also carried out.
The magnitude of these constants, Log K = 3.36 M−1 for the catechol and Log K = 2.39 M−1 for
the resorcinol, were consistent with the results of Smith (in CD3CN) [10].

It is interesting to note that 1a and 2 were found to be more effective receptors than the resorcinol
probably due to a –M mesomeric effect of the carbonyl group engaged in a intramolecular C=O· · ·H−O
hydrogen bond that increases the acidity of the para OH group, as well as that of the adjacent aromatic
protons. Indeed, it was reported that the pKa1 value for resorcinol is 9.5 [31], while that calculated for
2′,4′-dihydroxyacetophenone (2) is significantly lower at 7.9 [32]. A lower pKa value is consistent with
a greater capability of acting as hydrogen-bond donors.

The binding attitude of quercetin to bromide was also studied (for details, see Supplementary
Materials). As expected [10], the binding strength of quercetin for bromide (β1 = 1.62 M−1;
β2 = 1.61 M−1) was significantly smaller than that displayed toward chloride (see Table 1). It is
interesting to note that catechol moiety showed a significant degree of dimensional selectivity for the
chloride and bromide anions (β1 = 4.59 vs. 1.62 M−1, respectively), about three orders of magnitude.
In the case of the resorcinol moiety, however, the chloride was only bound a factor of ca. 10 stronger
than bromide (β1 = 2.95 vs. 1.61 M−1, respectively), thus indicating a much lower degree of size
selectivity. Similar trend of dimensional selectivity for the chloride and bromide anions, although less
pronounced, was also observed for the individual catechol and resorcinol molecules [10].

2.2. 13C-NMR and ESI-MS Binding Studies

We compared the maximum perturbation caused by an excess (25 equiv.) of chloride anion
on the 13C-NMR chemical shifts of quercetin, catechol, and 2′,4′-dihydroxyacetophenone (20 mM
in acetone) (Figure 7). Figure 7a shows that the complexation-induced shifts (CISs) on the B-ring
carbons of quercetin and on the carbons of the structurally analogous catechol have a very similar
trend; therefore, it can be stated that very similar bond interactions occur between the chloride and
each receptor. Similar CISs were also observed for the carbons belonging to the A ring of quercetin
and for the analogous carbons of 2′,4′-dihydroxyacetophenone (Figure 7b). This indicates that the
interactions of the chloride anion with the A ring of the quercetin and the 2′,4′-dihydroxyacetophenone
are very similar.
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Figure 7. (a) ∆δmax of the carbons of the B ring of quercetin compared with analogous carbons of
catechol after addition of an excess of chloride anion. (b) ∆δmax of carbons of the A ring of quercetin
compared with analogous carbons of 2′,4′-dihydroxyacetophenone after addition of an excess of
chloride anions. Positive values mean downfield shifts. All spectra were run at a concentration of
20 mM.

Binding interactions between quercetin and chloride anion were also confirmed by electrospray
negative-ion mass spectrometry (ESI-MS) which revealed a peak corresponding to the 1:1
complex (1· · ·Cl−) at m/z 337 (25%), and a base peak at m/z 740 relative to the 1:2 complex
(Me(Octyl)3N+Cl−· · · 1· · ·Cl−) (See Figure S9, Supplementary Materials).

2.3. Molecular Modeling

The complexes of quercetin with chloride anion were examined using density functional theory
(DFT) calculations (for details, see Supplementary Materials). The structure of quercetin was minimized.
Then we studied 1:1 chloride complexes, and three relative energy minima were found for each
structure in which the chloride anion was positioned at the resorcinol moiety, at the catechol moiety,
and at the proximities of the 3-hydroxyl group. The most stable geometry corresponded to the complex
where the chloride anion was located at the catechol moiety, predicting 100% of abundance due to
the observed difference in energy. The optimized geometry of this minimum is shown in Figure 8a.
In the case of 2:1 chloride complexes, a unique minimum with chloride anions located at the resorcinol
and catechol moieties was found (Figure 8b). Strong directional interactions were observed between
chloride anions and hydroxyl groups in agreement with spectroscopic observations. Non-covalent
interaction (NCI) analyses confirmed such interactions as typical green-blue discs featuring strong
non-covalent interactions.
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To study the dynamics of the recognition process, molecular dynamics (MD) simulations were
performed with AMBER16 and AMBERTools16. Relevant interaction distances between oxygen atoms
and chloride anions were followed during the simulation (Figure 9).
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Figure 9. (a,b) Interaction distances between oxygen atoms and chloride anions during the simulation
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subfigure (b).

When the MD started, considering the complex where the chloride anion was placed at the
resorcinol moiety, the system evolved and a snapshot taken after 2.65 ns showed the chloride in
the proximity of O3. Further snapshots showed the movement of chloride toward the catechol and,
after 6.60 ns, the complex at the catechol was raised. As expected, when the chloride anion was placed
at the catechol moiety, it remained in the proximity of O3’ and O4’, reflecting the stability of the
complex. These results clearly established the recognition by the catechol moiety as the most stable,
in agreement with experimental observations.

With a second chloride anion, the situation remained completely stable with chloride anions
located at resorcinol and catechol moieties (See Figure S12, Supplementary Materials), as predicted by
DFT calculations and in good agreement with experimental observations.

3. Materials and Methods

3.1. General Comments

All the reagents and solvents used in this study were bought from commercial sources. The NMR
spectra were recorded in acetone-d6 solvent using 5-mm tubes, at 298 K, with a Varian Mercury Plus 400,
(Varian Inc., Palo Alto, CA, USA) operating at 400 (1H) and 100 MHz (13C). The chemical shifts were
referenced to acetone: δ (H) 2.04 ppm and δ (C) 29.0 ppm. Some 13C-NMR spectra were acquired in
non-deuterated acetone; in this case, a capillary filled with C6D6 (secondary standard [33]) was placed
into the 5-mm tube and the sample was locked and shimmed on C6D6 contained in the secondary
standard, and the chemical shifts were also referenced to C6D6: δ (C) 127.6 ppm. ESI mass spectra were
obtained using an LCQ Duo (ThermoQuest, San Jose, CA, USA) in negative-ion mode. Instrumental
parameters were as follows: capillary voltage −10 V, spray voltage 4.50 kV, mass scan range was from
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m/z 100 to 2000 amu, for 30,000 ms of scan time; N2 was used as sheath gas. The samples were injected
into the spectrometer through a syringe pump at a constant flow rate of 8 mL/min.

3.2. 1H-NMR Titration

The following is a typical procedure for 1H-NMR titration: 1 mL of a 2 mM solution of host
in undried acetone-d6 [34] was placed in a 5-mm NMR tube and an initial spectrum was taken.
A measured amount of a 100 mM solution of guest (as methyl trioctylammonium salt) in the same
solvent was added, changing the molar fraction of guest to about 0, 0.5, 1, 1.5, 2, 3, 5, 10, 20, and 30.
Spectra were recorded after each addition. The chemical shift variation of the host signals was collected
and the binding constants β (as Log K) were calculated with the curve-fitting method [35] using the
commercial HypNMR2008 [28] program (details are given in Supplementary Materials).

4. Conclusions

In summary, the anion-binding properties of the natural flavonoid quercetin in an organic solvent
for chloride anions were studied using spectroscopic (NMR and MS) and computational (DFT and
MD) methods.

We demonstrated that quercetin, in the NMR titrations, behaves as a ditopic receptor at the A
and B rings; in fact, no significant shifts of the C ring protons occur. It is interesting to note that the
affinity of the resorcinol moiety of quercetin and of its diphenymethylketal derivative 1a for chloride
anions is found to be similar to that of 2′,4′-dihydroxyacetophenone 2, which in turn is greater than
that of simple resorcinol. Furthermore, the bond constant obtained for the B ring (catechol moiety) is
surprisingly high, about seventeen times greater than the catechol analog. This is probably due to the
fact that the B ring of quercetin is conjugated to the C ring via an α,β-unsaturated carbonyl group.
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