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Abstract: In this study potato and corn starch were subjected to oxidation, using sodium periodate, to
obtain dialdehyde starch (DAS) containing different amount of aldehyde groups. The obtained
modified starch samples have been characterized with chemical analysis, scanning electron
microscopy (SEM) and ATR-FTIR spectroscopy. Then, the samples were exposed to polychromatic UV
radiation and the course of photochemical reaction has been monitored with ATR-FTIR spectroscopy.
The surface properties of the native and dialdehyde starch before and after UV-irradiation have been
determined by contact angle measurements and calculation of surface free energy. The crystallinity of
the samples has been estimated with X-ray diffraction (XRD). It has been proved that the dialdehyded
corn starch contained a higher amount of functional groups was more photostable than the oxidized
potato starch. Sodium iodide(V), firmly bound to DAS macromolecules, has been found to have a
significant effect on the photooxidative degradation of the tested systems. In addition, the mechanism
of photoinduced reactions in the dialdehyde starch has been proposed.
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1. Introduction

Polysaccharides are of great interest to scientists owing to the ease of modifications, which
raises the possibility of their use in numerous new sectors of the industry [1–5]. The unquestionable
advantage of the materials based on polysaccharides is that the raw materials come from renewable
sources, which is consistent with current environmental trends. Moreover, the large availability of
starch and its low price are further benefits. Moreover, starch is the component of biodegradable
plastics, which makes the products with starch and its derivatives environmentally friendly materials.
One of the widest applications of starch and dialdehyde starch due to their biocompatibility is the use
of these polysaccharides in the synthesis of biomaterials and biodegradable plastics [6–8].

Oxidation of starch with efficient oxidizing agent, such as periodate, i.e., metaiodate (VII), is the
way to change significantly the properties of native starch. Periodate oxidation is an extremely specific
reaction to transform vicinal di-hydroxyl (glycol) groups to paired aldehyde groups without significant
side products. The selectively oxidized polysaccharide contains two aldehyde groups in each repeating
unit of macromolecule. These aldehyde groups are formed by the opening of the glycosidic ring as a
result of preferential C2–C3 bond cleavage [1,9,10].

In the middle of the last century, the oxidation reaction became the industrial method of obtaining
dialdehyde starch [11,12]. The conversion rate of this process is generally very high (80–90%). In this
technology, periodate, i.e., iodate (VII) (IO4

−), is reduced to iodate (V) (IO3
−) and can be re-used

after oxidation.
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Such modified starch is insoluble in cold water but soluble in hot water, however, its solubility
(dependent on oxidation degree) in organic solvents is changed. DAS does not form characteristic
complexes with iodine. The aldehyde groups in DAS are present as hemiacetals or hemialdals rather
than free aldehydes.

A further modification of starch may lead to a cross-linked system, which results in a complete
lack of solubility and simultaneously in improvement of mechanical properties [13,14]. The ability of
DAS to crosslink is used in production of adhesives, plastics, leather, textile, and paper (where it is a
wet-strength additive).

The presence of highly reactive aldehyde groups in the oxidized starch is desired for potential
medical and biomedical applications. In fact, application of the oxidized starch in tissue engineering
(as a material improving the protein adsorption) and as a drug delivery carrier has been described [15].
Recently, it was also reported that DAS has biocidal properties against bacteria and viruses [16–18].

Although a lot of research was dedicated to the structure and characteristics of the physicochemical
properties of DAS [9–18], but there is no information on its photostability. Due to the fact that
both starch and dialdehyde starch are widely used to obtain biomaterials and bioplastic, testing
its photostability depending on the source is important. Polychromatic UV radiation is commonly
used primarily for the sterilization of materials; hence the study of its impact on the starch and
dialdehyde starch provides important information on the functional properties of starch-based
materials. The purpose of our work was to study the influence of polychromatic UV radiation on
dialdehyde starches with different content of functional groups. The modified starches were obtained
by chemical oxidation of starch from two different plant sources: potato and corn.

Moreover, the second objective was to estimate the ability to modify DAS surface by UV radiation.
Thus, special attention was paid to the study of the surface properties of the films based on the oxidized
starches which are very important for biomedical applications. It should be pointed out that radiation
action on starch is considered as a more safe and environmentally friendly modification method
compared to chemical methods [19]. Furthermore, high energy radiation (UV, ionizing) can be also
used for modification of starch solubility or initiation of grafting process for obtaining biodegradable
packaging materials [19].

2. Results and Discussion

2.1. Structure and Morphology of Native Starch

2.1.1. SEM Analysis

The native starch (ST) samples in the form of powders were characterized by SEM and ATR-FTIR
spectroscopy. Both types of the starch form agglomerates consisting of loosely-bound grains (Figure 1).
The average size of the individual grains varies between 10 and 25 µm for corn starch (CST) and potato
starch (PST), respectively.

One can notice that the shape of CST grains is close to spherical, while the PST objects take
spherical and ellipsoidal shape. However, the surfaces of PST grains are smoother than that of CST.
Pinholes and cavities are also observed in individual CST grains (Figure 1b).

2.1.2. ATR-FTIR

Infrared spectra of the unmodified corn starch do not differ from that of potato starch (Figure 2),
reflecting the lack of essential differences in their chemical structure. The typical absorption bands
at 3000–3600 cm−1 (attributed to OH stretching vibrations), 2800–3000 cm−1 (CH stretching),
900–1200 cm−1 (C–O–C stretching), 400–900, and 1200–1500 cm−1 (C-H, C-OH deformation) confirm
characteristic polysaccharide structure [20,21].
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2.2.Characterization of Oxidized Starch 

2.2.1. Determination of the Aldehyde Group Content (ALD, %) 

The oxidation of starch using sodium periodate is a selective reaction which leads to the breaking 
of C2–C3 bond in the pyranose ring and to the creation of aldehyde groups attached to these carbon 
atoms (i.e., dialdehyde moieties). During oxidation of CST and PST in water dispersions containing 
various content of oxidizing agent—sodium periodate (SP), starch solubility was changed. Potato 
starch (PST) became soluble in water just after few minutes of reactions, contrary to corn starch (CST), 
which remained insoluble up to 1.5 h of oxidation process. After drying, the powder product was 
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UV-treatment up to 480 min.

2.2. Characterization of Oxidized Starch

2.2.1. Determination of the Aldehyde Group Content (ALD, %)

The oxidation of starch using sodium periodate is a selective reaction which leads to the breaking
of C2–C3 bond in the pyranose ring and to the creation of aldehyde groups attached to these carbon
atoms (i.e., dialdehyde moieties). During oxidation of CST and PST in water dispersions containing
various content of oxidizing agent—sodium periodate (SP), starch solubility was changed. Potato
starch (PST) became soluble in water just after few minutes of reactions, contrary to corn starch (CST),
which remained insoluble up to 1.5 h of oxidation process. After drying, the powder product was white
(DAS-C1–5) or light beige (DAS-P1–5). In a strongly alkaline medium, the oxidized starch undergoes
Canizzaro reaction, i.e., disproportionation of two aldehyde groups to alcohol and carboxylic groups,
which allows us to determine their amount during classic acid-base titration.

The number of units containing aldehyde groups (ALD), based on alkali consumption, generally
increases with rising amount of an oxidizing agent in a reaction mixture (Table 1). Although the degree
of oxidation is high, the unmodified glycosidic rings are still present in the polysaccharide chains
and predominate in most samples. As can be seen, the highest oxidation degree can be achieved at
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equal proportions of starch and periodate (1:1). Moreover, the corn starch, at the 1:1 ratio, is more
susceptible to oxidation than the potato starch, which was confirmed by the highest percentage content
of dialdehyde groups (67%). The differences between both starches may result from different amount
of amylose in these starches. A higher content of amylose in the corn starch (28%) than in the potato
starch (21%) promotes the modification process. The amylose has a linear structure and low molecular
weight. Oxidation occurs mainly in the amorphous regions which are known to be more susceptible to
this process [22].

Table 1. The results of acid-base titration of the oxidized starch samples obtained with different
ratios of the starch to oxidant; aldehyde group content (ALD, %) is a content of units containing
dialdehyde groups.

Sample CST or PST: SP ALD, %

DAS-C1 1:0.5 25
DAS-C2 1:0.7 29
DAS-C3 1:0.9 37
DAS-C4 1:1.0 67
DAS-C5 1:1.1 45
DAS-P1 1:0.5 21
DAS-P2 1:0.7 25
DAS-P3 1:0.9 29
DAS-P4 1:1.0 33
DAS-P5 1:1.1 33

Our results are consistent with the results described by Kuakpetoon and Wang [23] who found that
the high-amylose starch was more susceptible to oxidation than the starch with lower amylose content.

Moreover, dialdehyde groups, formed as a results of the ring opening and oxidation reactions,
can exist in equilibrium in few forms: hemiacetals and hemialdals [24] (Figure 3). Formation of
these moieties is reversible process and depends on the environment. It is necessary to remember
that aldehyde groups can react with hydroxyl groups to form another starch molecule (or another
unit of the same molecule). Thus, substituent denoted as R in scheme (Figure 3) is in fact a starch
macromolecule. The substitution of two large fragments on the same carbon atom or on two carbons
from the same unit is highly unlikely because of steric hindrances. Therefore, the structure of the
hemiacetal is more probable.Molecules 2018, 23, 3358 5 of 21 
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The above scheme (Figure 3), showing formation of hemialdal in hydration reaction and ring
closure, is based on the mechanism proposed by Guthrie [25].

2.2.2. SEM Analysis

The morphology of the oxidized starches was different from that of the native samples, which
was observed in SEM images.

Generally, the globular structure was not observed after oxidation in most specimens
independently from oxidant content. The globules of large diameters disappear almost completely but
compact solid mass with many pores and cavities is created in these places (Figure 4a,c).
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Figure 4. SEM images of powder dialdehyde corn starch (a,b) and dialdehyde potato starch (c,d)
obtained at 1:0.5 ratio of starch to oxidant.

At higher magnifications, one can see a number of small spherical objects with a diameter not
exceeding 0.5 µm, which are embedded in the bulk sample (Figure 4b,d). Therefore, one can state
that the oxidation process leads to the grains fragmentation. This indicates easier oxidation of large
starch granules.

2.2.3. ATR-FTIR Analysis and 1H-NMR Analysis

The ATR-FTIR spectroscopy provided the evidence of the changes in the chemical structure of
dialdehyde starch (Figure 5a,b). A new carbonyl band appears at 1716 cm−1 in DAS-C and DAS-P
spectra. Moreover, the intensity of absorption bands at 700–800 cm−1 as well as at 996 cm−1 in DAS-C
and DAS-P, attributed to pyranose rings, decreases significantly. Considerable changes also occur in the
vibration range of the C–O–C groups (1300–1400 cm−1). Maximum band at 1630 cm−1 is clearly shifted
to 1639 cm−1 position, which is another proof of the dialdehyde starch formation. The maximum of
hydroxyl band shifts from 3306 cm−1 to 3391 cm−1 in both types of the samples. At the same time, the
width of the hydroxyl band becomes narrower in relation to band of the native starch, indicating the
partial breaking of hydrogen bonds in DAS-C and DAS-P. Relatively low intensity of carbonyl band in
the spectra of DAS-C and DAS-P, despite the high dialdehyde groups content, may indicate that many
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of these groups were transformed to hemiacetals or hemialdals. All these observations clearly confirm
the oxidation reactions owing to the pyranose rings opening.
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Figure 5. ATR-FTIR spectra of corn starch (a) and potato starch (b) (1) and after chemical oxidation to
dialdehyde starch (2) and dialdehyde starch (DAS)-C3 (a) and DAS-P3 (b) starch during UV-irradiation
for 480 min—arrow indicates the direction of changes after irradiation.

1H-NMR spectrum of the dialdehyde starches (both types—corn and potato) showed all
characteristic chemical shifts for the oxidized starch (Figure 6). Small signal at 8.39 ppm assigned to
aldehyde hydrogen confirmed the successful dialdehyde starch formation. Chemical shift at 3.18 can
be assigned to hydrogen atoms bonded with carbons at polymer matrix and about 5 ppm to hydrogens
in hydroxyl groups (masked by D2O signal). This spectrum is comparable with that in literature [10].Molecules 2018, 23, 3358 7 of 21 
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2.3. Effect of UV-Irradiation

The use of polychromatic lamp emitting radiation containing also short-wavelength UV (and
therefore high energy), is connected with its bactericidal action. Such radiation is used for sterilization
of the materials designed for biomedical, pharmaceutical, cosmetic applications and in food industry.
This method is considered to be environmentally friendly and was applied to modify polysaccharide
structure in order to make crosslinked and more hydrophobic structure [26].



Molecules 2018, 23, 3358 7 of 20

2.3.1. Irradiated Native Starch

More information on the reactions induced by UV radiation in the tested starch samples were
obtained on the basis of the detailed analysis of the IR spectra.

Figure 2a,b show FTIR spectra of the unmodified starches from both sources (CST and PST) before
and after irradiation. One can see a gradual decrease in all absorption bands. The most noticeable
changes occur in the range of the hydroxyl bond vibrations, which is initially associated with the loss
of absorbed water, and then, with the abstraction of OH groups from the macromolecules. The primary
photochemical processes, due to homolytic cleavage of chemical bonds, lead to formation of free
radicals, which were repeatedly detected in starch with ESR [27–29]. These radicals, owing to their
high activity, are capable of taking part in secondary reactions, which usually result in creation of
complex mixture of degradation products.

In order to compare the behavior of the samples during UV-irradiation, absorbance values (A) of
the selected bands and the relative absorbance changes were calculated. Subsequently, the relative
changes, ∆A, were divided by the absorbance of the band at 2920 cm−1, chosen as the internal standard.
This procedure allowed us to compare the results quantitatively. Figures 7 and 8 show the plots of the
relative absorbance changes (marked on the graphs as ∆A/A0) versus irradiation time for the native
starches and the selected dialdehydes starches with different ALD content.

Reduction in the intensities of all bands in both native starches (Figure 7) suggests effective
photodegradation process. In the case of CST, it is relatively fast in the first hour of irradiation, but the
reaction slows down between 2 and 5 h of irradiation (Figure 7a). For PST, the rapid decomposition
occurs between 2 and 5 h of irradiation, but later the changes are no longer relevant (Figure 7b).
Figure 7a,b show that the potato starch undergoes more efficient photodegradation than the corn starch.
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Figure 8. Changes in the relative absorbance of hydroxyl (a,b) and carbonyl (c,d) bands for dialdehyde
corn starches (DAS-C1, DAS-C3, and DAS-C4) and dialdehyde potato starches (DAS-P1, DAS-P3, and
DAS-P5) respectively, versus irradiation time.

2.3.2. Irradiated Dialdehyde Starch

The process occurring in the dialdehyde starches under UV rays exhibits completely different
trend (Figure 8). An increase in the efficiency of hydroxyl and carbonyl groups formation indicates
that UV radiation causes a further oxidation of the dialdehyde starches. It can be concluded that
dialdehyde starch derived from potato is still more susceptible to photooxidation than that from corn,
which is confirmed by considerably greater changes in absorbance of the analyzed absorption bands in
the spectra of the irradiated DAS-P samples.

The systematically developing band at 1600–1800 cm−1 can be attributed to the creation of new
carbonyl groups (mainly aldehydes but also probably carboxylic moieties).

2.3.3. SEM Images of Irradiated Dialdehyde Starch

SEM images of the irradiated dialdehyde corn starch (in the powder form) do not show any
changes in surface morphology (Figure 9a,b). However, the images of the exposed potato starch exhibit
altered structure without grains but with numerous holes (Figure 9c). Higher magnification allows us
to observe sticks and plates scattered in disordered polysaccharide bulk (Figure 9d). Some of these
plates are arranged parallel, forming packages. This partially ordered structure may be a result of
photodestruction of amorphous phase in the sample.

In this case, UV radiation acts as an etching agent removing outer layers and uncovering the inner
ones. Such etching effect was not observed for irradiated corn dialdehyde starch, which may indicate
its better photostability compared to DAS-P.
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2.4. Surface Properties

The surface properties can affect the practical utility of the modified starch. The sample
hydrophilicity was examined by the contact angle measurements using two test liquids of different
polarity (polar—glycerin and apolar—diiodomethane). The measurements were used for calculating
the surface free energy by the Owens–Wendt method which assumes that the surface free energy (γs)
is the sum of the polar (γp) and the dispersive (γd) component:

γs = γp + γd (1)

2.4.1. Surface Properties of the Native Starch

Two native starches show remarkable different surface properties: corn starch presents lower
γs and γp values, but higher γd value when compared to adequate potato starch values (Table 2).
It clearly indicates more hydrophilic nature of PST, which may be related to some differences in its
chemical structure (amylose/amylopectin ratio) and to different arrangement of polysaccharide chains
(different content of crystalline phase).

2.4.2. Surface Properties of the Irradiated Native Starch

Long-term exposure to UV rays causes a dramatic decrease in the surface free energy for both
starches but unexpectedly the polar component decreases for PST, contrary to that for CST. The reduction
in γs and γp values indicates the loss of the polar groups on the sample surfaces, which may be caused
by both the removing adsorbed moisture and the abstraction of OH groups as a consequence of
photolysis of chemical bonds. Moreover, He and co-authors postulated the surface photo-crosslinking
as an explanation for the changes in contact angles of UV-irradiated potato starch [26]. Considering
the changes in the solubility of the studied starch samples, it can be concluded that CST undergoes
photo-crosslinking contrary to PST, which quickly becomes soluble after UV treatment.
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Table 2. Surface free energy (γs) and its dispersive (γd) and polar (γp) component calculated for the
native and the dialdehyde starches.

Sample
Surface Free Energy [mJ/m2]

Before Irradiation After 8 h UV-Irradiation

γs γd γp γs γd γp

CST 34.4 28.8 5.6 19.5 6.2 13.3
PST 40.6 26.7 13.9 20.7 14.2 6.5

DAS-C1 37.3 20.5 16.9 32.2 27.8 4.4
DAS-C3 37.3 20.5 16.9 33.0 27.0 6.1
DAS-C4 42.6 22.9 19.7 41.1 34.8 6.3
DAS-P1 42.3 23.9 18.5 36.2 30.5 5.7
DAS-P3 42.9 21.5 21.4 28.1 12.8 15.3
DAS-P5 43.9 20.1 23.8 32.4 21.0 11.4

2.4.3. Surface Properties of the Dialdehyde Starch

The dialdehyde starches obtained from two botanical sources (DAS-C1,3,4 and DAS-P1,3,5) reveal
slightly higher surface free energy values in relation to that of the native samples. However, much
higher polar component values for DAS-C1,3,4 and DAS-P1,3,5 indicate a greater surface polarity of
the dialdehyde starches with respect to the native CST and PST. This can be related to the different
polarity of functional groups in starch: hydroxyl groups are characterized by smaller dipole moment
(µ) than the aldehyde entities, which can be deduced from the comparison of the dipole moments of
two organic substances: methanol (µ = 1.94) and acetaldehyde (µ = 2.53) [30]. Polarity of the individual
chemical bonds and inter- and intramolecular interactions determine a polarity of the whole system.

It should be mentioned that the contradictory information on DAS polarity can be found in the
literature. As stated in the monograph [31], transformation of OH groups into aldehyde ones made the
starch surface more hydrophobic, moreover, DAS’s ability to crystallize was deteriorated.

Other publications indicated a higher hydrophilicity of DAS, if compared to the native starch [10],
which has been also found in our research.

2.4.4. Surface Properties of Irradiated Dialdehyde Starch

UV-irradiation causes a decrease in surface free energies (γs) and polar components (γp) of the
dialdehyde starches. The changes in polar components values were in the range of 17–68% and 63–74%
for DAS-C1,3,4 and DAS-P1,3,5, respectively. Such behavior of these samples may be a result of the
deep starch destruction related to the removal of polar functional groups from the sample surfaces.
On the other hand, amylopectin, a major starch component, forms a double helix, which may be
distorted during UV-irradiation. Disturbances in the helical structure can lead to conformational
changes due to the rotation of C–C(OH) chemical bonds. Thus, the hydroxyl groups can be oriented
towards the interior of the sample reducing the surface polarity.

Moreover, the drop in the DAS polarity may be caused by the deposition on the surface of
non-polar starch contaminations (e.g., lipids) which are present in small quantities in starch specimens.
It is likely that during UV-irradiation, their gradual diffusion from the inside to the outer layer may
occur (an effect similar to migration of plasticizers in plastics).

Data in Table 2 can indicate no simple correlation between the carbonyl groups content in the
dialdehyde starch and the surface properties.

However, spectroscopic studies indicated an increase in the amount of functional groups for
both DAS-C and DAS-P during irradiation. This apparent contradiction can be explained by the
difference in the thickness of the layers which are tested with both techniques. As we know, wetting
test involves a top layer of thickness not exceeding 1 nm [32,33], whereas IR radiation in the ATR
method penetrates the sample to approximately a few µm (micrometers) [34,35]. Thus, using both
methods, we additionally obtain data about the content of polar groups placed directly on the surface
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and slightly below the surface, which is useful in monitoring the changes during UV irradiation
of samples.

2.5. XRD Analysis

2.5.1. XRD Analysis of the Native Starch

X-ray diffraction patterns of the native corn and potato starch (Figure 9a) indicate a partial
crystallinity, which is typical of the native starches [19]. Several signals of low intensities appear at
2Θ(◦): 15.2, 17.1, 17.9, and 23.0 for CST and at 17.0, 19.5, and 22.0 for PST.

The structure of starch has been explained relatively well for the recent years [2,22,36,37].
Crystalline regions are mainly composed of highly branched amylopectin while an amorphous phase
is built of both the linear amylose and the amylopectin in disordered conformation. Native starch
can exist in various polymorphic forms (A-type and B-type), which differ from each other in the way
of double helices arrangement and in the amount of included water molecules. The third type C is a
combination of A and B polymorphs. Sophisticated research methods allowed us to conclude that the
granules were made up of growth rings (both amorphous and semicrystalline lamellae occur within
the spherical blocklets).

Registered XRD pattern of CST exhibits typical A-type, whereas XRD pattern of PST shows B-type
pattern (Figure 10) [37].Molecules 2018, 23, 3358 12 of 21 
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pure NaIO3 hydrate (b).

Both starches: CST and PST have similar crystallinity degree (about 20%). UV radiation causes a
gradual disappearance of these signals with simultaneous increase in amorphous halo. It clearly
indicates that the destruction occurs not only in amylose but also in more ordered fraction of
amylopectin, however, the observed changes are small. It confirms that photodegradation occurs
mainly in the amorphous phase.

2.5.2. XRD Analysis of the Dialdehyde Starch

XRD studies were also conducted for the dialdehyde starches. It was expected that the amorphous
structure was formed as a result of the random oxidation of some glucose units. This was also
suggested by other authors [6,7,38]. The lack of the oxidation on the crystallinity degree of the starch
was explained by the fact that only the amorphous phase undergoes reactions [19,22].

Figure 10b shows XRD pattern with many narrow intensive signals indicating the presence
of the crystalline product. It turned out that these signals came from the oxidizing agent reduced
to iodate (V) indicating inaccurate washing of the modified starch. It should be emphasized that
periodate salts are readily soluble in water. Thus, the samples were again subjected to intensive
washing and shaking with distilled water and finally rinsing with acetone. The signals intensities
have changed insignificantly, indicating a relatively stable combination of DAS and iodate, probably
due to complexation (an example of such a structure is shown in Figure 3a). XRD pattern of the
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system exhibiting such strong binding may be mistakenly interpreted as a crystalline structure of the
dialdehyde starch itself [39].

2.6. Photooxidative Degradation Mechanism of the Dialdehyde Starch

Photochemical reactions occur in systems containing chromophores absorbing the incident
radiation. Although pure starch does not contain typical chromophoric moieties in its structure,
but it undergoes photochemical changes due to the presence of contamination form the plant material
from which it was obtained. Lipids (including phospholipids) and proteins were found in starch
granules [40].

It is known that the presence of a small amount of chromophores can initiate the photochemical
decomposition of polysaccharides. Quanta of UV radiation carry large enough energy to break chemical
bonds of the starch. Macromolecules undergo excitation and then break down into free radicals of
various types. As stated [23,27], UV-irradiation changes the structure of starch. Thus, one can observe
a reduction in amylose content, in the average molecular weight and the degree of crystallinity.
The mechanism of starch photodegradation has been proposed in some previous works [23,27,41–43].

The situation is different in the case of dialdehyde starch which contains a large number of
carbonyl groups able to absorb UV radiation and undergo excitation (Figure 11). Thus, the aldehyde
groups are the place of primary photochemical reactions in the oxidized starch. In addition to
conventional free radical processes, occurring in the polymers upon UV radiation, the reactions
typical of aldehydes and alcohols are expected. Norrish I type reaction involves a homolytic breaking
a C–C bond in the direct vicinity of the carbonyl group (α-cleavage). Moreover, typical nucleophilic
addition can take place if a proper reagent appears in the reaction medium (e.g., water or alcohols).
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Photochemical processes in DAS can be proposed by analogy with the processes for starch.
Primary photochemical reactions in DAS-C and DAS-P include the main chain scission at α-1,4
glycosidic bond, abstraction of side groups, including hydrogen atoms and opening of a glucopyranose
ring (Figure 12). Free radicals, formed in the first stage, generate further reactions in the dialdehyde
starch chains. This scheme does not include the reaction of the side chain abstraction and cracking
of α-1,6 glycosidic bonds which are present in amylopectin. Because amylopectin dominates the
amylose in both types of the native starches, its share in dialdehyde derivatives is also significant.
Amylopectin, due to its ordered structure, is less susceptible to photochemical modifications than
amylose but prolonged irradiation causes also the destruction of this starch component.Molecules 2018, 23, 3358 14 of 21 
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Figure 12. Main primary photochemical reactions in the dialdehyde starch (the hydrogen atoms in
rings are omitted).
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Regardless of the starch component (amylose or amylopectin), small radicals such as ·OH, ·CHO,
·CH2OH are formed. These radicals are characterized by high mobility and reactivity and they can
abstract adjacent substituents (mostly hydrogen atoms). In these sites, macroradicals are formed, next,
in air atmosphere these macroradicals react with O2 to form peroxy radicals (Figure 13). As shown in
this scheme, the recombination of peroxy radicals leads to unstable tetraoxides that quickly decompose
with the formation of molecular oxygen and alkoxy radicals.Molecules 2018, 23, 3358 15 of 21 
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Figure 13. Formation of peroxyradicals in DAS-C and DAS-P and the secondary reactions (where R.,
R1 and R2—various radicals and/or macroradicals formed upon UV action).

FTIR spectra of the exposed samples indicate that the reaction of macroradicals with oxygen is
dominant. Even if oxygen partially quenches the excited states of macromolecules by direct contact
with them, producing oxygen in a singlet state. The singlet oxygen is an active oxidizing agent during
further polymer exposure to UV.

Another typical process, during UV-treatment of polysaccharides, is the loss of physically loosely
adsorbed water as well as water more strongly bound to macromolecules (due to hydrogen bonding).
The process is also observed in the case of the dialdehyde starch. Dehydration leads to the formation
of double bonds in glucose units (Figure 14). Such unsaturated moieties are new chromophores in
the dialdehyde starch chains, which may have an impact on the next stages of the photodegradation.
The double bonds are also responsible for the absorption of UV radiation and yellowing of the
irradiated samples.
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Schemes in Figures 12 and 13 do not include reactions in the chain units containing the dialdehyde
groups in the adjacent position. The direct vicinity of these groups, which occurs in the case of the
samples with high oxidation degree, implies the possibility of other specific reactions, the examples
are shown in the Figure 14.

It is seen that UV radiation is responsible for the changes in the chemical structure of
macromolecules and formation of low molecular weight degradation products rich in functional groups.

The oxidation of pyranose rings during UV exposure in the presence of atmospheric oxygen can
also result in the creation of the dialdehyde structures, as noted earlier [31]. In other work, it has been
found that illumination of potato starch provided dialdehyde product of high water solubility and
high susceptibility to enzymatic hydrolysis [44].

Nevertheless, according to our knowledge, there is no publications taking into account the effect of
the oxidizer residue (reduced to NaIO3) on photochemical processes in DAS. NaIO3 has still oxidative
properties and can even be reduced to free iodine, which is possible during UV-irradiation (this is
confirmed by the yellow or brown color of the photooxidized products). Therefore, in the presence of
the oxidizer, production of the aldehyde groups can still increase as a result of the opening of glucose
rings as well as other non-selective oxidation of hydroxyl groups in C6 position.

Due to the variety of active intermediates, secondary reactions can occur in different ways and
with various efficiencies. A complex mixture of degradation products can be formed as a result of
these reactions. Once initiated free-radical decomposition, it continues even if the radiation is absent.
Finally, the termination process occurs when all radicals are deactivated. This happens mainly by
reactions of radical recombination (Figure 13) or disproportionation. Recombination may lead to
crosslinking reactions causing an increase in molecular weight, which is the opposite to the main chain
scission reactions.



Molecules 2018, 23, 3358 16 of 20

3. Materials and Methods

3.1. Materials

Potato and corn starch (CAS Number 9005-25-8), purchased from Sigma-Aldrich (Munich,
Germany), were the raw materials for preparation of the dialdehyde starch. Both starches were white
odorless powders. Sodium hydroxide and concentrated hydrochloric acid (35%) were obtained from
POCh, Gliwice, Poland. Sodium periodate (SP) was purchased from Budapest (Budapest, Hungary).
The glycerol and diiodomethane (pure for analysis) have been purchased from Sigma-Aldrich.

3.2. Dialdehyde Starch Preparation

The dialdehyde starch (DAS) was obtained by oxidation with sodium periodate (NaIO4,
abbreviation SP) according to the recipe in [45]. 1.5 g of potato or corn starch were dissolved in
30 mL distilled water, mixed with appropriate quantity of sodium periodate (0.7 M, 5–10 mL) and
magnetic stirred at 40 ◦C for 3 h. When the reaction was finished, DAS was precipitated by the addition
of acetone and isolated by filtration. The precipitated product was washed three times with water and
acetone. Finally, DAS was dried in a room temperature for 24 h. The chemical structure of the oxidized
starch has been confirmed by FTIR spectroscopy (Spectrum Two, Perkin Elmer, Waltham, MA, USA)
and the content of the aldehyde groups was determined by titration analysis.

3.3. Determination of the Content of Aldehyde Groups (ALD, %)

The number of the aldehyde groups has been determined by acid-base titration of the modified
starch solutions [45]. The content of starch units containing the dialdehyde groups was calculated
from the formula:

ALD, % =
C1V1 − C2V2

m/M
× 100% (2)

where C1 (mol/L) and V1 (dm3) are the concentration and volume of NaOH solution, C2 (mol/L) and
V2 (dm3) are the concentration and volume of HCl solution, respectively; m—mass of the sample (g),
M—molecular weight of the repeated unit in dialdehyde starch (M = 160 g/mol).

DAS (0.1 g) and NaOH solution (5 mL, 0.25 M) were added to the Erlenmeyer flask and heated in
70 ◦C (water bath) until the sample was dissolved. After cooling the HCl solution (7.5 mL, 0.25 M) and
distilled water (15 mL) were added. Then phenolophthalein solution was added and the sample was
titrated with NaOH solution (0.25 M). Procedure was triplated for each sample.

3.4. Preparation of DAS Films

0.2 g of DAS powder was dissolved in 20 mL of distilled water and stirred with a magnetic stirrer
at 40 ◦C during 3 h. Then, this solution was poured onto the leveled glass plates (microscope slides or
Petri dishes) to allow the solvent to evaporate. The samples are marked as follows:

CST—native corn starch
PST—native potato starch
DAS-C1–5—a sample of corn starch oxidized at different reagent ratio CST: SP
DAS-P1–5—a sample of potato starch oxidized at different reagent ratio (PST: SP), in particular, a
subscript 1, 2, 3, 4, and 5 means PST:SP = 1:0.5, 1:0.7, 1:0.9, 1:1, and 1:1.1, respectively.

3.5. Conditions of UV-Irradiation

The dialdehyde starch and native starch films or powders were exposed to high-pressure mercury
vapor lamp HPK 125 W (Philips, Eindhoven, Holland), emitting polychromatic radiation in the range
of 248–578 nm. The intensity of the emitted radiation was equal to 72 W/cm2-UVA, 55 W/cm2-UVB,
18,7 W/cm2-UVC, and was measured with an electronic radiometer HD 9021 (Delta OHM, Caselle di
Selvazzano, Italy). Maximal time of exposure was 8 h. The procedure was triplated.
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3.6. Characterization of DAS

3.6.1. Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR)

Infrared spectra have been obtained using Spectrum TwoTM (Perkin Elmer, Perkin Elmer, Waltham,
MA, USA) equipped with an ATR tool with diamond crystal. Spectra was recorded on over the region
from 4000 to 400 cm−1, at a resolution 4 cm−1, 32 scans at room temperature.

3.6.2. Scanning Electron Microscopy (SEM)

The morphology of DAS-C and DAS-P has been studied with Zeiss HamburgLEO Scanning
Electron Microscope 1430 VP (Carl Zeiss, Oberkochen, Germany) without sputtering, using an
adjustable vacuum mode.

3.6.3. Contact Angle and Surface Free Energy

The hydrophilic/hydrophobic properties of starch were analyzed by contact angle measurements
using a DSA G10 goniometer (Kruss GmbH, Hamburg, Germany). A drop of glycerin or diiodomethane
was placed on the polymer film surface. The sessile drop image was recorded and digitized by camera.
The drop shape analysis and determination of contact angle have been done with help of instrument
software (Kruss GmbH, Hamburg, Germany). The reported contact angle value is an average at least
10 measurements for each specimen and solvent (glycerin or diiodomethane). All measurements
were carried out at constant temperature (22 ◦C). The surface free energy was calculated by the
Owens–Wendt method [46] which is one of the most commonly used calculation methods.

3.6.4. X-ray Diffraction (XRD) Measurement

X-ray diffraction pattern (XRD) were recorded with X’PertPRO diffractometer (Malvern
Panalytical, Almelo, Holland) using a CuKα radiation (wavelength of 1.540 Å, nickel filtered) and
High Score software. Crystallinity degree in XRD was calculated using the formula: % Crystallinity =
(total area of crystalline peaks) × 100/(total area of all peaks).

4. Conclusions

The dialdehyde starch with different content of the dialdehyde groups was obtained by chemical
oxidation of the native corn or potato starch. It was found that the corn starch was more susceptible to
selective oxidation than the potato starch. During this process, the formation of the aldehyde groups
on C2 and C3 carbon atoms takes place as a result of the cleavage of glycosidic rings.

Moreover, the strong interactions between the dialdehyde starch and the residue of oxidant (IO3−)
have been observed, which was leading to complex formation. The oxidant residue in the sample may
be an additional factor accelerating the photo-oxidation. It was proved that photochemical reactions in
the studied dialdehyde starches are different from that occurring in both native starches. Spectroscopic
results showed a systematic increase in the amount of functional groups in DAS during UV exposure,
whereas the decomposition processes were dominant for the native starches.

Significant decrease in the surface free energy after UV-irradiation indicates efficient destruction
of the sample top layers. The most profound drop in the surface polarity is not simply related to the
oxidation degree of the starch.

UV radiation also caused considerable alterations in the morphology of DAS, the granular
structure disappeared in contrast to the native corn and potato starches.

Summarizing, it can be concluded that potato starch is less resistant to UV radiation than corn
starch. The dialdehyde starch obtained from PST (i.e., DAS-P) is less photostable than that obtained
from CST (i.e., DAS-C), that may be caused by the differences in the structure and chemical composition
of the native polysaccharides.
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The main explanation for the observed differences in the photochemical stability of the oxidized
starches results from different chemical structure of the native polysaccharides. The original structure
of the polysaccharides may be also partially preserved in the dialdehyde starches. A higher amount
of branched amylopectin in the potato starch can be responsible for its higher resistance to UV
radiation. By analogy with typical synthetic polymers (polyolefines, vinyl, or acrylate polymers),
branching points are prone to UV cracking. It was reported that the polymer chains became shorter in
amylose and amylopectin as a result of photoinduced depolymerisation, while amylose underwent
photocrosslinking [19]. Thus, the higher amylose content in CST was the reason for slightly slower
and less efficient photodegradation because crosslinks reinforced the polysaccharide structure.

Moreover, the ordered structure of A type dominates in CST, in contrast to PST in which the
structure of B type was found. It seems that incompact packing of the double helices in crystallities B
facilitates the penetration of oxygen, free radicals as well as active low molecular products into the
interior of the helices, thus enhance their activity and simultaneously diminish starch photostability.

This study allowed us to compare the photostability of the dialdehyde starches obtained by
oxidation in the same conditions. The polysaccharides studied came from two different botanical
raw materials. The dialdehyde corn starch may be recommended for practical applications as more
resistant to UV and characterized by a higher content of functional groups in comparison to the potato
dialdehyde starch. Finally, it should be pointed out that the creation of the permanent interactions
between DAS and IO3

−, according to our knowledge, has not been described in the literature.
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